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Conditions d’optimalité du premier et second
ordre en commande optimale stochastique

Résumé : Nous considèrons un problème de commande optimale stochastique
avec soit des contraintes convexes sur la commande soit un nombre fini de
contraintes d’égalité et d’inégalité sur l’état final. L’approche dite variationnelle
nous permet d’obtenir un dèveloppement au premier et au second ordre pour
l’état et la fonction de coût, autour d’un minimum local. Avec ces dèveloppements
on peut montrer des conditions générales d’optimalité de premier ordre et,
sous une hypothèse géométrique sur l’ensemble des contraintes, des conditions
nécessaires du second ordre sont aussi établies. On finit l’article en fournissant
des conditions d’optimalité du second ordre pour de problèmes avec de contraintes
en espérance sur l’état final

Mots-clés : Commande optimale stochastique, approche variationnelle, conditions
d’optimalité de premier et second ordre, contraintes polyédriques, contraintes
sur l’état final.
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1 Introduction

Let us consider a controlled Itô process satisfying the following stochastic dif-
ferential equation (SDE)

dy(t) = f(t, y(t), u(t), ω)dt+ σ(t, y(t), u(t), ω)dW (t), on [0, T ]× Ω,
y(0) = y0 ∈ Rn. (1)

In the notation above y(t) ∈ Rn denotes the state function and u(t) ∈ Rm the
control. Associated to a pair state-control (y, u) we define its cost J(y, u) by

J(y, u) := E

(∫ T

0

`(t, y(t), u(t))dt+ φ(y(T ))

)
. (2)

Precise definitions of the suitable spaces for (y, u) and assumptions over the
data (f, σ, `, φ), will be provided in the next section. For the dynamics (1) and
the cost (2), we will study two types of problems. In the first one, we suppose
that we are given a nonempty closed and convex subset U of the space L2

F
of adapted square integrable process, and we analyze the following stochastic
optimal control problem with control constraints

Min(y,u) J(y, u) s.t. (1) holds and u ∈ U . (SP)

As in the case of deterministic optimal control problems, there are two main
approaches to study problem (SP) when U is defined by local constraints, i.e.
for a given nonempty closed and convex subset U ⊆ Rn,

U :=
{
u ∈ L2

F ; u(t, ω) ∈ U, for almost all (t, ω) ∈ [0, T ]× Ω
}
. (3)

The first approach is the global one, based on Bellman’s dynamic programming
principle, which yields that the value function of (SP) is the unique viscosity
solution of an associated second order Hamilton-Jacobi-Bellman equation. For
a complete account of this point of view, widely used in practical computations,
we refer the reader to Lions [21, 22] and to the books [11, 26, 29]. The second
approach is the variational one, which consists in the local behavior analysis
of the value function under small perturbations of a local minimum. Using
this technique, Kushner [18, 19, 20], Bensoussan [1, 2], Bismut [3, 4, 5] and
Haussmann [14] obtained natural extensions of Pontryagin maximum principle
to the stochastic case, that were generalized by Peng [25] to the case where
U is not necessarily convex and by Cadenillas and Karatzas [8] to the non-
Markovian case. Relations between the global and variational approach are
studied in [30, 31].

Nevertheless, to the best of our knowledge, nothing has been said about
second order optimality conditions for (SP). Using the variational technique
we are able to obtain first and second order expansions for the cost function,
which are expressed in terms of the derivatives of the Hamiltonian of problem
(SP). The main tool is a kind of generalization of Gronwall’s lemma for the
SDEs (proposition 1) obtained by Mou and Yong [24], which allows to expand
the cost with respect to directions belonging to a more regular space than the
control space. Note that the idea of using a more regular space that the orig-
inal one was already used [6] in the context of deterministic state constrained
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4 J. F. Bonnans, F. J. Silva

optimal control problems. By a density argument, we establish first order op-
timality conditions, which in the case of local constraints are a consequence of
the maximum principles obtained in the above references. However, we can also
deal with constraints sets that are not necessarily local. The main novelty of our
work is that under a polyhedricity assumption (see [13, 23]) over the set U , we
are also able to provide second order necessary conditions which are new for the
stochastic case and are natural extensions of their deterministic counterparts.

In the second type of problem we suppose that we are given functions gi, hj

with i ∈ {1, ..., ng}, j ∈ {1, ..., nh}, and we study the following optimal control
problem with finitely many equality and inequality constraints

Min(y,u) J(y, u) s.t. (1) holds and E
[
gi(y(T ))

]
= 0, E

[
hj(y(T ))

]
≤ 0. (SP ′)

First order optimality conditions for (SP ′), in a maximum principle form, have
been obtained in [25, 8]. Under a standard qualification condition over gi,
hj , the techniques employed for (SP) allow us recover particular cases of the
results in [25, 8], but in addition we are also able to prove second order necessary
conditions for (SP ′).

The article is organized as follows: After introducing standard notations
and assumptions in section 2, we obtain in section 3 first and second order
expansions for the state and cost function. The proof of technical lemmas of
this section are provided in the Appendix. In section 4, first and second order
necessary conditions are proved for problem (SP) with explicit results for the
case of box constraints over the control. A discussion about a non gap second
order sufficient condition is also provided. Finally, in section 5 first and second
order necessary conditions are derived for problem (SP ′).

2 Notations, assumptions and problem state-
ment

Let us first fix some standard notation. For x belonging to an Euclidean space
we will write xi for its i-th coordinate and |x| for its Euclidean norm. Let T > 0
and consider a filtered probability space (Ω,F ,F,P), on which a d-dimensional
(d ∈ N∗) Brownian motion W (·) is defined. We suppose that F = {Ft}0≤t≤T
is the natural filtration, augmented by all P-null sets in F , associated to W (·).
Let (X, ‖ · ‖X) be a Banach space and for β ∈ [1,∞) set

Lβ (Ω;X) :=
{
v : Ω→ X; v is F -measurable and E

(
‖v(ω)‖βX

)
<∞

}
,

L∞ (Ω;X) := {v : Ω→ X; v is F -measurable and ess supω∈Ω‖v(ω)‖X <∞} .

For β, p ∈ [1,∞] and m ∈ N let us define

Lβ,pF :=
{
v ∈ Lβ (Ω;Lp ([0, T ];Rm)) ; (t, ω)→ v(t, ω) := v(ω)(t) is F-adapted

}
.

We endow these space with the norms

‖v‖β,p :=
[
E
(
‖v(ω)‖βLp([0,T ];Rm)

)] 1
β

and ‖v‖∞,p := ess supω∈Ω‖v(ω)‖Lp([0,T ];Rm).

For the sake of clarity, when the context is clear, the statement “for a.a. t ∈
[0, T ], a.s. ω ∈ Ω (P-a.s.)” will be abbreviated to “for a.a. (t, ω)”. We will
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write LpF := Lp,pF and ‖ · ‖p := ‖ · ‖p,p. The spaces Lβ,pF endowed with the norms
‖ · ‖β,p are Banach spaces and for the specific case p = 2 the space L2

F is a
Hilbert space. We will denote by 〈·, ·〉2 the obvious scalar product. Evidently,
for β ∈ [1,∞] and 1 ≤ p1 ≤ p ≤ p2 ≤ ∞, there exist positive constants cβ,p1 ,
cβ,p2 , cp1,β , cp2,β such that

cβ,p1‖v‖β,p1 ≤ ‖v‖β,p ≤ cβ,p2‖v‖β,p2 , cp1,β‖v‖p1,β ≤ ‖v‖p,β ≤ cp2,β‖v‖p2,β .

For a function [0, T ] × Rn × Rm × Ω 3 (t, y, u, ω) → ψ(t, y, u, ω) ∈ Rn such
that for a.a. (t, ω) the function (y, u) → ψ(t, y, u, ω) is C2, set ψy(t, y, u, ω) :=
Dyψ(t, y, u, ω) and ψu(t, y, u, ω) := Duψ(t, y, u, ω). As usual, when the context
is clear, we will systematically omit the ω argument in the defined functions.
Now, let z ∈ Rn and v ∈ Rm be variations associated with y and u respectively.
The second derivatives of ψ are written in the following form

ψyy(t, y, u)z2 := D2
yyψ(t, y, u)(z, z), ψuu(t, y, u)v2 := D2

uuψ(t, y, u)(v, v),
ψyu(t, y, u)zv := D2

yuψ(t, y, u)(z, v),
ψ(y,u)2(t, y, u)(z, v)2 := ψyy(t, y, u)z2 + 2ψyu(t, y, u)zv + ψuu(t, y, u)v2.

Consider the maps f, σi : [0, T ]×Rn×Rm×Ω→ Rn (i = 1, ..., d). These maps
will define the dynamics for our problem. Let us assume that:

(H1) [Assumptions for the dynamics] The maps ψ = f, σi satisfy:

(i) The maps are B([0, T ]× Rn × Rm)⊗FT -measurable.

(ii) For all (y, u) ∈ Rn × Rm the process [0, T ] 3 t → ψ(t, y, u) ∈ Rn is F-
adapted.

(iii) For almost all (t, ω) ∈ [0, T ] × Ω the mapping (y, u) → ψ(t, y, u, ω) is C3.
Moreover, we assume that there exists a constant L1 > 0 such that for almost
all (t, ω)

|ψ(t, y, u, ω)| ≤ L1 (1 + |y|+ |u|) ,
|ψy(t, y, u, ω)|+ |ψu(t, y, u, ω)| ≤ L1,

|ψyy(t, y, u, ω)|+ |ψyu(t, y, u, ω)|+ |ψuu(t, y, u, ω)| ≤ L1

|ψ(y,u)2(t, y, u, ω)− ψ(y,u)2(t, y′, u′, ω)| ≤ L1 (|y − y′|+ |u− u′|) .

(4)

Let us define σ(t, y, u) := (σ1(t, y, u), ..., σd(t, y, u)) ∈ Rn×d. For variations
z ∈ Rn and v ∈ Rm, associated with y and u, set

σy(t, y, u)z := (σ1
y(t, y, u)z, ..., σdy(t, y, u)z),

σyy(t, y, u)z2 := (σ1
yy(t, y, u)z2, ..., σdyy(t, y, u)z2),

(5)

and σu(t, y, u)v, σyu(t, y, u)zv, σuu(t, y, u)v2, σ(y,u)2(t, y, u)(z, v)2 are analo-
gously defined.

For every β ∈ [1,∞), let us define the space Yβ as

Yβ :=
{
y ∈ Lβ (Ω;C([0, T ];Rn)) ; (t, ω)→ y(t, ω) := y(ω)(t) is F-adapted

}
,

endowed with the norm ‖ · ‖β,∞. Let y0 ∈ Rn, under (H1) we have that for

every u ∈ Lβ,2F the SDE

dy(t) = f(t, y(t), u(t))dt+ σ(t, y(t), u(t))dW (t),
y(0) = y0,

(6)

is well posed. In fact (see [24, Proposition 2.1]):
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Proposition 1. Suppose that (H1) holds. Then, there exists C > 0 such that

for every u ∈ Lβ,2F (β ∈ [1,∞)) equation (6) admits a unique solution y ∈ Yβ
and

‖y‖ββ,∞ ≤ C
(
|y0|β + ‖f(·, 0, u(·))‖ββ,1 + ‖σ(·, 0, u(·))‖ββ,2

)
. (7)

Remark 1. Note that by the first condition in (4), the right hand side of (7)
is finite.

