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Conditions d’optimalité du premier et second
ordre en commande optimale stochastique

Résumé : Nous considerons un probleme de commande optimale stochastique
avec soit des contraintes convexes sur la commande soit un nombre fini de
contraintes d’égalité et d’inégalité sur I’état final. L’approche dite variationnelle
nous permet d’obtenir un développement au premier et au second ordre pour
I’état et la fonction de cotit, autour d’un minimum local. Avec ces développements
on peut montrer des conditions générales d’optimalité de premier ordre et,
sous une hypothese géométrique sur I’ensemble des contraintes, des conditions
nécessaires du second ordre sont aussi établies. On finit I’article en fournissant
des conditions d’optimalité du second ordre pour de problemes avec de contraintes
en espérance sur 1’état final

Mots-clés : Commande optimale stochastique, approche variationnelle, conditions
d’optimalité de premier et second ordre, contraintes polyédriques, contraintes
sur I’état final.
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1 Introduction

Let us consider a controlled Ito process satisfying the following stochastic dif-
ferential equation (SDE)

dy(t) = f(t,y(t),u(t),w)dt + o(t,y(t),u(t),w)dW(t), on [0,T] x Q, (1)
y(0) = yo €R™

In the notation above y(t) € R™ denotes the state function and u(t) € R™ the
control. Associated to a pair state-control (y,u) we define its cost J(y,u) by

T
J(y,u) :=E </0 €t y(t), u(t))dt + ¢(y(T))> - (2)

Precise definitions of the suitable spaces for (y,u) and assumptions over the
data (f,o,¢, @), will be provided in the next section. For the dynamics (1) and
the cost (2), we will study two types of problems. In the first one, we suppose
that we are given a nonempty closed and convex subset U of the space L%
of adapted square integrable process, and we analyze the following stochastic
optimal control problem with control constraints

Ming, ) J(y,u) s.t. (1) holds and u € U. (SP)

As in the case of deterministic optimal control problems, there are two main
approaches to study problem (SP) when U is defined by local constraints, i.e.
for a given nonempty closed and convex subset U C R"”,

U:={ue L% ; u(t,w) € U, for almost all (t,w) € [0,T] x Q}. (3)

The first approach is the global one, based on Bellman’s dynamic programming
principle, which yields that the value function of (SP) is the unique viscosity
solution of an associated second order Hamilton-Jacobi-Bellman equation. For
a complete account of this point of view, widely used in practical computations,
we refer the reader to Lions [21, 22] and to the books [11, 26, 29]. The second
approach is the variational one, which consists in the local behavior analysis
of the value function under small perturbations of a local minimum. Using
this technique, Kushner [18, 19, 20], Bensoussan [1, 2], Bismut [3, 4, 5] and
Haussmann [14] obtained natural extensions of Pontryagin maximum principle
to the stochastic case, that were generalized by Peng [25] to the case where
U is not necessarily convex and by Cadenillas and Karatzas [8] to the non-
Markovian case. Relations between the global and variational approach are
studied in [30, 31].

Nevertheless, to the best of our knowledge, nothing has been said about
second order optimality conditions for (SP). Using the variational technique
we are able to obtain first and second order expansions for the cost function,
which are expressed in terms of the derivatives of the Hamiltonian of problem
(SP). The main tool is a kind of generalization of Gronwall’s lemma for the
SDEs (proposition 1) obtained by Mou and Yong [24], which allows to expand
the cost with respect to directions belonging to a more regular space than the
control space. Note that the idea of using a more regular space that the orig-
inal one was already used [6] in the context of deterministic state constrained
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4 J. F. Bonnans, F. J. Silva

optimal control problems. By a density argument, we establish first order op-
timality conditions, which in the case of local constraints are a consequence of
the maximum principles obtained in the above references. However, we can also
deal with constraints sets that are not necessarily local. The main novelty of our
work is that under a polyhedricity assumption (see [13, 23]) over the set U, we
are also able to provide second order necessary conditions which are new for the
stochastic case and are natural extensions of their deterministic counterparts.

In the second type of problem we suppose that we are given functions ¢*, h?
with i € {1,...,n4}, j € {1,...,ns}, and we study the following optimal control
problem with finitely many equality and inequality constraints

Ming, ) J(y,u) s.t. (1) holds and E [¢°(y(T))] =0, E [1 (y(T))] < 0. (SP’)

First order optimality conditions for (SP’), in a maximum principle form, have
been obtained in [25, 8]. Under a standard qualification condition over g,
h7, the techniques employed for (SP) allow us recover particular cases of the
results in [25, 8], but in addition we are also able to prove second order necessary
conditions for (SP’).

The article is organized as follows: After introducing standard notations
and assumptions in section 2, we obtain in section 3 first and second order
expansions for the state and cost function. The proof of technical lemmas of
this section are provided in the Appendix. In section 4, first and second order
necessary conditions are proved for problem (SP) with explicit results for the
case of box constraints over the control. A discussion about a non gap second
order sufficient condition is also provided. Finally, in section 5 first and second
order necessary conditions are derived for problem (SP’).

2 Notations, assumptions and problem state-
ment

Let us first fix some standard notation. For x belonging to an Euclidean space
we will write 2% for its i-th coordinate and || for its Euclidean norm. Let T' > 0
and consider a filtered probability space (2, F,F,P), on which a d-dimensional
(d € N*) Brownian motion W (-) is defined. We suppose that F = {F;},, .
is the natural filtration, augmented by all P-null sets in F, associated to W (-).
Let (X, | - |lx) be a Banach space and for g € [1,00) set

LP (X)) = {v :Q = X; vis F -measurable and E (||v(w)||§() < oo} ,

L>* (2 X) = {v:Q— X; vis F -measurable and ess sup,,cq|/v(w)||x < oo}.

For ,p € [1,00] and m € N let us define
Lg_-’p = {v e LP (Q; L7 ([0,T;R™)); (t,w) — v(t,w) := v(w)(t) is F-adapted} .

We endow these space with the norms

1
B
lollgp = [E (105 o z1mm))| and [olloc,p i= e85 supeq[0(w)l oo rymm)-

For the sake of clarity, when the context is clear, the statement “for a.a. ¢ €
[0,7], a.s. w € Q (P-a.s.)” will be abbreviated to “for a.a. (t,w)”. We will
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write LY := L% and || - ||, := || - ||p,p- The spaces L%p endowed with the norms
| - llg,p are Banach spaces and for the specific case p = 2 the space L% is a
Hilbert space. We will denote by (-, )2 the obvious scalar product. Evidently,
for f € [1,00] and 1 < p; < p < pa < 00, there exist positive constants cg p, ,
CB,ps> Cp1,B> Cps,p SUch that

g llvllgp < lvllsp < cgpallvllspe, cpsllvllps < llvllps < cpypllvllps.s-
For a function [0,7] x R® x R™ x Q > (¢,y,u,w) — ¥(t,y,u,w) € R™ such
that for a.a. (t,w) the function (y,u) — ¥(t,y,u,w) is C?, set 1, (¢, y, u,w) =
Dy(t,y, u,w) and ¥y (t,y, u,w) := Dy(t,y,u,w). As usual, when the context
is clear, we will systematically omit the w argument in the defined functions.
Now, let z € R™ and v € R™ be variations associated with y and u respectively.
The second derivatives of i are written in the following form

byy(t.y,w)2? = Dy b(t,y,u)(2,2),  Yuult,y, w)v? == DE(t y,u) (v, 0),
77[Jyu (tv Y, U)ZU = Dzuw(t7 Y, U)(Z, U)v
Yiy,uy2 (t,y,u) (2, )2 1= Py (t,y, w) 2% + 200y (8, Y, w) 20 + Yo (E, Y, w)v?.
Consider the maps f,0% : [0,7] x R" x R™ x  — R" (i = 1, ...,d). These maps
will define the dynamics for our problem. Let us assume that:
(H1) [Assumptions for the dynamics] The maps 1) = f,o? satisfy:
(i) The maps are B([0,7] x R"” x R™) ® Fr-measurable.
(ii) For all (y,u) € R™ x R™ the process [0,7] 2 t — ¥(t,y,u) € R™ is F-
adapted.
(iii) For almost all (t,w) € [0,T] x Q the mapping (y,u) — ¥(t,y,u,w) is C3.
Moreover, we assume that there exists a constant L; > 0 such that for almost
all (t,w)
|¢(t7yau7w)‘ < Ll (1 + |y| + |u|) )
‘wy(tvy’uaw”—’— W)u(t’%u?w)l < Ly, (4)
[ty (8 Y, w, w)| + [Pyu(t, Y, u, )| + [uult, v u,w)| < Ly
W)(y,u)2 (ta Y, u,w) - d)(y,u)Q (ta yla ulvw)| < Ll (|y - y/‘ + |U - ul|) .

Let us define o(t,y,u) := (o'(t,y,u),...,0%t,y,u)) € R**4. For variations
z € R™ and v € R™, associated with y and u, set
oy(t,y,u)z = (U;(t,y,u)z,...,U;j(t,y,u)z)7
oyy(t,y,u)z? = (U;y(t,y,u)zz, ...,Ugy(t,y,u)zQ),

()

2

and oy, (t, Yy, u)v, oyu(t,y,w)2v, ou(t,y,u)v? O(yu)2(t,y,u)(2,v)° are analo-

gously defined.
For every f3 € [1,00), let us define the space J* as
V8= {y eL? (Q;C([0, T;R™)); (t,w) = y(t,w) := y(w)(t) is ]F—adapted},

endowed with the norm || - ||g,00. Let yo € R™, under (H1) we have that for
every u € Lg_-’z the SDE

dy(t) = f(t,y(t),u(t))dt +o(t, y(t), u(t))dW(t), (6)
y(0) = yo,

is well posed. In fact (see [24, Proposition 2.1]):
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Proposition 1. Suppose that (H1) holds. Then, there exists C' > 0 such that
for every u € L?_—’2 (B € [1,00)) equation (6) admits a unique solution y € J?
and

191 < € (lwol? + 1FC0uO)IG, + o0, u(DIE,) . ()

Remark 1. Note that by the first condition in (4), the right hand side of (7)
is finite.

Now, let us consider maps £ : [0, T| xR* xR™ xQ — Rand ¢ : R" xQ — R.
These maps will define the cost function of our problem. We assume:
(H2) [Assumptions for cost] (i) The maps ¢ and ¢ are respectively B([0, T] x
R™ x R™) ® Fr and B(R™) ® Fr measurable.
(ii) For all (y,u) € R™ x R™ the process [0,T] > t — £(t,y,u) € R is F-adapted.
(iii) For almost all (t,w) the maps (y,u) — £(t,y,u,w) and y — ¢(y,w) are C2.
In addition, there exists Lo > 0 such that:

Gty u,w)| < Lo (1+ [yl + [ul)?, |o(y,w)| < Lz (1+ [y])*,
My(t,y,u,wﬂ + |€u(t,y,u,w)| S L2 (1 + |y| + |U|) 5
[y (8 5 0, @) |+ [lyu(t, Y, u, )|+ [Cun(t, y, u,w)| < Lo, (®)
|£(97“)2 (t’ y’u’w) - g(y’u)z(t,y/, u/7w)‘ <Ly (|y - yl| + |u - u/l) >
|6y (y,w)| < La (1 + [y])
|Gy (1, W) < Lo, yy(y,w) = dyy (v, w)| < Lo (Jy = y/[) -

Remark 2. The above assumptions include the important case when the cost
function is quadratic in (y,u).