Now, let us consider maps ` : [0, T ]×Rn×Rm×Ω→ R and φ : Rn×Ω→ R.
These maps will define the cost function of our problem. We assume:

(H2) [Assumptions for cost] (i) The maps ` and φ are respectively B([0, T ]×
Rn × Rm)⊗FT and B(Rn)⊗FT measurable.

(ii) For all (y, u) ∈ Rn×Rm the process [0, T ] 3 t→ `(t, y, u) ∈ R is F-adapted.

(iii) For almost all (t, ω) the maps (y, u)→ `(t, y, u, ω) and y → φ(y, ω) are C2.
In addition, there exists L2 > 0 such that:

|`(t, y, u, ω)| ≤ L2 (1 + |y|+ |u|)2
, |φ(y, ω)| ≤ L2 (1 + |y|)2

,
|`y(t, y, u, ω)|+ |`u(t, y, u, ω)| ≤ L2 (1 + |y|+ |u|) ,

|`yy(t, y, u, ω)|+ |`yu(t, y, u, ω)|+ |`uu(t, y, u, ω)| ≤ L2,
|`(y,u)2(t, y, u, ω)− `(y,u)2(t, y′, u′, ω)| ≤ L2 (|y − y′|+ |u− u′|) ,

|φy(y, ω)| ≤ L2 (1 + |y|)
|φyy(y, ω)| ≤ L2, |φyy(y, ω)− φyy(y′, ω)| ≤ L2 (|y − y′|) .

(8)

Remark 2. The above assumptions include the important case when the cost
function is quadratic in (y, u).

In order to provide second order conditions, which will be natural extensions
of well known deterministic results, it will be useful to strengthen (H1) and
(H2).

[Lipschitz cost] There exists C`, Cφ > 0 such that for almost all (t, ω) ∈
[0, T ]× Ω and for all (y, u), (y′, u′) ∈ Rn × Rm we have

|`(t, y, u, ω)− `(t, y′, u′, ω)| ≤ C` (|u− u′|+ |y − y′|) ,
|φ(y, ω)− φ(y′, ω)| ≤ Cφ|y − y′|.

(9)

[Affine dynamics] For ψ = f, σi and for almost all (t, ω) ∈ [0, T ]×Ω, we have

(y, u) ∈ Rn × Rm → ψ(t, y, u, ω) is affine. (10)

In our main results we will assume:

(H3) At least one of the following assumptions hold:

(H3.i) Condition (9) holds and σuu ≡ 0. (H3.ii) Condition (10) holds.

For every u ∈ L2
F denote by yu ∈ Y2 the solution of (6). Let us define the

cost function J : L2
F → R by

J(u) = E

[∫ T

0

`(t, yu(t), u(t))dt+ φ(yu(T ))

]
. (11)

Note that, in view of the first condition in (8) and estimate (7) the function J
is well defined.
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3 Expansions for the state and cost function

From now on we fix ū ∈ L2
F and set ȳ := yū. We also suppose that assumptions

(H1) and (H2) hold. Our aim in this section is to obtain first and second order
expansions for v ∈ L∞F → yū+v ∈ Y2 and v ∈ L∞F → J(ū + v) ∈ R around
v̄ = 0. The main tool for obtaining the expansion for the state is the following
corollary of proposition 1, whose proof is straightforward.

Corollary 2. Let A1, A2 ∈ L∞F ([0, T ];Rn×n), B1
i ∈ L

β,2
F ([0, T ];Rn) and B2

i ∈
L∞F ([0, T ];Rn×d) for i = 1, 2. Assume that there exists a constant K > 0 such
that

‖B1
1‖β,1 ≤ K‖B1

2‖β,2. (12)

Then, omitting time from function arguments, for every w ∈ Lβ,2, the SDE

dz =
[
A1z +B1

1 +B2
1w
]

dt+
[
A2z +B1

2 +B2
2w
]

dW (t),
z(0) = 0,

(13)

has a unique solution in Yβ and

‖z‖ββ,∞ =

 O
(

max
{
‖B1

2‖
β
β,2, ‖w‖

β
β,1

})
if B2

2 ≡ 0,

O
(

max
{
‖B1

2‖
β
β,2, ‖w‖

β
β,2

})
otherwise.

Remark 3. Note that the estimates given in corollary 2 are sharp. In fact,
suppose that d = 1 and let w ∈ L2([0, T ];R) (deterministic). Consider the
process z(t) defined by

z(t) :=

∫ t

0

w(s)dW (s) for all t ∈ [0, T ].

By definition ‖z‖ββ,∞ ≥ E(|z(T )|β) = ‖w‖β2E(|Z|β), where Z is an standard

normal random variable. Since, in this specific case, ‖w‖ββ,2 = ‖w‖β2 , the
conclusion follows.

Regarding the expansion for the cost J , the following lemma, which is a
consequence of It’s lemma for multidimensional It process (see e.g. [17, 29]),
will be useful. For the reader convenience we provide the short proof.

Lemma 3. Let Z1 and Z2 be Rn-valued continuous process satisfying{
dZ1(t) = b1(t)dt+ σ1(t)dW (t) for all t ∈ [0, T ],
dZ2(t) = b2(t)dt+ σ2(t)dW (t) for all t ∈ [0, T ],

(14)

where b1, b2 ∈ L2(Ω, L2([0, T ],Rn)) and σ1, σ2 ∈ L2(Ω, L2([0, T ],Rn×d)) are
F-adapted process. Also, let us suppose that P-a.s. we have that Z1(0) = 0.
Then

E (Z1(T ) · Z2(T )) = E

(∫ T

0

[
Z1(t) · b2(t) + Z2(t) · b1(t) +

d∑
i=1

σi1(t) · σi2(t)

]
dt

)
.
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Proof. It’s lemma implies that

Z1(T ) · Z2(T ) =

∫ T

0

[
Z1(t) · b2(t) + Z2(t) · b1(t) +

d∑
i=1

σi1(t) · σi2(t)

]
dt+M(T ),

(15)
where M(t) is a continuous local martingale given by

M(t) :=

d∑
i=1

∫ t

0

[
Z1(s) · σi2(s) + Z2(s) · σi1(s)

]
dW i(s).

By the Burkholder-Davis-Gundy inequality (see e.g [17]) we have the existence
of a constant K > 0 such that for all i = 1, ..., d

E

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

[
Z1(s) · σi2(s) + Z2(s) · σi1(s)

]
dW i(s)

∣∣∣∣
)
≤ K

(∣∣∣∣Z1 · σi2 + Z2 · σi1
∣∣∣∣

1,2

)
.

The Cauchy Schwarz inequality yields that (assuming that n = 1 for notational
convenience)

∣∣∣∣Z1 · σi2
∣∣∣∣

1,2
= E

(∫ T

0

|Z1(t)|2
∣∣σi2(t)

∣∣2 dt

)1/2
 ≤ ||Z1||2,∞

∣∣∣∣σi2∣∣∣∣2 < +∞,

with an analogous estimate for
∣∣∣∣Z2 · σi1

∣∣∣∣
1,2

. Therefore, by [27, Theorem 51],

we have that M(t) is a martingale with null expectation. The result follows.

For ψ = `, f, σ and t ∈ [0, T ], let us define

ψy(t) = ψy(t, ȳ(t), ū(t)); ψu(t) = ψu(t, ȳ(t), ū(t)), ψyu(t) = ψyu(t, ȳ(t), ū(t));
ψyy(t) = ψyy(t, ȳ(t), ū(t)); ψuu(t) = ψuu(t, ȳ(t), ū(t)),

ψ(y,u)2(t) = ψ(y,u)2(t, ȳ(t), ū(t)).

As usual in optimal control theory, the expansions for J , with respect to varia-
tions of the control variable in the uniform norm ‖ · ‖∞, will be written in terms
of an adjoint state and the derivatives of an associated Hamiltonian. Let us
define the adjoint state (p̄, q̄) ∈ L2

F ([0, T ];Rn)× (L2
F ([0, T ];Rn))d as the unique

solution of the following backward stochastic differential equation (BSDE) (see
e.g. [1, 5])

dp(t) = −

[
`y(t)> + fy(t)>p(t) +

m∑
i=1

σiy(t)>qi(t)

]
dt+ q(t)dW (t),

p(T ) = φy(ȳ(T ))>.

(16)

In the notation above σi and qi denote respectively the ith column of σ and q.
The following estimates hold (see [24, Proposition 3.1]):

Proposition 4. Assume that (H1), (H2) hold and that ū ∈ Lβ,2F (β ∈ [1,∞)).
Then there exists C ′ > 0 such that

‖p̄‖ββ,∞ +

d∑
i=1

‖q̄i‖ββ,2 ≤ C
′
(

1 + ‖ū‖ββ,2
)
.
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The Hamiltonian H : [0, T ]× Rn × Rm × Rn × Rn×d × Ω→ R is defined as

H(t, y, u, p, q, ω) := `(t, y, u, ω) + p · f(t, y, u, ω) +

d∑
i=1

qi · σi(t, y, u, ω). (17)

For notational convenience, omitting the dependence on ω, we set{
Hu(t) := Hu(t, ȳ(t), ū(t), p̄(t), q̄(t)),
H(y,u)2(t) := H(y,u)2(t, ȳ(t), ū(t), p̄(t), q̄(t)).

(18)

3.1 First order expansions

Let β ∈ [1,∞] and v ∈ Lβ,2F . We consider the linearized mapping v ∈ Lβ,2F →
y1[ū, v] ∈ Yβ , where y1[ū, v] is the unique solution of

dy1(t) = [fy(t)y1(t) + fu(t)v(t)]dt+ [σy(t)y1(t) + σu(t)v(t)]dW (t),
y1(0) = 0.

(19)

The second assumption in (4) and proposition 1 yields that y1[ū, v] is well de-
fined. If the context is clear, for notational convenience we will write y1 =
y1[ū, v]. Corollary 2 will be the main tool for establishing the following useful
estimates:

Lemma 5. Let v ∈ L2β,4
F with β ∈ [1,∞) and set

δy = δy[ū, v] := yū+v − ȳ, d1 = d1[ū, v] := δy − y1.

Then, the following estimates hold:

‖δy‖ββ,∞ + ‖y1‖ββ,∞ =

{
O(‖v‖ββ,1) if σu ≡ 0,

O(‖v‖ββ,2) otherwise.
(20)

‖d1‖ββ,∞ =

{
O(‖v‖2β2β,2) if σuu ≡ 0,

O(‖v‖2β2β,4) otherwise.
(21)

Proof. See the appendix.

Now we can prove the following proposition.

Proposition 6. The map v ∈ L∞F → ŷ(v) := yū+v ∈ Y2 is differentiable with a
Lipschitz derivative given by

Dŷ(v̄)v = y1[ū+ v̄, v] for all v̄, v ∈ L∞F . (22)

Proof. By estimate (21) in lemma 5 we have that ‖δy − y1‖2,∞ = O(‖v‖2∞),
implying that (22) holds. Let us prove that Dŷ is Lipschitz. For notational
convenience, we assume that n = m = d = 1. Let v1, v2 ∈ L∞F and write
δv := v1 − v2. For ψ = f, σ, i = 1, 2 and v′ ∈ L∞F with ‖v′‖∞ = 1, by an abuse
of notation we set

y(i) := yū+vi , y
(i)
1 := y1[ū+ vi, v

′], δy := y(1) − y(2), δy1 := y
(1)
1 − y(2)

1

ψ
(i)
y (t) := ψy(t, y(i)(t), ū(t) + vi(t)), ψ

(i)
u (t) := ψu(t, y(i)(t), ū(t) + vi(t)),

δψy(t) := ψ
(1)
y (t)− ψ(2)

y (t), δψu(t) := ψ
(1)
u (t)− ψ(2)

u (t).
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A straightforward calculation shows that

dδy1(t) = [f
(2)
y (t)δy1(t) + δfy(t)y

(1)
1 (t) + δfu(t)v′(t)]dt

+[σ
(2)
y (t)δy1(t) + δσy(t)y

(1)
1 (t) + δσu(t)v′(t)]dW (t),

δy1(0) = 0.

(23)

Using (H1) and corollary 2 we obtain that

‖δy1‖22,∞ = O
(
‖δy‖22,∞ + ‖δv‖22

)
,

uniformly in v′ ∈ L∞F with ‖v′‖∞ = 1. The result follows from (20).

Now we focus our attention on the cost function J . Let us define Υ1 : L2
F →

R by

Υ1(v) := E

(∫ T

0

Hu(t) v(t)dt

)
. (24)

In view of proposition 4, with β = 2, Υ1 is well defined. Lemma 3 yields the
following well known alternative expression for Υ1.

Lemma 7. For every v ∈ L2
F we have that:

Υ1(v) = E

(∫ T

0

[`y(t)y1(t) + `u(t)v(t)] dt+ φy(ȳ(T ))y1(T )

)
. (25)

Proof. Noting that

φy(ȳ(T ))y1(T ) = p̄(T ) · y1(T )− p̄(0) · y1(0),

lemma 3, applied to Z1 = y1 and Z2 = p̄, yields E (φy(ȳ(T ))y1(T )) = I1+I2+I3,
where

I1 := −E
(∫ T

0
y1(t) ·

[
`y(t)> + fy(t)>p̄(t) +

∑d
i=1 σ

i
y(t)>q̄i(t)

]
dt
)
,

I2 := E
(∫ T

0
p̄(t) · [fy(t)y1(t) + fu(t)v(t)] dt

)
,

I3 :=
∑d
i=1 E

(∫ T
0
q̄i(t) ·

[
σiy(t)y1(t) + σiu(t)v(t)

]
dt
)
.

Plugging the expressions of I1, I2 and I3 introduced above into the right hand
side of (25) yields the result.

The expression above for Υ1 allows to obtain a first order expansion of J
around ū.

Proposition 8. Assume that (H1), (H2) hold and let v ∈ L4
F . Then,

J(ū+ v) = J(ū) + Υ1(v) + r1(v),

with

Υ1(v) = O(‖v‖2); r1(v) =

{
O
(
‖v‖24,2

)
if σuu ≡ 0,

O
(
‖v‖24

)
otherwise.

(26)

If in addition (9) holds, then

Υ1(v) =

{
O(‖v‖1) if σu ≡ 0,
O(‖v‖1,2) otherwise,

; r1(v) =

{
O
(
‖v‖22

)
if σuu ≡ 0,

O
(
‖v‖22,4

)
otherwise.

(27)
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Proof. Let us denote δJ := J(ū+ v)− J(ū). By definition

δJ = E

(∫ T

0

[`(t, yū+v(t), ū(t) + v(t))− `(t, ȳ(t), ū(t))] dt+ φ(yū+v(T ))− φ(ȳ(T ))

)
.

Using (H2), a Taylor expansion for ` and φ implies that

δJ = E

[∫ T

0

`y(t)δy(t) + `u(t)v(t)dt+ φy(ȳ(T ))δy(T )

]
+O(‖δy‖22,∞ + ‖v‖22).

Since δy = y1 + d1, lemma 7 implies that δJ = Υ1(v) + r1(v) where r1(v) =
z1(v) + z2(v) with

z1(v) := E

[∫ T

0

`y(t)d1(t)dt+ φy(ȳ(T ))d1(T )

]
, z2(v) := O

(
‖δy‖22,∞ + ‖v‖22

)
.

Now, we estimate Υ1(v) using (25). By assumption (H2) and the Cauchy

Schwarz inequality E
(∫ T

0
`u(t)v(t)dt

)
= O (‖v‖2) . On the other hand, by (20)

E

(∫ T

0

`y(t)y1(t)dt+ φy(ȳ(T ))y1(T )

)
= O

[E( sup
t∈[0,T ]

|y1(t)|2
)] 1

2

 = O(‖v‖2).

Thus Υ1(v) = O(‖v‖2). If (9) holds, then E
(∫ T

0
`u(t)v(t)dt

)
= O (‖v‖1) , and

E

(∫ T

0

`y(t)y1(t)dt+ φy(ȳ(T ))y1(T )

)
= O

(
E

[
sup
t∈[0,T ]

|y1(t)|

])
.

Thus, estimates for Υ1(v) in (27) follow from (20) with β = 1. Let us estimate
r1(v). Assumption (H2) and (20) imply that z2(v) = O(‖v‖22). On the other
hand, by (H2) and the Cauchy Schwarz inequality

z1(v) = O

[E( sup
t∈[0,T ]

|d1(t)|2
)] 1

2

 .

Thus (26) follows from estimates (21) with β = 2. If in addition (9) holds, then

z1(v) = O
(
E
[
supt∈[0,T ] |d1(t)|

])
and the estimates for r1(v) in (27) follows

from (21) with β = 1.

Remark 4. The above proof shows that the hypotheses for the perturbation
v can be weakened. For example, if (9) holds and σuu = 0, for all v ∈ L2

F
we have that J(ū + v) = J(ū) + Υ1(v) + r1(v) with Υ1(v) = O(‖v‖1) and
r1(v) = O(‖v‖22). Analogously, if (10) holds, then d1 ≡ 0 and we have that
J(ū + v) = J(ū) + Υ1(v) + r1(v) with Υ1(v) = O(‖v‖2) and r1(v) = O(‖v‖22).
Therefore, if (H3) holds, the function J is differentiable at ū.

The following corollary is an inmediate consequence of the proposition above.

Corollary 9. Assume that (H1), (H2) hold and let v ∈ L∞F . Then, Υ1(v) =
O(‖v‖2) and J(ū+ v) = J(ū) + Υ1(v) + r1(v) with r1(v) = O(‖v‖2∞).
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3.2 Second order expansions

In this subsection we obtain second order expansions for the state and the cost
function. As in the precedent subsection we begin with the analysis for the state
mapping. The second order linearization of v ∈ L∞F 7→ ŷ(v) = yū+v ∈ Y2 around
v̄ ≡ 0 in the direction v ∈ L∞F is defined as the unique solution y2 = y2[ū, v] of

dy2(t) =
[
fy(t)y2(t) + fyy(t)y1(t)2 + 2fyu(t)y1(t)v(t) + fuu(t)v(t)2

]
dt

+
[
σy(t)y2(t) + σyy(t)y1(t)2 + 2σyu(t)y1(t)v(t) + σuu(t)v(t)2

]
dW (t);

y2(0) = 0.
(28)

Note that by the third assumption in (4) and proposition 1, we have that y2 is
well defined. We give now some useful bounds over y2 and the rest

d2 = d2[ū, v] := δy − y1 − 1
2y2. (29)

As for y1 and d1, when the context is clear, we omit the arguments of y2 and
d2.

Lemma 10. For v ∈ L∞F and β ∈ [1,∞) the following estimates hold:

‖y2‖ββ,∞ =

{
O(‖v‖2β2β,2) if σuu ≡ 0,

O(‖v‖2β2β,4) otherwise.
(30)

‖d2‖ββ,∞ =

{
O(‖v‖β2β,2‖v‖

2β
4β,4) if σuuu ≡ 0,

O(‖v‖β2β,2‖v‖
2β
4β,4 + ‖v‖3β3β,6) otherwise.

(31)

Proof. See the appendix.

Now, we study J . Let us define Υ2 : L∞F → R by

Υ2(v) := E

(∫ T

0

H(y,u)2(t)(y1(t), v(t))2dt+ φyy(ȳ(T ))(y1(T ))2

)
. (32)

As for Υ1, a useful alternative expression for Υ2 holds.

Lemma 11. For every v ∈ L∞F we have that:

Υ2(v) = E
(∫ T

0

[
`y(t)y2(t) + `(y,u)2(t)(y1(t), v(t))2

]
dt
)

+ E
[
φy(ȳ(T ))y2(T ) + φyy(ȳ(T ))(y1(T ))2

]
.

(33)

Proof. By definition of y2 and p̄, we have that

φy(ȳ(T ))y2(T ) = p̄(T ) · y2(T )− p̄(0) · y2(0).

Lemma 3 yields E (φy(ȳ(T ))y2(T ))) = I ′1 + I ′2 + I ′3, where

I ′1 := −E
(∫ T

0
y2(t) ·

[
`y(t)> + fy(t)>p̄(t) +

∑d
i=1 σ

i
y(t)>q̄i(t)

]
dt
)
,

I ′2 := E
(∫ T

0
p̄(t) ·

[
fy(t)y2(t) + f(y,u)2(t)(y1(t), v(t))2

]
dt
)
,

I ′3 :=
∑d
i=1 E

(∫ T
0
q̄i(t) ·

[
σiy(t)y2(t) + σi(y,u)2(t)(y1(t), v(t))2

]
dt
)
.

Plugging the expressions of I ′1, I
′
2 and I ′3 introduced above into the right hand

side of (33) yields the result.
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In order to obtain the main result of this section, the following lemma is
useful.

Lemma 12. Assume that (H1), (H2) hold and let v ∈ L∞F . Then,

J(ū+ v) = J(ū) + Υ1(v) + 1
2Υ2(v) + ζ(v) + z(v), (34)

where z(v) = O
(
‖v‖∞‖v‖22

)
and, recalling (29),

ζ(v) := E

(∫ T

0

`y(t)d2(t)dt+ φy(ȳ(T ))d2(T )

)
. (35)

Proof. See the appendix.

Now we are able to obtain a second order expansion of J around ū.

Proposition 13. Assume that (H1), (H2) hold and let v ∈ L∞F . Then,

J(ū+ v) = J(ū) + Υ1(v) + 1
2Υ2(v) + r2(v), (36)

and the following estimates hold:

Υ2(v) =

{
O(‖v‖24,2) if σuu ≡ 0,
O(‖v‖24) otherwise,

r2(v) =

{
O(‖v‖∞‖v‖24,2) if σuuu ≡ 0,
O(‖v‖∞‖v‖24) otherwise.

(37)
If in addition (9) holds then

Υ2(v) =

{
O(‖v‖22) if σuu ≡ 0,
O(‖v‖22,4) otherwise,

r2(v) =

{
O(‖v‖∞‖v‖22) if σuuu ≡ 0,
O(‖v‖∞‖v‖22,4) otherwise.