In order to provide second order conditions, which will be natural extensions
of well known deterministic results, it will be useful to strengthen (H1) and
(H2).

[Lipschitz cost] There exists Cy,Cy > 0 such that for almost all ({,w) €
[0,7] x © and for all (y,u), (v/,u") € R™ x R™ we have

|£(t7yvu7w)_é(tvylvu,vw” < CZ(|U_UI|+|y_y/|)7
[6(y,w) — oy, W)l < Coly -yl

[Affine dynamics] For ¢ = f, % and for almost all (¢,w) € [0, 7] x 2, we have

9)

(y,u) € R" x R™ — (t,y,u,w) is affine. (10)
In our main results we will assume:

(H3) At least one of the following assumptions hold:
(H3.i) Condition (9) holds and o, = 0. (H3.ii) Condition (10) holds.

For every u € L% denote by y, € Y? the solution of (6). Let us define the
cost function J : L%— — R by

T
J(U)ZEl/O €t yu(t), u(t)dt + ¢(yu(T)) | - (11)

Note that, in view of the first condition in (8) and estimate (7) the function J
is well defined.
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3 Expansions for the state and cost function

From now on we fix u € L%_— and set § := ygz. We also suppose that assumptions
(H1) and (H2) hold. Our aim in this section is to obtain first and second order
expansions for v € LE — yziy € V> and v € LE — J(u + v) € R around
¥ = 0. The main tool for obtaining the expansion for the state is the following
corollary of proposition 1, whose proof is straightforward.

Corollary 2. Let Ay, Ay € LE([0,T);R"™*"), B} € L2*([0,T];R") and B? €
LE([0,T);R™ ) for i = 1,2. Assume that there exists a constant K > 0 such
that

IBi]lg.1 < KI|B;|

8,2- (12)

Then, omitting time from function arguments, for every w € L2, the SDE

dz
z(0)

[A12 + Bf + Biw| dt + [Asz + B3 + B3w| dW(t),

; (13)

has a unique solution in VB and

= ] O \masyl Bl hwllaa )4 B8 =0,
o O (max | B35 o, lw]/3 otherwise.
2118,2> 8,2

Remark 3. Note that the estimates given in corollary 2 are sharp. In fact,
suppose that d = 1 and let w € L?([0,T];R) (deterministic). Consider the
process z(t) defined by

2(t) == /0 w(s)dW(s) for allt € [0,T].

By definition ||z||gOO > E(|z(T)|%) = Hw||§IE(\Z|3), where Z is an standard

normal random variable. Since, in this specific case, Hw||g2 = |wl|lj, the
conclusion follows.

Regarding the expansion for the cost J, the following lemma, which is a
consequence of It’s lemma for multidimensional It process (see e.g. [17, 29]),
will be useful. For the reader convenience we provide the short proof.

Lemma 3. Let Z; and Zs be R™-valued continuous process satisfying

(14)

{ dZi(t) = bi(t)dt + o1 (£)dW(t) for all t € [0,T],
dZs(t) = ba(t)dt + o2(t)dW (t) for all t € [0,T],

where by, by € L2(Q, L%([0,T],R")) and o1, oo € L?(Q, L?([0,T],R"*9)) are
F-adapted process. Also, let us suppose that P-a.s. we have that Z;(0) = 0.
Then

T
E(Z(T) %(T)) = E (/

d
Zy(t) - ba(t) + Za(t) - bu(t) + Y 0i(t) - o (t)] dt) .

i=1
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Proof. 1t’s lemma implies that

Zl(T)-ZQ(T):/OT Z1(t) - ba(t) + Za(t) Zal )| dt + M(T),

where M (t) is a continuous local martingale given by

d | | |
= Z/O [Z1(s) - o5(s) + Za(s) - o} (s)] AW (s).

By the Burkholder-Davis-Gundy inequality (see e.g [17]) we have the existence
of a constant K > 0 such that for all i =1,...,d

E| sup

t€[0,T]
The Cauchy Schwarz inequality yields that (assuming that n = 1 for notational
convenience)

| 1219030+ Za(e) - ()] aw' (o

)< sl os s zoeail).

- 1/2
Izl =2 | [ 1 o a) | <l il < 4o

with an analogous estimate for ||Z2 . 0§||1 ,- Therefore, by [27, Theorem 51],
we have that M (t) is a martingale with null expectation. The result follows. [

For ) = ¢, f,o and t € [0,T], let us define

Yy (t) =ty (6, 9(t),u(t)); Yult) = vult,y(1), ult)), Yyu(t) = vyu(t,y(t), ult));
%y( )= wyy(t y(t),ut)); Yuu(t) = Yuu(t, y(t), u(t)),
w(y u)?2 (t) w(y u)2 (t y( ) ( ))

As usual in optimal control theory, the expansions for J, with respect to varia-
tions of the control variable in the uniform norm || - ||, will be written in terms
of an adjoint state and the derivatives of an associated Hamiltonian. Let us
define the adjoint state (p,q) € L%([0,T];R™) x (L%([0,T];R"™))? as the unique
solution of the following backward stochastic differential equation (BSDE) (see
e.g. [1, 5])

m

dp(t) = — 6O +HOTPO+Y oy ®)Td @) dt+ AW D),
p(T) = 6D -

In the notation above ¢! and ¢* denote respectively the ith column of ¢ and g.
The following estimates hold (see [24, Proposition 3.1]):