(38)

Proof. Let us first estimate Υ2(v) by using the expression obtained in lemma
11 and the bounds obtained in lemmas 5 and 10. By (20) with β = 2,

E

(
sup
t∈[0,T ]

|y1(t)|2 +

∫ T

0

|v(t)|2dt

)
= O(‖v‖22). (39)

In view of assumption (H2) and (39) we obtain that

E

(∫ T

0

`(y,u)2(t)(y1(t), v(t))2dt+ φyy(ȳ(T ))(y1(T ))2

)
= O(‖v‖22). (40)

On the other hand, assumption (H2) and the Cauchy Schwarz inequality yield

E

(∫ T

0

`y(t)y2(t)dt+ φy(ȳ(T ))y2(T )

)
= O

[E( sup
t∈[0,T ]

|y2|2)

] 1
2

 , (41)

and the estimate for Υ2(v) in (37) follows from (30). If (9) holds, then

E

(∫ T

0

`y(t)y2(t)dt+ φyy(ȳ(T ))y2(T )

)
= O

(
E

[
sup
t∈[0,T ]

|y2|

])
, (42)
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and the estimate for Υ2(v) in (38) follows from (30).
In order to conclude the proof, letting r2(v) := ζ(v)+z(v), lemma 12 implies

that it suffices to estimate ζ(v). By (H2) and the Cauchy Schwarz inequality

ζ(v) = O

[E( sup
t∈[0,T ]

|d2(t)|2
)] 1

2

 .

Hence, using (31) with β = 2,

ζ(v) =

{
O(‖v‖4,2‖v‖28,4) if σuuu ≡ 0,
O(‖v‖4,2‖v‖28,4 + ‖v‖36,6) otherwise.

Since O(‖v‖4,2‖v‖28,4) = O(‖v‖∞‖v‖24,2) and O(‖v‖36,6) = O(‖v‖∞‖v‖24), the
estimate for r2(v) in (37) follows. If in addition assumption (9) holds, then by
(31) with β = 1,

ζ(v) = O

(
E

[
sup
t∈[0,T ]

|d2(t)|

])
=

{
O(‖v‖2‖v‖24) if σuuu ≡ 0,
O(‖v‖2‖v‖24 + ‖v‖33,6) otherwise.

Since O(‖v‖2‖v‖24) = O(‖v‖∞‖v‖22) and O(‖v‖33,6) = O(‖v‖22,4), the estimate for
r2(v) in (38) follows.

Remark 5. The proof of proposition 13 shows that the estimates Υ2(v) =
O(‖v‖22) and r2(v) = O(‖v‖∞‖v‖22) also hold in the case when f and σ are
affine mappings, since in this case y2 = d2 = 0. Therefore if (H3) holds, then
we find the natural extension of the well known expansion for the deterministic
case, i.e.

J(ū+ v) = J(ū) + Υ1(v) + 1
2Υ2(v) +O(‖v‖∞‖v‖22)

with Υ1(v) and Υ2(v) = O(‖v‖22).

Since Υ2 is a quadratic form and, for every β, p ∈ [1,∞], the space L∞F is

dense in Lβ,pF , we have that: If Υ2(v) = O(‖v‖β,p) then Υ2 admits a unique
continuous extension in Lβ,p. This fact, together with the following corollary,
will allow us to prove, in the next sections, second order necessary condition for
the problems explained in the introduction.

Corollary 14. Assume that (H1)-(H3) hold. Then,

J(ū+ v) = J(ū) + Υ1(v) + 1
2Υ2(v) + r(v) for all v ∈ L∞F , (43)

where Υ1(v) = O(‖v‖2), Υ2(v) = O(‖v‖22) and r(v) = O(‖v‖∞‖v‖22).

4 Optimality conditions: The case of control
constraints

Let U be a nonempty closed and convex subset of L2
F and consider the problem

Min J(u) subject to u ∈ U . (SP)
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The asymptotic expansions obtained for J in section 3 allow us to obtain first
and second order necessary conditions at a local optimum ū ∈ L2

F for the control
constrained problem (SP). We first obtain first order optimality conditions
using the procedure explained in the introduction: According to the regularity
of the data of (SP) and the dependence on u of the σ-term, a perturbation in
an appropriate space is taken. Then, the results of the previous section yield a
positivity condition of Υ1 over a certain cone which is extended, by a density
argument, to a larger one. Similar considerations apply in order to establish
second order necessary conditions.

Let us first fix some notations which are standard in optimization theory.
Consider a Banach space (X, ‖ · ‖X) and a nonempty closed convex set C ⊆ X.
For x, x′ ∈ X define the segment [x, x′] := {x+ λ(x′ − x) ;λ ∈ [0, 1]}. The
radial, the tangent and the normal cone to C at x̄ are defined respectively by

RC(x̄) := {h ∈ X ; ∃ θ > 0 such that [x̄, x̄+ θh] ⊆ C},
TC(x̄) := {h ∈ X ; ∃ x(θ) = x̄+ θh+ o(θ) ∈ C, θ > 0, ||o(θ)/θ||X → 0},
NC(x̄) := {x∗ ∈ X∗ ; 〈x∗, x− x̄〉X∗,X ≤ 0, for all x ∈ C} ,

(44)
where X∗ denotes the dual topological space of X and 〈·, ·〉X∗,X is the duality
product. Recall that, since C is a closed convex set, the tangent cone TC(x̄) is
the closure of the radial cone RC(x̄) in X, and that NC(x̄) is the polar cone of
TC(x̄), i.e.,

NC(x̄) = {x∗ ∈ X∗ ; 〈x∗, h〉X∗,X ≤ 0, for all h ∈ TC(x̄)} . (45)

4.1 First order necessary conditions

Consider as in section 3 a fixed ū ∈ L2
F . For β, p ∈ [1,∞] and a subset A ⊆ Lβ,pF

we write cloβ,p(A) for the closure of A in Lβ,pF . If A ⊆ LβF we set cloβ(A) :=
cloβ,β(A).

We have the following first order conditions for (SP).

Lemma 15. Assume that (H1), (H2) hold and let ū ∈ U be a local solution
of (SP). Then:

Υ1(v) ≥ 0 for all v ∈

{
clo2

(
RU (ū) ∩ L4,2

F

)
if σuu ≡ 0,

clo2

(
RU (ū) ∩ L4

F
)

otherwise.
(46)

If in addition (9) holds then

Υ1(v) ≥ 0 for all v ∈

{
clo1 (RU (ū)) if σu ≡ 0,

clo1,2

(
RU (ū) ∩ L2,4

F

)
otherwise.

(47)

Proof. Let v ∈ RU (ū) ∩ L4
F . Since ū is a local solution of (SP), proposition 8

implies that, for θ > 0 small enough, we have

0 ≤ J(ū+ θv)− J(ū) = θΥ1(v) + ‖v‖24O(θ2). (48)

Thus, dividing by θ in (48) and letting θ ↓ 0, we have that Υ1(v) ≥ 0. Analo-
gously, if σuu = 0 we have that Υ1(v) ≥ 0 for all v ∈ RU (ū) ∩ L4,2

F . Condition
(46) follows from the continuity of Υ1. The proof of (47) follows in the same
manner, with the obvious modifications.



16 J. F. Bonnans, F. J. Silva

Note that the results obtained in lemma 15 are rather general, since they
include the case of non local constraints. Of course they will give no informa-
tion if the cones in (46)-(47) reduce to {0}. This may happen for somewhat
pathological examples, as we next show.

Example 1. Let u0 ∈ L2
F and suppose that u0 /∈ Lβ,pF for any β, p ∈ (2,∞].

The constraint U := {u = αu0 / for some α ∈ [0, 1]} is such that, at ū = 0, the

radial cone is given by RU (ū) = {λu0 / for λ ≥ 0}, but RU (ū) ∩ Lβ,pF = {0}.

Thus, we will assume the following assumption over the constraint set U :

(H4) For every ū ∈ U we have that

TU (ū) = clo2 (RU (ū) ∩ L∞F ) . (49)

We have the following proposition whose proof is straightforward.

Proposition 16. Assume that (H1), (H2), (H4) hold and let ū be a local
solution of (SP). Then

Υ1(v) ≥ 0 for all v ∈ TU (ū). (50)

Remark 6. Note that if J(·) is convex, then (50) is a sufficient condition for
the (global) optimality of ū.

Clearly, we have that (H4) can hold for non local constraints. As an ex-
ample, it can be checked that (49) holds for U =

{
u ∈ L2

F / ‖u‖2 ≤ 1
}

and
ū ∈ U . Now we consider the case when U is defined by local constraints. The
next lemma extends a well-known result on deterministic local constraints to
the case of adapted local constraints. We first need to introduce some basic no-
tions of multifunction theory. We say that the application (t, ω) ∈ [0, T ]×Ω→
U(t, ω) ∈ P(Rm) is a B([0, T ])×FT -measurable multifunction if, for any closed
set C ⊂ Rm, we have that U−1(C) ∈ B([0, T ]) × FT . In addition, we say that
it is F -adapted if for all t ∈ [0, T ] we have that U(t, ·)−1(C) ∈ Ft. Finally, U is
said to be closed-convex-valued if U(t, ω) is a.a. closed and convex.

Given a B([0, T ])×FT -measurable multifunction U , consider the set

U :=
{
u ∈ L2

F ; u(t, ω) ∈ U(t, ω), a.a. (t, ω) ∈ [0, T ]× Ω
}
. (51)

Lemma 17. Let ū ∈ U , with U closed-convex-valued and F -adapted. Then:

(i) Assumption (49) holds at ū.

(ii) The tangent cone is given by

TU (ū) =
{
v ∈ L2

F ; v(t, ω) ∈ TU(t,ω)(ū(t, ω)) a.a. (t, ω) ∈ [0, T ]× Ω
}
. (52)

Proof. (i) By a diagonal argument, it suffices to prove that, for every v ∈ RU (ū),
there exists a sequence vk ∈ RU (ū) ∩ L∞F such that ‖vk − v‖2 → 0. Indeed, set

vk(t, ω) := 1{|v(t,ω)|≤k}v(t, ω). (53)

Being a product of adapted functions, vk is adapted and, since U(t, ω) is con-
vex, it belongs to RU (ū). Finally, since vk(t, ω) → v(t, ω) for a.a. (t, ω) and
|vk(t, ω)| ≤ |v(t, ω)|, the dominated convergence theorem implies that vk → v
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in L2
F .