Proposition 4. Assume that (H1), (H2) hold and that u € Li—"Q (B el,00)).
Then there exists C' > 0 such that

d
1915 e+ - 3152 < € (14 0l -
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The Hamiltonian H : [0,T] x R™ x R™ x R" x R"*4 x ) — R is defined as

d

H(t,y,u,p,q,w) =Lt y,u,0) +p- f(ty,u,w) + Y g o' (ty,u,w). (17)
i=1

For notational convenience, omitting the dependence on w, we set

H(y,u)z(t) - H(y u)z( 'Y ( )v ﬂ(t),ﬁ(t), (j(t))
3.1 First order expansions

Let 8 € [1,00] and v € LE—_’Q. We consider the linearized mapping v € Le—_’Z —
y1[@,v] € VP, where y; [, v] is the unique solution of

dyi(t) = [fy@®)ya(t) + fu@®)v(@)]dt + [0y (£)y1(E) + ou(t)v(@)]dW (2), (19)
v1(0) = 0.

The second assumption in (4) and proposition 1 yields that y;[@,v] is well de-
fined. If the context is clear, for notational convenience we will write y; =

y1[t,v]. Corollary 2 will be the main tool for establishing the following useful
estimates:

Lemma 5. Letv € Li-ﬁA with B € [1,00) and set
0y = 0ylt, v] := yayo — Y, di = da[u,v] :=dy —y1.

Then, the following estimates hold:

O(lvll3,) i ou=0
Syl5 B = g ’ 20
” yHB’OO " Hyl”ﬂ,oo { O(”U“B ) otherwise. (20)
O(lvl35) i Fuu =0,
[CA A 32 . (21)
O(”U”%A) otherwise.
Proof. See the appendix. O

Now we can prove the following proposition.

Proposition 6. The map v € LF — §(v) := yat, € V? is differentiable with a
Lipschitz derivative given by

Dy(®)v =wy1[u+9,v] forall v,veLF. (22)

Proof. By estimate (21) in lemma 5 we have that |0y — y1]l2.0 = O(||v||%),
implying that (22) holds. Let us prove that D¢ is Lipschitz. For notational
convenience, we assume that n = m = d = 1. Let vy,v2 € LY and write
Sv:=wv; —vg. For ¢ = f,0,i=1,2 and v' € LY with ||v'| = 1, by an abuse
of notation we set

y(i) — yﬂJr s ( ). yila + v, v'], 5y =yM —y@ 5y = ygl) y§2)

V(1) = < ()()+w®% WQ:mp%¢N> at) + vi(8)),
5%(7?) () = 0 (@), at) = i (1) = i (8).
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A straightforward calculation shows that

dyr(t) = [ (0O0y () + 0, ()t (8) + 0 fu ()0 (1))at
0+[a 2 ()61 (8) + S0, (£ (1) + So (' (H]AW (), (23)

oy1(0) =
Using (H1) and corollary 2 we obtain that
1691113 0 = O (I16YlI3 o0 + [160113) ,
uniformly in v" € LY with ||v'||oc = 1. The result follows from (20). O

Now we focus our attention on the cost function J. Let us define T : L%_— —

R by
v) = E ( / Ha(t) v(t)dt) . (24)

In view of proposition 4, with § = 2, T; is well defined. Lemma 3 yields the
following well known alternative expression for Y.

Lemma 7. For every v € L.Q;- we have that:

Ti(v) =E (/0 [£y(£)y1 (1) + Lu(t)v(t)] dE + ¢y(y(T))y1(T)> - (29)

Proof. Noting that
6y (B(T))y1(T) = H(T) - 3 (T) = 5(0) - 91 (0),
lemma 3, applied to Z; = y; and Z = p, yields E (¢, (g(T))y1(T)) = 1+ 12+ 13,
where
L = -E (foTyl - [e (07 + £, 7B + X, oy (07 ()] dt)
L = (fo y1(t) + fu(t)o(t)] dt
Iy = YLLE (fo 710 [P0 0) + 2,0 dt).

Plugging the expressions of I;, I3 and I3 introduced above into the right hand
side of (25) yields the result. O

The expression above for T; allows to obtain a first order expansion of J
around .

Proposition 8. Assume that (H1), (H2) hold and let v € L%. Then,
J(u+v)=J@)+ Ti(v) +ri(v),
with

v||2 if Oyu =
t =0l ne={ gHeliy) TreZh )

(Hv||4) otherwise.
If in addition (9) holds, then
) = 2 N —
T (v) = { O(|[vllx)  ifou=0, () = { O(0l3) i owu =0,

O(||v|l1,2) otherwise, O (lvl34) otherwise.
(27)
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Proof. Let us denote §J := J(@ + v) — J(@). By definition
T

0 =R (/0 [£(t; yato(t), u(t) +0(t) — £, 5(8), u(t))] dt + S(Ya+u(T)) — <Z>(1/(T))> :

Using (H2), a Taylor expansion for £ and ¢ implies that

0 =E l/o £y (O)3y(t) + Lu(t)o(t)dt + ¢y (F(T))oy(T) | + O(|6yll3 o0 + Iv][3)-

Since dy = y1 + di, lemma 7 implies that dJ = YT1(v) + r1(v) where ri(v) =
z1(v) + z2(v) with
z1(v)

=E /0 Ly (O)di (t)dt + oy (5(T))dr(T) | , 22(v) := O ([|6yll3 o0 + [[0]13) -

Now, we estimate T1(v) using (25). By assumption (H2) and the Cauchy
Schwarz inequality E (fo w(t)o(t )dt) = O (]|v|l2) - On the other hand, by (20)