(ii) Let v ∈ TU (ū). By definition, for θ > 0 small enough and a.a. (t, ω):

ū(t, ω) + θv(t, ω) + rθ(t, ω) ∈ U(t, ω), (54)

where rθ(·, ·)/θ → 0 in L2
F as θ ↓ 0, and therefore also in L2

FT . Thus, extracting
a subsequence if necessary, we have that rθ(t, ω)/θ → 0 for a.a. (t, ω) from
which we deduce that v(t, ω) ∈ TU(t,ω)(ū(t, ω)). Conversely, let v belongs to the
r.h.s. of (52) and for ε > 0 set

vε := ε−1 (PU (ū+ εv)− ū) , (55)

where PU (·) denotes the orthogonal projection in L2
F onto U . By definition of

PU (·) we have that vε ∈ RU (ū). For (t, ω) in [0, T ] × Ω set PU(t,ω)(·) for the
orthogonal projection in Rm onto U(t, ω). In view of lemma 34 in the appendix,
we have that for a.a. (t, ω)

vε(t, ω) := ε−1
(
PU(t,ω)(ū(t, ω) + εv(t, ω))− ū(t, ω)

)
. (56)

Clearly, vε(t, ω) ∈ RU(t,ω)(ū(t, ω)) and for a.a. (t, ω) we have vε(t, ω)→ v(t, ω).
Since |vε(t, ω)| ≤ |v(t, ω)|, the dominated convergence theorem implies that
vε → v in L2

FT and therefore also in the closed subspace L2
F . Using that vε ∈

RU (ū) we obtain that v ∈ TU (ū).

Let a, b ∈ Rm with −∞ ≤ ai < bi ≤ +∞ for all i ∈ {1, ...,m} and define

Ua,b :=
{
x ∈ Rm ; ai ≤ xi ≤ bi

}
. (57)

For u ∈ L2
F and every index i ∈ {1, ...,m}, set

Ia
i

(u) :=
{

(t, ω) ∈ [0, T ]× Ω ; ui(t, ω) = ai
}
,

Ib
i

(u) :=
{

(t, ω) ∈ [0, T ]× Ω ; ui(t, ω) = bi
}
.

The following corollary is a direct consequence of proposition 16 and lemma 17.

Corollary 18. Assume that (H1), (H2) hold suppose that U is in the form
(51) with U closed-convex-valued and F -adapted. Let ū ∈ U be a local solution
of (SP), then

Hu(t, ω)v(t, ω) ≥ 0 for all v ∈ TU(t,ω)(ū(t, ω)), a.e.. (58)

In particular, if U(t, ω) ≡ Ua,b (defined in (57)), then for every i ∈ {1, ...,m},
a.e.:

Hi
u(t, ω) =

 ≥ 0 if (t, ω) ∈ Iai(ū),

≤ 0 if (t, ω) ∈ Ibi(ū),
= 0 elsewhere.

(59)

Remark 7. Since (58) is equivalent to (50) when U is in the form (51), we
have that if J(·) is convex then (58) is a sufficient condition for the (global)
optimality of ū.
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4.2 Second order necessary conditions

In order to obtain second order necessary conditions for (SP) we proceed as in
the previous section, i.e. we prove a general result and after, under some stan-
dard assumptions, we yield a more precise characterization for the important
case of local constraints. Let us define

Υ⊥1 :=
{
v ∈ L2

F ; Υ1(v) = 0
}
. (60)

We have the following general second order necessary conditions.

Proposition 19. Assume that (H1), (H2) hold and suppose that ū ∈ U is a
local solution of (SP). Then, the following second order necessary condition
holds:

Υ2(v) ≥ 0 for all v ∈
{

clo4,2

(
RU (ū) ∩ L∞F ∩Υ⊥1

)
if σuu ≡ 0,

clo4

(
RU (ū) ∩ L∞F ∩Υ⊥1

)
otherwise.

(61)

If in addition (H3) holds, then

Υ2(v) ≥ 0 for all v ∈
{

clo2

(
RU (ū) ∩ L∞F ∩Υ⊥1

)
if σuu ≡ 0,

clo2,4

(
RU (ū) ∩ L∞F ∩Υ⊥1

)
otherwise.

(62)

Proof. If v ∈ RU (ū)∩L∞F ∩Υ⊥1 , proposition 13 implies that for θ small enough

0 ≤ J(ū+ θv)− J(ū) =
θ2

2
Υ2(v) + θ3O(‖v‖3∞).

Dividing the above equation by θ and letting θ ↓ 0 yields Υ2(v) ≥ 0 and the
result follows from the bounds in proposition 13 for the quadratic form Υ2.

The critical cone to U at ū are defined by

C(ū) := {v ∈ TU (ū) / Υ1(v) ≤ 0} . (63)

In order to obtain more precise second order necessary conditions, we suppose
standard assumptions in the second order analysis of problems with convex
constraints. The first one is a natural extension of (H4) to the second order
case.

(H5) For every ū ∈ U and v∗ ∈ NU (ū) (recall (44)), we have that

clo2

(
RU (ū) ∩ L∞F ∩ (v∗)⊥

)
= clo2

(
RU (ū) ∩ (v∗)⊥

)
. (64)

For our second assumption, we need the following notion of polyhedricity (see
[13, 23]). The set U is said to be polyhedric at ū ∈ U if for all v∗ ∈ NU (ū), the
set RU (ū) ∩ (v∗)⊥ is dense in TU (ū) ∩ (v∗)⊥ with respect to the ‖ · ‖2 norm. If
U is polyhedric at each u ∈ U we say that U is polyhedric.

Remark 8. Note that, if (H1), (H2) and (H4) hold, proposition 16 yields
that, at a local minimum, −Υ1 ∈ NU (ū) and C(ū) = TU (ū)∩Υ⊥1 . Thus, if U is
polyhedric and in addition (H5) holds,

clo2

(
RU (ū) ∩ L∞F ∩Υ⊥1

)
= C(ū). (65)
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We state a second order necessary condition which is a natural extension of
the deterministic counterpart.

Theorem 20. Let ū be a local solution of (SP) and assume that

(i) Assumptions (H1)-(H5) hold.

(ii) The constraint set U is polyhedric.

Then, the following second order necessary condition hold at ū:

Υ2(v) ≥ 0 for all v ∈ C(ū). (66)

Proof. As in the proof of proposition 19 we have that Υ2(v) ≥ 0 for all v ∈
RU (ū) ∩ L∞F ∩ Υ⊥1 . The result follows as in the proof of proposition 19 since
under our assumptions Υ2(v) = O(‖v‖22) and (65) holds.

Now, let us focus our attention in local constraints, i.e. when U is defined
by (51).

Lemma 21. Let U be defined by (51) with U closed-convex-valued and F -
adapted. Let ū ∈ U , it holds that

(i) The normal cone NU (ū) is given by

NU (ū) =
{
v∗ ∈ L2

F / v∗(t, ω) ∈ NU(t,ω)(ū(t, ω)), a.a. (t, ω) ∈ [0, T ]× Ω
}
.

(67)
(ii) For every v∗ ∈ NU (ū) we have that

TU (ū) ∩ (v∗)⊥ = {v ∈ TU (ū) / v∗(t, ω) · v(t, ω) = 0, a.a. (t, ω) ∈ [0, T ]× Ω} .
(68)

Proof. Since (ii) follows directly from (i) and lemma 17 (ii), it is enough to
show (i). By lemma 17(ii) and since NU(t,ω)(ū(t, ω)) is the polar cone of
TU(t,ω)(ū(t, ω)), the r.h.s. of (67) is included in NU (ū). To prove the other
inclusion, let v∗ ∈ NU (ū) and consider v′(t, ω) ∈ TU(t,ω)(ū(t, ω)), v′′(t, ω) ∈
NU(t,ω)(ū(t, ω)) such that

v∗(t, ω) = v′(t, ω) + v′′(t, ω), v′(t, ω) · v′′(t, ω) = 0.

We know that the above decomposition exists and it is unique. By lemma 17(ii)

we have that v′ ∈ TU , and thus 0 ≥ IE
(∫ T

0
v∗(t, ω) · v′(t, ω)dt

)
= ‖v′‖22 proving

that v′ = 0. The result follows.

In order to verify the polyhedricity assumption in the case of local con-
straints, we will need in fact to assume that for a.a. (t, ω) the set U(t, ω) is a
polyhedron. More precisely, let q ∈ N and suppose that there exist mappings
Σ : [0, T ]×Ω→ P ({1, ..., q}), ai : [0, T ]×Ω→ Rm, bi : [0, T ]×Ω→ Rm, where
i ∈ {1, ..., q}, such that Σ, ai and bi are B([0, T ])×FT measurable and for each
t we have that Σ(t, ·), ai(t, ·) and bi(t, ·) are Ft measurable. We suppose that

U(t, ω) = {x ∈ Rm / 〈ai(t, ω), x〉 ≤ bi(t, ω), for i ∈ Σ(t, ω) } . (69)

We have
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Lemma 22. The set of local constraints U defined in (51), with U(t, ω) given
by (69), is polyhedric and satisfies (64).

Proof. Let ū ∈ U and v∗ ∈ NU (ū). For v ∈ TU (ū) ∩ (v∗)⊥ and k ≥ 0 set

v̂k(t, ω) :=

{
v(t, ω) if |v(t, ω)| ≤ k and ū(t, ω) + 1

kv(t, ω) ∈ U(t, ω),
0 otherwise.

(70)

Lemma 21(ii) implies that v̂k ∈ RU (ū) ∩ L∞F ∩ (v∗)⊥. On the other hand,
since U(t, ω) is a polyhedron, lemma 17 (ii) implies that v(t, ω) ∈ TU (ū(t, ω)) =
RU (ū(t, ω)). Thus, as k ↑ ∞, we have that v̂k → v(t, ω) for a.a. (t, ω). The
dominated convergence theorem, yields that v̂k → v in L2

F , hence U is polyhedric
and (64) holds.

The following corollary is a consequence of theorem 20 and lemmas 21, 22.

Corollary 23. Assume that (H1) - (H3) hold and suppose that ū is a local
solution of (SP) where U is defined in (51), with U(t, ω) given by (69). Then,
the following second order necessary conditions holds:

Υ2(v) ≥ 0, for all v ∈ TU (ū) such that Hu(t)v(t, ω) = 0 for a.a. (t, ω) ∈ [0, T ]×Ω.

4.3 On the second order sufficient condition

In this section we give a second order sufficient condition for the unconstrained
case and we briefly discuss the difficulties arising in the constrained case.

When U = L2
F , (H4) is trivially satisfied and for every ū ∈ U it holds that

TU (ū) = L2
F . The following proposition is a consequence of corollary 14.

Proposition 24. Assume that (H1)-(H3) hold and that U = L2
F . Suppose

that there exist α > 0 such that ū ∈ L2
F satisfies:

Υ1(v) = 0, and Υ2(v) ≥ α‖v‖22 for all v ∈ L2
F . (71)

Then, there exists δ > 0 such that for all v′ ∈ L∞F with ‖v′‖∞ ≤ δ, we have

J(ū+ v′) ≥ J(ū) + 1
2α‖v

′‖22. (72)

Only very partial results are obtained when U 6= L2
F . Let us recall (see [15])

that a quadratic form Q : H → R, where H is a Hilbert space, is a Legendre
form if it is weakly lower semi-continuous (w.l.s.c.) quadratic form over H,
such that, if hk → h weakly in H and Q(hk) → Q(h), then hk → h strongly.
We have the following proposition, whose proof follows the lines of the parallel
deterministic result (see [7, Section 3.3]):

Proposition 25. Assume that (H1)- (H3) hold. In addition, assume that at
ū ∈ U the quadratic form Υ2 is a Legendre form and there exist α > 0 such that

Υ1(v) = 0, and Υ2(v) ≥ α‖v‖22 for all v ∈ C(ū). (73)

Then, there exists δ > 0 such that for all u ∈ U with ‖u− ū‖∞ ≤ δ, we have

J(u) ≥ J(ū) + 1
2α‖u− ū‖

2
2. (74)
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In the deterministic case it is well known that the application u ∈ L2([0, T ];Rm)→
y1(u)(T ) ∈ Rn is weakly continuous. This allows to verify that the associated
quadratic form is a Legendre form iff some form of the strong Legendre condi-
tion holds. We show with two examples that u ∈ L2

F → y1(u)(T ) ∈ L2
FT (Rn) is

not weakly continuous.