E (/0 £y )y (t)dt + ¢y(y(T))y1(T)> =01 |E (tes[lépﬂ ly1 (t)|2>

Thus T;(v) = O(||v]|2). If (9) holds, thenE(fO Lu(Hu(t)d ) O (|lv]l1), and

(/ £, (O (O)dt + b, (5(T) ) O(E S I D

Thus, estimates for Y1(v) in (27) follow from (20) with S = 1. Let us estimate
r1(v). Assumption (H2) and (20) imply that 22( ) = O(||v||3). On the other
hand by (H2) and the Cauchy Schwarz inequality

1

2

2 s )|
t€[0,7)

Thus (26) follows from estimates (21) with 8 = 2. If in addition (9) holds, then
z1(v) = O (E [supte[O’T] |d1(t)|D and the estimates for 1 (v) in (27) follows
from (21) with g = 1. O

1
2

= O(|[v[l2)

z1(v) =0

Remark 4. The above proof shows that the hypotheses for the perturbation
v can be weakened. For example, if (9) holds and oy, = 0, for all v € Lff
we have that J(@ + v) = J(@) + T1(v) + ri(v) with T1(v) = O(||v|1) and
r1(v) = O(|[v||3). Analogously, if (10) holds, then di = 0 and we have that
J(@+ v) = J(@) + T1(0) + 11(0) with T1(v) = O(|jo]l2) and 1(v) = O(Jo]|3).
Therefore, if (H3) holds, the function J is differentiable at u.

The following corollary is an inmediate consequence of the proposition above.

Corollary 9. Assume that (H1), (H2) hold and let v € LP. Then, T1(v) =
O(|Jvl2) and J(ii+v) = J(@) + T1(v) + 71 (v) with r1(v) = O(||v||%,)-
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3.2 Second order expansions

In this subsection we obtain second order expansions for the state and the cost
function. As in the precedent subsection we begin with the analysis for the state
mapping. The second order linearization of v € LE + §(v) = yg4v € Y? around
0 =0 in the direction v € LF is defined as the unique solution ys = ya[u, v] of

dya(t) = [fy(Oy2(t) + fuy Oy (t) + 2fyu Oy (v (t) + fuu(t)v(t)?] dt
+ [0y (Dy2(t) + 0y (y1(1)? + 20 ()y1 (H)0(t) + ouu(t)v(t)?] AWV (2);
(28)
Note that by the third assumption in (4) and proposition 1, we have that ys is
well defined. We give now some useful bounds over y, and the rest

dy = da[,v] := 8y — y1 — Y2 (29)

As for y; and dy, when the context is clear, we omit the arguments of y, and
ds.

Lemma 10. Forv € L¥ and 8 € [1,00) the following estimates hold:

B (||v||2B 2) Zbfo-uu an
= 30
o2l { Ollol,)  otheruise. (50)
v v tf Oy =0,
||d2||g)oo _ (H ||2B 2” ||4ﬁ 4) f . (31)
(HUHQB 2”'0”4,64Jr ||U||35 ) otherwise.
Proof. See the appendix. O

Now, we study J. Let us define T : L — R by

T
Ty(v) :=E (/0 Hiy 2 (8) (31 (1), 0(1)*dt + ¢yy(17(T))(y1(T))2> - (32)
As for T, a useful alternative expression for To holds.
Lemma 11. For every v € LE we have that:

o) = E(Jg (000 + OO0 d)
+ E[o,H(T >>y2< )+ 6y (§(T)) (31 (T))?] -

Proof. By definition of y» and p, we have that
Gy (Y(T))y2(T) = p(T) - y2(T') — p(0) - y2(0).
Lemma 3 yields E (¢, (g(T))y2(T))) = I] + I} + I}, where

I = fE(fo valt) - |¢ () +fy( )TB(t) + Sy ()T (1)] dt)
1y = E(Jy 50 [HO®) + Fowz @), o) dt)
1 zizlE(foqu [ ( 2(t) + 01, 2 (8) (), 0(2))?] dt)

Plugging the expressions of I, I} and I} introduced above into the right hand
side of (33) yields the result. O
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In order to obtain the main result of this section, the following lemma is
useful.

Lemma 12. Assume that (H1), (H2) hold and let v € L¥. Then,
J(u+v) =J(@) + T1(v) + 3T2(v) + ((v) + 2(v), (34)

where z(v) = O (||v]|sc[v]|3) and, recalling (29),

((v) :=E (/0 €y (t)da(t)dt + ¢y(y(T))dz(T)> : (35)

Proof. See the appendix. O
Now we are able to obtain a second order expansion of J around u.
Proposition 13. Assume that (H1), (H2) hold and let v € L¥. Then,
J(u+v) = J(@) + T1(v) + 3T2(v) + ra(v), (36)
and the following estimates hold:

_ [ O(lI%2) if ouu =0, _ [ Olllvlis) i owuwn =0,
Ta(v) = { O(|[v||3)  otherwise, ra(v) = O(|[v|lsllvll3)  otherwise.
(37)
If in addition (9) holds then

_ O(””H%) ifauu =0, o O(HUHOOHU”%) if Ouun =0,
Ta(v) = { O(lvlZy) otherwise, "2") = O(JvllwllvlZy) otheruise.
(38)

Proof. Let us first estimate Yo(v) by using the expression obtained in lemma
11 and the bounds obtained in lemmas 5 and 10. By (20) with 8 = 2,

E( sup |y ()] +/0 Iv(t)gdt> = O([[v[I3)- (39)

te[0,T)

In view of assumption (H2) and (39) we obtain that

T
E (/0 Ly () (a(8), v(t))*dt + ¢yy(17(T))(y1(T))2> =O(|lvll3).  (40)

On the other hand, assumption (H2) and the Cauchy Schwarz inequality yield

T
E </ Ly (t)ya(t)dt + ¢y(37(T))y2(T)> =0
0

2
E( sup y2|2)] ;o (41
t€[0,T]

and the estimate for To(v) in (37) follows from (30). If (9) holds, then

T
E (/ Cy(t)ya(t)dt + ¢yy(y(T))y2(T)> =0 <JE sup yalD , (42)
0 t€[0,T]
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and the estimate for To(v) in (38) follows from (30).
In order to conclude the proof, letting ro(v) := ((v)+2(v), lemma 12 implies
that it suffices to estimate ((v). By (H2) and the Cauchy Schwarz inequality
1
2
E( sup |da(t)?
te[0,T]

((v) =0

Hence, using (31) with g = 2,

qm:{owﬂum@o o =0
Olllollazllelgs + 1v26) ~ otherwise.

Since O(|[v]lsz2llvlIg4) = O(vllllvli2) and O([[vlgs) = O(l[vllsvl7), the
estimate for r9(v) in (37) follows. If in addition assumption (9) holds, then by
(31) with 8 = 1,

O(”'U”Q”UHZ) if Oyuu = 07
sup |do(t = .
tm%“ﬂ> L QR 1otze) othaie

C(v)=0 (]E

Since O([[v]l2[|v]|F) = O([[v]lsc[lv]|3) and O([[v][36) = O([[v]3.4), the estimate for
ra(v) in (38) follows. 0

Remark 5. The proof of proposition 18 shows that the estimates Yo(v) =
O(||v]13) and ra(v) = O(||v|lsollv||3) also hold in the case when f and o are
affine mappings, since in this case yo = do = 0. Therefore if (H3) holds, then
we find the natural extension of the well known expansion for the deterministic
case, i.e.

J(@+v) = J(@) + T1(v) + 3 T2(0) + O(|[v]lolv]3)
with Y1 (v) and Ta(v) = O(||v||3).

Since Y is a quadratic form and, for every §,p € [1,00], the space LF is
dense in Lg’p, we have that: If To(v) = O(||v||s,p) then Y5 admits a unique
continuous extension in L?P. This fact, together with the following corollary,
will allow us to prove, in the next sections, second order necessary condition for
the problems explained in the introduction.

Corollary 14. Assume that (H1)-(H38) hold. Then,
J(u+v) =J(@) + Y1(v) + 3T2(v) + r(v) for allv e LF, (43)

where T1(v) = O(||vll2), T2(v) = O([vl3) and r(v) = O(jv]||v]3)-

4 Optimality conditions: The case of control
constraints

Let U be a nonempty closed and convex subset of L%_— and consider the problem

Min J(u) subject to u € Y. (SP)
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The asymptotic expansions obtained for J in section 3 allow us to obtain first
and second order necessary conditions at a local optimum @ € L% for the control
constrained problem (SP). We first obtain first order optimality conditions
using the procedure explained in the introduction: According to the regularity
of the data of (§P) and the dependence on u of the o-term, a perturbation in
an appropriate space is taken. Then, the results of the previous section yield a
positivity condition of T; over a certain cone which is extended, by a density
argument, to a larger one. Similar considerations apply in order to establish
second order necessary conditions.

Let us first fix some notations which are standard in optimization theory.
Consider a Banach space (X, || - ||x) and a nonempty closed convex set C C X.
For z,2’ € X define the segment [z,2'] := {z+ Az’ —x) ;A €[0,1]}. The
radial, the tangent and the normal cone to C' at & are defined respectively by

Re(z) = {heX; 360>0 suchthat [z,z+ 0h] C C},
To(@) = {heX;3z@)=z+0h+0(0)cC, 0>0, |[o(8)/0]|y — 0},
Ne(@) = {z*eX*; ("2 —%)x-x <0, forall z € C},

(44)
where X* denotes the dual topological space of X and (-,-) x~ x is the duality
product. Recall that, since C' is a closed convex set, the tangent cone To(Z) is
the closure of the radial cone R¢(Z) in X, and that N¢(Z) is the polar cone of

To(T), ie.,
Ne(z) ={z" € X*; (2", h)x- x <0, for all h € To(z)}. (45)

4.1 First order necessary conditions

Consider as in section 3 a fixed @ € L%_—. For 3,p € [1, 0] and a subset A C Lff’p
we write clog ,(A) for the closure of A in Lg_-’p. IfAC Lg we set clog(A) ==
ClOﬁ’ﬁ(A).

We have the following first order conditions for (SP).

Lemma 15. Assume that (H1), (H2) hold and let u € U be a local solution
of (SP). Then:

_ 4,2 . _
Ti(v) >0 forallve clop (Ru(u) NLy ) if oun =0, (46)
clog (Ry(u) NLY)  otherwise.
If in addition (9) holds then
cloy (Ru(w)) if o, =0,
Ti(v) 20 forallve { cloy o (Ru(ﬂ) N L?Zl) otherwise. (47)

Proof. Let v € Ry (u) N L%. Since @ is a local solution of (SP), proposition 8
implies that, for # > 0 small enough, we have

0 < J(@+ 0v) — J(@) = 071(v) + [[v]20(62). (48)

Thus, dividing by 6 in (48) and letting 0 | 0, we have that T1(1)2 > 0. Analo-
gously, if 0y, = 0 we have that T1(v) > 0 for all v € Ry (@) N L]_lz. Condition
(46) follows from the continuity of Y;. The proof of (47) follows in the same
manner, with the obvious modifications. O
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Note that the results obtained in lemma 15 are rather general, since they
include the case of non local constraints. Of course they will give no informa-
tion if the cones in (46)-(47) reduce to {0}. This may happen for somewhat
pathological examples, as we next show.