Example 2 (σ dependent on u). Let us take m = n = 1 and let us consider
the dynamics

dy1(t) = u(t)dW (t) for t ∈ [0, T ]; y1(0) = 0.

Let un be a (deterministic) orthonormal base of L2([0, T ];R) and denote yn :=
y1[un]. By the dominated convergence theorem it is easy to check that un
converges weakly to 0 in L2

F , but

E
[
yn(T )2

]
= E

(∫ T

0

un(t)dW (t)

)2
 =

∫ T

0

u2
n(t)dt = 1.

Example 3 (σ independent on u). We take m = n = 1 and T = 2. Let us
consider the dynamics

dy1(t) = u(t)dt for t ∈ [0, T ]; y1(0) = 0.

Let φn be an orthonormal base of the Hilbert space L2(R) endowed with the
scalar product

〈g, h〉∗ :=

∫ +∞

−∞
g(x)h(x)e

−x2
2 dx.

As a classical example (see e.g [16]) we can take φn(x) = hn(x)/
√

2πn!, where
hn is the nth Hermite polynomial. Consider the sequence un ∈ L2

F defined by
un(t) := φn(W (1))I(1,2](t) and set yn := y1[un]. For every f ∈ L2

F , we have

E
(∫ 2

0
f(t)un(t) dt

)
= E

(
φn(W (1))

∫ 2

1
f(t)dt

)
,

= E
[
φn(W (1))E

(∫ 2

1
f(t)dt|W (1)

)]
→ 0,

by definition of φn. Thus, un converges weakly to 0 in L2
F . On the other hand,

E
(
yn(T )2

)
= E

([∫ 2

0

undt

]2
)

= E
(
φn(W (1))2

)
= 1.

5 Optimality conditions: The case of final state
constraints

In this section we suppose that U = L2
F and we consider the problem

Minu∈U J(u) subject to E
[
gi(yu(T ))

]
= 0, E

[
hj(yu(T ))

]
≤ 0, (SP ′)

for all i ∈ {1, ..., ng}, j ∈ {1, ..., nh}. In the notation above, gi : Rn × Ω → R
and hj : Rn × Ω→ R. We make the following assumption:
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(H6) The maps gi and hj satisfy the same assumptions made for φ in (H2).

In order to provide first and second order necessary conditions for (SP ′) we will
need the following lemma:

Lemma 26. Let ū ∈ U and consider a function c : Rn × Ω → R satisfying the
assumptions for φ in (H2). Then, the map

v ∈ L∞F → ĉ(v) := E [c(yū+v(T ))] ∈ R

is differentiable with a Lipschitz derivative and admits the following second order
expansion at v̄ = 0

ĉ(v) = ĉ(0) + Υc
1(v) + 1

2Υc
2(v) +O(‖v‖3∞), (75)

where

Υc
1(v) := E [cy(yū(T ))y1[ū, v](T )] = O(‖v‖2),

Υc
2(v) := E

[
cy(yū(T ))y2[ū, v](T ) + cyy(yū(T ))(y1[ū, v](T ))2

]
= O(‖v‖2∞).

(76)
If in addition c satisfies the assumptions for φ in (H3), then

Υc
2(v) := O(‖v‖22). (77)

Proof. Letting ` ≡ 0 and φ = c in proposition 13 yields (75) as well as the
estimates in (76) and (77). It remains to show that the derivative of ĉ(v) is
Lipschitz. In view of proposition 6 and the chain rule, it suffices to show that
y ∈ Y2 → c̃(y) := E [c(y(T ))] is differentiable with a Lipschitz derivative given
by

Dc̃(ȳ)(y) = E [cy(ȳ(T ))y(T )] for all ȳ, y ∈ Y2. (78)

For any ȳ, y ∈ Y2, we have, for a.a. ω:

c(ȳ + y) = c(ȳ) + cy(ȳ)y +

∫ 1

0

[cy(ȳ + θy)− cy(ȳ)] ydθ. (79)

Using (H2) and the Cauchy-Schwarz inequality, it follows that

E [c(ȳ(T ) + y(T ))] = E [c(ȳ(T )) + cy(ȳ(T )) (y(T )− ȳ(T ))] +O
(
||y − ȳ||22,∞

)
,

E [cy(ȳ(T )) (y(T )− ȳ(T ))] = O
(
||y − ȳ||2,∞

)
.

Thus, expression (78) holds. We next prove that the derivative is Lipschitz. For
ȳ and ỹ in Y2, define

∆(ȳ, ỹ) := max
‖y‖2,∞≤1

|IE ([cy(ȳ)− cy(ỹ)] y)| (80)

By (H2) Dc(·, ω) is Lipschitz, hence the Cauchy-Schwarz inequality implies
that

∆(ȳ, ỹ) ≤ L2IE (|ȳ − ỹ| |y|) ≤ L2‖ȳ − ỹ‖2,∞. (81)

The result follows.

Remark 9. If Υc
1(·) is surjective then Graves theorem [12] (see also Dontchev

[10]) implies that ĉ enjoys the metric regularity property. In other words, if
ĉ(0) = 0 and ‖v‖∞ is small enough, then there exists v′ ∈ L∞ such that ĉ(v′) = 0
and ‖v′ − v‖∞ = O(|ĉ(v)|).
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5.1 First order necessary condition

Let ū ∈ L2
F be a local solution of (SP ′) and denote by ȳ its associated state.

Lemma 26 implies that the maps

v ∈ L∞F → g̃i(v) := E
[
gi(yū+v(T ))

]
∈ R,

v ∈ L∞F → h̃j(v) := E
[
hj(yū+v(T ))

]
∈ R, (82)

are C1 with derivatives at v̄ = 0 given respectively by

Υg
1i(·) := E

[
giy(yū(T ))y1[ū, ·](T )

]
,

Υh
1j(·) := E

[
hjy(yū(T ))y1[ū, ·](T )

]
.

(83)

For notational convenience we write g̃ := (g̃1, ..., g̃ng ) and Υg
1 := (Υg

11, ...,Υ
g
1ng

).

The set I1(ū) of active constraints is defined as

I1(ū) :=
{
j ∈ {1, ..., nh} / E

[
hj(ȳ(T ))

]
= 0
}
. (84)

We assume the following constraint qualification condition:

(H7) The following assertions hold true:

(i) The application Υg
1 : L∞F → Rng is surjective.

(ii) There exists v̄ ∈ (Υg
1)
⊥ ∩ L∞F such that Υh

1j(v̄) < 0 for all j ∈ I1(ū).

We will need the following density lemma, proved in [9, Lemma 1].

Lemma 27. Let X be a normed vector space. Given ai, i = 1 to q, in X∗, and
b ∈ Rq, define

K := {x ∈ X / 〈ai, x〉 ≤ bi, i = 1, ..., q} .

If Y is a dense subspace of X, then K ∩ Y is a dense subset of K.

Let us define the cones T2(ū), T∞(ū) as

T2(ū) :=
{
v ∈ L2

F ; Υg
1(v) = 0, Υh

1j(v) ≤ 0, j ∈ I(ū)
}
,

T∞(ū) := T2(ū) ∩ L∞F .
(85)

Lemma 28. Under (H1),(H2),(H6),(H7), problem

Minv∈U Υ1(v) subject to v ∈ T2(ū) (86)

admits v = 0 as a solution.

Proof. Let v ∈ T∞(ū) and consider ε > 0. Assumption (H7) (ii) implies that
for θ > 0:

g̃(θ(v + εv̄)) = g̃(0) + θΥg
1(v + εv̄) + o(θ) = o(θ).

Remark 9 implies that there exists o∞(θ) ∈ L∞F , with ‖o∞(θ)‖∞/θ → 0 as θ ↓ 0,
such that g̃(θ(v + εv̄) + o∞(θ)) = 0. Therefore, setting û(θ) := ū+ θ(v + εv̄) +
o∞(θ), we obtain that E

(
g(yû(θ)(T ))

)
= 0 for θ > 0 small enough. On the other

hand, for every j ∈ {1, ..., nh},

E
(
hj(û(θ))

)
= h̃j(θ(v + εv̄) + o∞(θ)) = h̃(0) + θΥh

1j(v + εv̄) + o(θ).
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Thus, if the jth constraint is active at ū, then by (H7)(ii), we have that

E(hj(û(θ))) = εθΥh
1j(v̄) + o(θ) < 0 for all θ small enough.

If the constraint is not active the same conclusion trivially holds. Therefore,
there exists θε such that for θ ∈ [0, θε), û(θ) is feasible. Thus,

0 ≤ J(û(θ))− J(ū) = θΥ1(v + εv̄) + o(θ),

which implies that Υ1(v + εv̄) ≥ 0. Since ε is arbitrary, we have Υ1(v) ≥ 0.
Since L∞F is dense in L2

F and Υ1 is continuous, the result follows from lemma
27.

For λ = (λg, λh) ∈ Rng × Rnh , let us set (pλ, qλ) ∈ Y2 × L2
F for the unique

solution of

dp(t) = −

[
`y(t)> + fy(t)>p(t) +

m∑
i=1

σiy(t)>qi(t)

]
dt+ q(t)dW (t),

p(T ) = φy(ȳ(T ))> + gy(ȳ(T ))>λg + hy(ȳ(T ))>λh.

(87)

We say that λ := (λg, λh) ∈ Rng × Rnh is a Lagrange multiplier at ū if the
following conditions hold

Hu(t, ȳ(t), ū(t), pλ(t), qλ(t), ω) = 0 for a.a. (t, ω), (88)

λjhE
(
hj(ȳ(T ))

)
= 0 and λjh ≥ 0 for all j ∈ {1, ..., nh}. (89)

We denote by Λ(ū) for the set of Lagrange multipliers at ū.

Proposition 29. Under (H1),(H2),(H6),(H7) the set Λ(ū) is a nonempty
compact subset of Rng × Rnh .

Proof. Lemma 28 implies that the linear program (86) has value 0. By a stan-
dard duality result for linear programs (affine cost function and constraints) in a

Banach space setting (see e.g. [7, Thm 2.202]), the set of (λg, λh) ∈ Rng×RI
1(ū)

+

such that for all v ∈ L2
F

Υ1(v) +

ng∑
i=1

λigΥ
g
1i(v) +

∑
j∈I1(ū)

λjhΥh
1j(v) = 0 (90)

is a nonempty compact subset of Rng×Rnh . Letting λjh = 0 if j /∈ I1(ū) relation
(89) trivially holds, while equation (88) follows from (90) and lemma 3, along
the lines of the proof of lemma 7.

Now we treat the so-called non qualified case. For α ∈ R let us define the
generalized Hamiltonian H : R× [0, T ]× Rn × Rm × Rn × Rn×d × Ω→ R by

H(α, t, y, u, p, q, ω) := α`(t, y, u, ω) + p · f(t, y, u, ω) +

d∑
i=1

qi · σi(t, y, u, ω).

We say that λ := (α, λg, λh) ∈ R × Rng × Rnh is a generalized Lagrange
multiplier at ū if λ 6= 0 and the following conditions hold

Hu(α, t, ȳ(t), ū(t), pλ(t), qλ(t), ω) = 0 for a.a. (t, ω), (91)

λjhE
(
hj(ȳ(T ))

)
= 0, λjh ≥ 0 for all j ∈ {1, ..., nh} and α ≥ 0. (92)

We denote by Λgen(ū) for the set of generalized Lagrange multipliers at ū.
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Proposition 30. Under (H1),(H2) the set Λgen(ū) is nonempty.

Proof. If (H6),(H7) hold then proposition 29 yields that ∅ 6= Λ(ū) ⊆ Λgen(ū).
If (H6) does not hold there exists λg 6= 0 orthogonal to the image of Υg

1.
Therefore, lemma 3 yields that (0, λg, 0) is a generalized Lagrange multiplier at
ū. If (H6) hold but (H7) does not, then the pair (0, 0) ∈ R×L∞F is a solution
of

Min z s.t. Υg
1(v) = 0, Υh

1j(v) ≤ z for j ∈ I1(ū).

By considering the dual problem, we obtain the existence of a not null (λg, λ̃h) ∈
Rng × RI

1(ū)
+ such that for all v ∈ L∞F

ng∑
i=1

λigΥ
g
1i(v) +

∑
j∈I1(ū)

λ̃jhΥh
1j(v) = 0. (93)

Define λh ∈ Rnh as λjh = λ̃jh if j ∈ I1(ū) and 0 otherwhise. The result follows,
since lemma 3 implies that (0, λg, λh) ∈ Λgen(ū).

Remark 10. Proposition 30 is a particular case of the Pontryagin maximum
principle in [25].

5.2 Second order necessary condition

Lemma 26 implies that the maps g̃i, h̃j defined in (82) admit a second order
expansion at v̄ = 0. Let us denote respectively by Υg

2i, Υh
2j the associated

quadratic forms. As for Υg
1i, we set Υg

2 := (Υg
21, ...,Υ

g
21). Define the cones

C2(ū), C∞(ū) by

C2(ū) := {v ∈ T2(ū) ; Υ1(v) = 0} ,
C∞(ū) := C2(ū) ∩ L∞F .

(94)

Note that C2(ū) = clo2 (C∞(ū)) by lemma 27. For v ∈ C∞(ū) let us set

I2(ū, v) :=
{
j ∈ I(ū) ; Υh

1j(v) = 0
}
.

Lemma 31. Under (H1),(H2),(H6),(H7), for every v ∈ C∞(ū), the problem

Min w∈L∞F Υ1(w) + Υ2(v)
s.t. Υg

1(w) + Υg
2(v) = 0,

Υh
1j(w) + Υh

2j(v) ≤ 0 for j ∈ I2(ū, v)
(QPv)

has a nonempty feasible set and a non-negative value.

Proof. By (H7) the feasible set of (QPv) is nonempty. Let w ∈ L∞F be feasible
and v̄ satisfy (H7) (ii). Fix ε > 0 and for θ > 0 set

u(θ) = ū+ θv + 1
2θ

2(w + εv̄). (95)

By lemma 12 applied to the equality constraints, we have that

IE[g(yu(θ)(T ))] = 1
2θ

2 [Υg
1(w) + Υg

2(v)] + o(θ2) = o(θ2). (96)
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Remark 9 implies that there exists a path of the form ũ(θ) = u(θ) + o∞(θ2) ∈
L∞F , where ‖o∞(θ2)‖∞/θ2 → 0, such that IE[g(yũ(θ)(T ))] = 0. At the same
time,

IE[hj(yũ(θ)(T ))] = 1
2θ

2
[
Υh

1j(w + εv̄) + Υh
2j(v)

]
+ o(θ2) for all j ∈ I2(ū, v).

(97)
It follows that, for θ > 0 small enough, ũ(θ) is feasible and therefore by lemma
12

0 ≤ lim
θ↓0

J(ũ(θ))− J(ū)
1
2θ

2
= Υ1(w) + Υ2(v) (98)

as was to be proved.

For λ = (λg, λh) ∈ Rng × Rnh and z ∈ Rn let us set

H(y,u)2 [λ](t) := H(y,u)2(t, ȳ(t), ū(t), pλ(t), qλ(t)),

Ψyy[λ](z)2 := φyy(z)2 +
∑ng
i=1 λ

i
gg
i
yy(z)2 +

∑nh
j=1 λ

j
hh

j
yy(z)2,

(99)

where (pλ, qλ) is defined by (87). Now we are able to prove a second order
necessary condition for the local minimum ū of (SP ′).

Theorem 32. Assume that (H1)-(H3),(H6),(H7) hold and that g̃i, h̃j sat-
isfy the assumptions for φ in (H3). Then for every v ∈ C2(ū) we have that

max
λ∈Λ(ū)

E

(∫ T

0

H(y,u)2 [λ](t)(y1(t), v(t))2dt+ Ψyy[λ](ȳ(T ))(y1(T ))2

)
≥ 0.

(100)

Proof. Let v ∈ C∞(ū). Using lemma 31 and considering the dual problem
associated to (QPv), we obtain that

max
(λg,λh)∈Λ̃(ū)

Υ2(v) +

ng∑
i=1

λigΥ
g
2i(v) +

∑
j∈I2(ū,v)

λjhΥh
2j(v) ≥ 0, (101)

where

Λ̃(ū) :=

(λg, λh) ∈ Rng × RI
2(ū,v)

+ ; Υ1(·) +

ng∑
i=1

λigΥ
g
1i(·) +

∑
j∈I2(ū,v)

λjhΥh
1j(·) = 0

 .

On the other hand, since v ∈ C∞(ū) , for every λ = (λg, λh) ∈ Λ(ū) we have
that ∑

j∈I1(ū)\I2(ū,v)

λjhΥh
1j(v) = 0.

Since λh ≥ 0 and v ∈ C∞(ū), each term in the above sum is nonpositive, and
hence equal to zero since the sum is null. Thus, by definition of I2(ū, v), we
have that λjh = 0 for all j ∈ I1(ū) \ I2(ū, v). Therefore, by (101)

max
λ∈Λ(ū)

Υ2(v) +

ng∑
i=1

λigΥ
g
2i(v) +

nh∑
j=1

λjhΥh
2j(v) ≥ 0. (102)

Inequality (100) for every v ∈ C∞(ū) then follows from lemma 3, along the lines
of the proof of lemma 11. Using that C∞(ū) is dense in C2(ū), estimate (77)
and that Λ(ū) is compact, we obtain the result for all v ∈ C2(ū).
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6 Appendix

6.1 Technical estimates in the expansion of solution of
SDEs

Here we prove some technical estimates stated in section 3.

Proof of lemma 5 For notational convenience we will suppose that m = n =
d = 1. We have

dδy(t) =
[
f̃y(t)δy(t) + f̃u(t)v(t)

]
dt+ [σ̃y(t)δy(t) + σ̃u(t)v(t)] dW (t),

δy(0) = 0.
(103)

where, for ψ = f, σ,

ψ̃y(t) :=
∫ 1

0
ψy (ȳ(t) + θδy(t), ū(t) + θv(t)) dθ,

ψ̃u(t) :=
∫ 1

0
ψu (ȳ(t) + θδy(t), ū(t) + θv(t)) dθ.

Using the second assumption in (4), estimates (20), (20) follow from corollary
2 applied to (103) and (19) respectively.

We next prove (21). We have that

dd1(t) =
[
f̃y(t)δy(t)− fy(t)y1(t) +

(
f̃u(t)− fu(t)

)
v(t)

]
dt +

[σ̃y(t)δy(t)− σy(t)y1(t) + (σ̃u(t)− σu(t)) v(t)] dW (t),
d1(0) = 0.

For ψ = f, σ, we have that
[
ψ̃y(t)− ψy(t)

]
y1(t) = O ([ |δy(t)|+ |v(t)| ] |y1(t)|) .

Also,

[σ̃u(t)− σu(t)] v(t) =

{
O (|δy(t)||v(t)|) if σuu ≡ 0,
O ([ |δy(t)|+ |v(t)| ] |v(t)|) otherwise.

Therefore, the following equation holds for d1:

dd1(t) =
[
f̃y(t)d1(t) +O ([|δy(t)|+ |v(t)|][|y1(t)|+ |v(t)|])

]
dt +

[σ̃y(t)d1(t) +O (D(δy, y1, v))] dW (t),

where

D(δy(t), y1(t), v(t)) =

{
[|δy(t)|+ |v(t)|] [|y1(t)|+ |v(t)|]− |v(t)|2 if σuu ≡ 0,
[|δy(t)|+ |v(t)|] [|y1(t)|+ |v(t)|] otherwise.

By (20) and the Cauchy Schwarz inequality

‖ |δy||y1| ‖ββ,2 = E
[(∫ T

0
|δy(t)|2|y1(t)|2dt

) β
2

]
= O

[
E
(
sup |δy(t)|β |y1(t)|β

)]
= O

([
E
(
sup |δy(t)|2β

)] 1
2
[
E
(
sup |y1(t)|2β

)] 1
2

)
= O(‖v‖2β2β,2).

(104)
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By similar arguments,

‖ |y1||v| ‖ββ,2 = E
[(∫ T

0
|y1(t)|2|v(t)|2dt

) β
2

]
= O(‖v‖2β2β,2),

‖ |δy||v| ‖ββ,2 = E
[(∫ T

0
|δy(t)|2|v(t)|2dt

) β
2

]
= O(‖v‖2β2β,2),

and (21) follows by corollary 2, since ‖v2‖ββ,1 = ‖v‖2β2β,2 and ‖v2‖ββ,2 = ‖v‖2β2β,4.

Proof of lemma 10. As in the proof of lemma 5 we suppose that m = n =
d = 1. We will use repeatedly that for every β, p, q ∈ [1,∞), we have

‖ |v|q‖ββ,p = ‖v‖qβqβ,qp for all v ∈ Lqβ,qpF .

Proof of (30): Recall that, by (H1), for ψ = f, σ we assume that ψyy, ψyu and
ψuu are bounded. Using (20),

‖y2
1‖
β
β,2 = E

(∫ T

0

|y1(t)|4dt

) β
2

 = O
[
E
(
sup |y1(t)|2β

)]
= O

(
‖v‖2β2β,2

)
.

(105)

Analogously, the estimates associated with the term y1v is of order ‖v‖2β2β,2.

Estimate (30) follows from corollary 2 since ‖v2‖ββ,1 = ‖v‖2β2β,2 and ‖v2‖ββ,2 =

‖v‖2β2β,4.