Example 1. Let ug € L% and suppose that ug ¢ Lf—_’p for any 8,p € (2,00].
The constraint U := {u = aug / for some « € [0,1]} is such that, at @ = 0, the
radial cone is given by Ry (@) = {Aug / for A > 0}, but Ry (@) N Lg_-’p = {0}.

Thus, we will assume the following assumption over the constraint set U:

(H4) For every @ € U we have that
Tu(a) = clog (Ry (@) NLF). (49)
We have the following proposition whose proof is straightforward.

Proposition 16. Assume that (H1), (H2), (H4) hold and let @ be a local
solution of (SP). Then

Ti(v) >0 for allv e Ty(u). (50)

Remark 6. Note that if J(-) is convex, then (50) is a sufficient condition for
the (global) optimality of u.

Clearly, we have that (H4) can hold for non local constraints. As an ex-
ample, it can be checked that (49) holds for Y = {u € L3 / |lull <1} and
% € U. Now we consider the case when U is defined by local constraints. The
next lemma extends a well-known result on deterministic local constraints to
the case of adapted local constraints. We first need to introduce some basic no-
tions of multifunction theory. We say that the application (t,w) € [0,T] x Q —
U(t,w) € P(R™) is a B([0,T]) x Fr-measurable multifunction if, for any closed
set C' C R™, we have that U~1(C) € B([0,T]) x Fr. In addition, we say that
it is F -adapted if for all ¢ € [0, T] we have that U(t,-)"1(C) € F;. Finally, U is
said to be closed-convex-valued if U(t,w) is a.a. closed and convex.

Given a B([0,T]) x Fp-measurable multifunction U, consider the set

U:={ue L% ; ultw) €U(tw), aa. (tw)e[0,T]xQ}. (51)

Lemma 17. Let u € U, with U closed-convez-valued and F -adapted. Then:
(i) Assumption (49) holds at u.

(ii) The tangent cone is given by
Tul@) = {v € I3 ; v(t,w) € Ty ((t,w)) a0 (t,w) €[0,T] x Q). (52)

Proof. (i) By a diagonal argument, it suffices to prove that, for every v € Ry, (@),
there exists a sequence v € Ry (@) N LY such that ||vy — v|j2 — 0. Indeed, set

vg(t,w) = 1{|v(t,w)|gk}v(t,w). (53)

Being a product of adapted functions, vy, is adapted and, since U(t,w) is con-
vex, it belongs to Ry (). Finally, since vi(t,w) — v(t,w) for a.a. (t,w) and
|vg(t,w)| < |v(t,w)|, the dominated convergence theorem implies that vy — v



Optimality conditions in stochastic optimal control theory 17

in L%_-.
(ii) Let v € Ty (@). By definition, for § > 0 small enough and a.a. (¢,w):

a(t,w) + Ov(t,w) + re(t,w) € U(t,w), (54)

where 79(+,+)/0 — 0 in L% as 6 | 0, and therefore also in L%_—T. Thus, extracting
a subsequence if necessary, we have that ry(t,w)/6 — 0 for a.a. (t,w) from
which we deduce that v(t,w) € Ty (¢,.)(4(t,w)). Conversely, let v belongs to the
r.h.s. of (52) and for € > 0 set

ve == e 1 (Py(a +ev) — ), (55)

where Py (-) denotes the orthogonal projection in L%— onto U . By definition of
Py(-) we have that v. € Ry(u). For (t,w) in [0,T] x Q set Py .,)(-) for the
orthogonal projection in R™ onto U (¢,w). In view of lemma 34 in the appendix,
we have that for a.a. (t,w)

Ve (t,w) 1= (Py(p ) (U(t,w) + v(t,w)) — u(t,w)) . (56)

Clearly, v (t,w) € Ry(+w)(u(t,w)) and for a.a. (t,w) we have v (t,w) — v(t,w).
Since |ve(t,w)| < |v(t,w)|, the dominated convergence theorem implies that
Ve — v in L%_—T and therefore also in the closed subspace L%_—. Using that v, €
Ry (@) we obtain that v € Ty (a). O

Let a,b € R™ with —co < a’ < b < +oo for all i € {1,...,m} and define
Usp :={z €R™; a' <a' <V'}. (57)
For u € L% and every index i € {1,...,m}, set

IGI:(U) = {(t7(U) S [O7T] x 0 ; ui(t,oj) _ ai},
Ib%(u) = {(t,W) (S [OvT] x Q ; Ui(t,o.}) _ bl} .

The following corollary is a direct consequence of proposition 16 and lemma 17.

Corollary 18. Assume that (H1), (H2) hold suppose that U is in the form
(51) with U closed-convez-valued and F -adapted. Let 4 € U be a local solution
of (SP), then

Hy(t,w)v(t,w) >0 for all v € Ty (u(t,w)), a.e.. (58)

In particular, if U(t,w) = U,y (defined in (57)), then for every i € {1,...,m},
a.e.: .
_ >0 if (t,w) € I (u),
H(tw) =9 <0 if (tw) e I" (@), (59)
=0 elsewhere.

Remark 7. Since (58) is equivalent to (50) when U is in the form (51), we
have that if J(-) is convex then (58) is a sufficient condition for the (global)
optimality of u.



18 J. F. Bonnans, F. J. Silva

4.2 Second order necessary conditions

In order to obtain second order necessary conditions for (SP) we proceed as in
the previous section, i.e. we prove a general result and after, under some stan-
dard assumptions, we yield a more precise characterization for the important
case of local constraints. Let us define

T :={veL%; Yi(v)=0}. (60)
We have the following general second order necessary conditions.