Proof of (31): Recall that d2 = δy− y1− 1
2y2. We have, omitting time from the

arguments,

dd2(t) =
[
fyd2 + 1

2fyy[δy]2 − 1
2fyy[y1]2 + fyuδyv − fyuy1v + rt(f)(δy, v)2

]
dt+[

σy(t)d2 + 1
2σyy[δy]2 − σyy[y1]2 + σyuδyv − σyuy1v + rt(σ)(δy, v)2

]
dW (t).

where for ψ = f, σ the map rt(ψ) is defined by

rt(ψ) :=

∫ 1

0

(1− θ) [ψyy(ȳ(t) + θδy(t), ū(t) + θv(t))− ψyy(ȳ(t), ū(t))] dθ.

Recall that if Q is a quadratic form and a is the associated symmetric bilinear
form, we have the identity Q(y) − Q(x) = a(y + x, y − x). Thus, since Dψ is
Lipschitz, we obtain

dd2(t) = [fyd2 +O (|d1| {|δy|+ |y1|}+ |d1||v|+ αt(f))] dt+
[σyd2 +O (|d1| {|δy|+ |y1|}+ |d1||v|+ αt(σ))] dW (t)

(106)

where, for ψ = f, σ,

αt(ψ) :=

{
|δy(t)|3 + |v(t)|3 if ψuuu 6= 0,
|δy(t)|3 + |δy(t)| |v(t)|2 if ψuuu ≡ 0.

Now, let us estimate the terms in the dW (t) part of (106),

‖ |d1||δy| ‖ββ,2 = E
[(∫ T

0
|d1(t)|2|δy(t)|2dt

) β
2

]
= O

[
E
(
sup |d1(t)|β |δy(t)|β

)]
= O(‖v‖β2β,2‖v‖

2β
4β,4),
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by (20) and (21). Analogously, estimates for the terms d1y1 and d1v are of the
same order. Let us estimate the terms appearing in αt(σ). Using (20),

‖ |δy|3‖ββ,2 = E

(∫ T

0

|δy(t)|6dt

) β
2

 = O
[
E
(
sup |δy(t)|3β

)]
= O(‖v‖3β3β,2).

(107)
By (20), we obtain

‖ |δy||v|2 ‖ββ,2 = E
[(∫ T

0
|δy(t)|2|v(t)|4dt

) β
2

]
= O

(
E
[
sup |δy(t)|β

(∫ T
0
|v(t)|4dt

) β
2

])
= O(‖v‖β2β,2‖v‖

2β
4β,4).

Also, we have that ‖v3‖ββ,1 = ‖v‖3β3β,3 and ‖v3‖ββ,2 = ‖v‖3β3β,6. By the Cauchy
Schwarz inequality,

‖v‖3β3β,3 = E

(∫ T

0

|v(t)|3dt

)β ≤ E

(∫ T

0

|v(t)|2dt

) β
2
(∫ T

0

|v(t)|4dt

) β
2

 .
Using the Cauchy Schwarz inequality again, we get ‖v‖3β3β,3 = O(‖v‖β2β,2‖v‖

2β
4β,4).

Therefore, estimate (31) follows from corollary 2.

Proof of lemma 12 As in the proof or proposition 8 we denote δJ := J(ū +
v)− J(ū). By definition,

δJ = E

(∫ T

0

[`(yū+v, ū+ v)− `(ȳ, ū)] dt+ φ(yū+v(T ))− φ(ȳ(T ))

)
= I1 + I2,

where, omitting the time argument in the integral,

I1 := E
(∫ T

0

[
`yδy + `uv + 1

2`(y,u)2(δy, v)2 + r`(δy, v)2
]

dt
)
,

I2 := E
[
φy(ȳ(T ))δy(T ) + 1

2φyy(ȳ(T ))(δy(T ))2 + rφ(ȳ(T ))(δy(T ))2
]
.

(108)
Recalling that δy = y1 + d1 = y1 + 1

2y2 + d2, assumption (8) in (H2) yields

I1 = E
(∫ T

0
`y(t)(y1 + 1

2y2) + `u(t)v + 1
2D

2`(t)(y1, v)2dt
)

+ E
(∫ T

0
`yd2dt

)
+O(z1(v)),

where, omitting time from function arguments,

z1(v) := E
(
sup

[
|d1|2 + |d1(t)||y1|+ |δy|3

])
+ ‖v‖1E (sup |d1|) + ‖v‖33.

On the other hand,

I2 = E
[
φy(ȳ(T ))

(
y1(T ) + 1

2y2(T )
)

+ 1
2φyy(ȳ(T )) (y1(T ))

2
]

+E [φy(ȳ(T ))d2(T )] +O(z2(v)),

where
z2(v) := E

(
|δy(T )|3 + |y1(T )||d1(T )|+ |d1(T )|2

)
.
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Denoting z(v) := z1(v) + z2(v) we get that

δJ = E

(∫ T

0

[
`y(t)(y1(t) + 1

2y2(t)) + `u(t)v(t) + 1
2`(y,u)2(t)(y1(t), v(t))2

]
dt

)
+E

[
φy(ȳ(T ))(y1(T ) + 1

2y2(T )) + 1
2φyy(ȳ(T )) (y1(T ))

2
]

+ ζ(v) + z(v),

Therefore, using (25) and (33), we get (34). Now, we proceed to estimate z(v).
By (21) we have that

E

(
sup
t∈[0,T ]

|d1(t)|2
)

= O(‖v‖44) = O(‖v‖2∞‖v‖22).

Estimates (20), (21) and the Cauchy Schwarz inequality yield

E

(
sup
t∈[0,T ]

|d1(t)||y1(t)|

)
= O

(
‖v‖24‖v‖2

)
= O

(
‖v‖∞‖v‖22

)
.

Analogously, using (21), we have

E

(
‖v‖1 sup

t∈[0,T ]

|d1(t)|

)
= O

(
‖v‖24‖v‖2,1

)
= O

(
‖v‖∞‖v‖22

)
.

Estimate (20) yields E
(

supt∈[0,T ] |δy(t)|3
)

= O(‖v‖33,2). But

‖v‖33,2 = E

[∫ T

0

|v(t)|2dt

] 3
2

 = O
(
‖v‖∞‖v‖22

)
,

and‖v‖33 = O
(
‖v‖∞‖v‖22

)
. Thus, z(v) = O

(
‖v‖∞‖v‖22

)
.

6.2 Adapted projections

This subsection discusses projections in L2
F in the case of local constraints. In

order to give the expression of the tangent cone to U , when U is defined by (51),
we need a characterization of measurable multifunctions with closed values.
We call Castaing representation of a (B[0, T ] × FT )-measurable multifunction
U : [0, T ]×Ω→ P(Rm) a countable family of (B[0, T ]×FT )/B(Rm)-measurable
functions wk : [0, T ] × Ω → Rm such that U(t, ω) = clo{wk(t, ω), k ∈ N}. We
say that the Castaing representation is adapted if each process (wk(t))t∈[0,T ]

is adapted. By a result due to C. Castaing (see e.g. [28, Thm 1B, p. 161]),
any multifunction with closed values that is measurable in L2

FT has a Castaing
representation in the same space. We next extend the result to the adapted
case.

Proposition 33. Let U : [0, T ]×Ω→ P(Rm) be an (B[0, T ]×FT )-measurable,
F-adapted closed-convex-valued multifunction. Then:

(i) For any a ∈ Rm the map (t, ω) ∈ [0, T ] × Ω → Pa(t, ω) := PU(t,ω)(a) ∈ Rm
is (B[0, T ]×FT )/B(Rm)-measurable and F-adapted.

(ii) For any countable dense subset {zk}k∈N of Rm we have that {PU(t,ω)(zk), k ∈
N} is an F-adapted Castaing representation of U .
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Proof. First note that (ii) follows directly from (i). In order to prove (i) we essen-
tially reproduce the proof in [28] to obtain that Pa(t, ω) is (B[0, T ]×FT )/B(Rm)-
measurable and, using that U is F-adapted, we prove that Pa(t, ω) is F-adapted.
Let us fix a ∈ Rm and consider the sequence of multifunctions

Uk(t, ω) := {v ∈ Rm; dist(v, U(t, ω)) < k−1; |v − a| < dist(a, U(t, ω)) + k−1}.
(109)

Let C be a closed subset of Rm. Then Pa(t, ω) ∈ C iff C ∩ Uk(t, ω) 6= ∅ for all
k, thus

P−1
a (C) = ∩kU−1

k (C). (110)

Next, let D be a countable dense subset of C, which always exists. We claim
that

U−1
k (C) = U−1

k (D) = ∪d∈DU−1
k (d). (111)

The second equality is obvious and since D is a dense subset of C, in order to
establish the first equality it suffices to check that if c ∈ C and (t0, ω0) ∈ U−1

k (c),
then for c′ close enough to c we have that (t0, ω0) ∈ U−1

k (c′). But this follows
directly from the definition of Uk(t, ω) in (109). Our claim follows.

On the other hand, for any v ∈ Rm and α ≥ 0 we have

{(t, ω) ∈ [0, T ]× Ω ; dist(v, U(t, ω)) ≤ α} = U−1(v + αB̄), (112)

where B̄ is the unit ball in Rm. Thus, since U is B[0, T ]×FT -measurable, so is
the process dist(v, U(t)). Similarly, for a.a. t ∈ [0, T ], we have that

{ω ∈ Ω ; dist(v, U(t, ω)) ≤ α} = U−1(v + αB̄). (113)

Since U is F-adapted, it follows that so is dist(v, U(t)). Therefore, from the
definition (109), for any (t, d) ∈ [0, T ]× ∈ Rm we have that U−1

k (d) ∈ B[0, T ]×
FT and U−1

k (t, ·)(d) ∈ Ft. Using (110)-(111) we finally obtain that Pa has the
desired properties.

Lemma 34. Let U be defined by (51) with U being a (B[0, T ] × FT )/B(Rm)-
measurable, F-adapted closed-convex-valued multifunction. For u ∈ L2

F we have
that w = PU (u) iff w(t, ω) = PU(t,ω)(u(t, ω)) for a.a. (t, ω) ∈ [0, T ]× Ω.

Proof. By the definition of a projection, w is characterized as the solution of
the minimization problem

Min
w∈L2

F

E

[∫ T

0

|w(t, ω)− u(t, ω)|2dt

]
; w ∈ U . (114)

Let uk (k ≥ 1) be a F-adapted Castaing representation of U and let the sequence
u′k ∈ L2

F be defined as follows: u′0 is an arbitrary element of U , and for k ≥ 0
set

u′k+1(t, ω) =

{
uk+1(t, ω) if |uk+1(t, ω)− u(t, ω)| < |u′k(t, ω)− u(t, ω)|,
u′k(t, ω) otherwise.

(115)
Then u′k is a sequence of measurable and adapted functions, and since uk is
a Castaing representation, |u′k(t, ω) − u(t, ω)| → infa∈U(t,ω) |u(t, ω) − a| fort
a.a. (t, ω). Therefore, since U(t, ω) is closed and convex, we obtain that
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u′k(t, ω) → PU(t,ω)u(t, ω) for a.a. (t, ω). Using the dominated convergence
theorem, we deduce that u′k has a limit in L2

F equal to PU(t,ω)(u(t, ω)) for
a.a. (t, ω) . It follows that the value of problem (114) is less or equal than

E
[∫ T

0
|PU(t,ω)u(t, ω)− u(t, ω)|2dt

]
. Since obviously it cannot be less, and the

projection problem has a unique solution, the conclusion follows.
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