Proposition 19. Assume that (H1), (H2) hold and suppose that u € U is a
local solution of (SP). Then, the following second order necessary condition
holds:

clog o (Ru(ﬂ) NLEN Tf‘) if ouu = 0,
> El
To(v) 20 forallve { clog (Ru(u) NLE NYT)  otherwise. (61)
If in addition (H3) holds, then
cloy (Ru (@)NLEN Tll) if Oy =0,
>
T2(v) 20 forallve { cloga (Ru(u) NLE NYT)  otherwise. (62)

Proof. If v € Ry /() N L N Y, proposition 13 implies that for § small enough

2
0 < J(a+6v) — J(u) = %TQ(U) +0°0([[v]l2,)-

Dividing the above equation by 6 and letting 6 | 0 yields To(v) > 0 and the
result follows from the bounds in proposition 13 for the quadratic form Y. [

The critical cone to U at u are defined by
Ca) = {veTul@) /Ti(v) <0}. (63)

In order to obtain more precise second order necessary conditions, we suppose
standard assumptions in the second order analysis of problems with convex
constraints. The first one is a natural extension of (H4) to the second order
case.

(H5) For every @ € U and v* € Ny () (recall (44)), we have that
cloa (Ry(@) N LE N (v*)*F) = clos (Ry () N (v*)*4) . (64)

For our second assumption, we need the following notion of polyhedricity (see
[13, 23]). The set U is said to be polyhedric at @ € U if for all v* € Ny (@), the
set Ry (@) N (v*)* is dense in Tyy(w) N (v*)+ with respect to the || - || norm. If
U is polyhedric at each u € U we say that U is polyhedric.

Remark 8. Note that, if (H1), (H2) and (H4) hold, proposition 16 yields
that, at a local minimum, —Y1 € Ny /() and C(u) = Ty (@) N Y1, Thus, if U is
polyhedric and in addition (H5) holds,

cloy (Ry(a) NLE NYT) = C(a). (65)
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We state a second order necessary condition which is a natural extension of
the deterministic counterpart.

Theorem 20. Let @ be a local solution of (SP) and assume that
(i) Assumptions (H1)-(H5) hold.
(ii) The constraint set U is polyhedric.

Then, the following second order necessary condition hold at u:
To(v) >0 for allv e C(a). (66)

Proof. As in the proof of proposition 19 we have that To(v) > 0 for all v €
Ru(a) N LE N Yi. The result follows as in the proof of proposition 19 since
under our assumptions Y2 (v) = O(||v||3) and (65) holds. O

Now, let us focus our attention in local constraints, i.e. when U is defined
by (51).

Lemma 21. Let U be defined by (51) with U closed-conver-valued and F -
adapted. Let u € U, it holds that

(i) The normal cone Ny(@) is given by

Ny(a) = {v* € L% / v*(t,w) € Ny(rw)(a(t,w)), a.a. (t,w)€[0,T]x Q}.
(67)
(ii) For every v* € Ny (u) we have that

Tu(@) N (™) ={v e Ty(a) / v*(t,w) v(t,w) =0, aa. (t,w)<[0,T]xQ}.
(68)

Proof. Since (ii) follows directly from (i) and lemma 17 (ii), it is enough to
show (i). By lemma 17(ii) and since Nyt (u(t,w)) is the polar cone of
Tu(tw)(a(t,w)), the rhs. of (67) is included in Ny (@). To prove the other
inclusion, let v* € Ny(u) and consider v'(t,w) € Ty(w)(u(t,w)), v"(t,w) €
Ny (t,w)(t(t,w)) such that

v (tw) = (tw) + 0" (tw), U (tw) v (t,w)=0.

We know that the above decomposition exists and it is unique. By lemma 17(ii)
we have that v’ € Ty, and thus 0 > F (foT v*(t,w) -U'(t,w)dt) = ||v'||3 proving
that v' = 0. The result follows. O

In order to verify the polyhedricity assumption in the case of local con-
straints, we will need in fact to assume that for a.a. (t,w) the set U(t,w) is a
polyhedron. More precisely, let ¢ € N and suppose that there exist mappings
2:0,T)xQ—=P{H1,....,q}), a; : [0,T) x Q= R™, b; : [0,T] x 2 — R™, where
i €{1,...,q}, such that 3, a; and b; are B([0,T]) x Fr measurable and for each
t we have that 3(t, ), a;(t,-) and b;(t,-) are F; measurable. We suppose that

U(t,w) ={x € R™ / (a;(t,w), z) < b;(t,w), for i € L(t,w) }. (69)

We have
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Lemma 22. The set of local constraints U defined in (51), with U(t,w) given
by (69), is polyhedric and satisfies (64).

Proof. Let @ € U and v* € Ny (u). For v € Ty(u) N (v*)+ and k > 0 set

v(t,w) if [u(t,w)] <k and U(t,w) + fo(t,w) € U(t,w),

Uk (t,w) = { 0 otherwise. i

Lemma 21(ii) implies that ¥, € Ry(@) N LE N (v*)L. On the other hand,
since U (t,w) is a polyhedron, lemma 17 (ii) implies that v(¢,w) € Ty (a(t,w)) =
Ru(a(t,w)). Thus, as k 1 oo, we have that v, — v(t,w) for a.a. (t,w). The
dominated convergence theorem, yields that 0y — v in sz, hence U is polyhedric
and (64) holds. O

The following corollary is a consequence of theorem 20 and lemmas 21, 22.

Corollary 23. Assume that (H1) - (H3) hold and suppose that @ is a local
solution of (SP) where U is defined in (51), with U(t,w) given by (69). Then,

the following second order necessary conditions holds:

Yo (v) >0, for all v € Ty(u) such that Hy(t)v(t,w) =0 for a.a. (t,w) € [0,T]x0Q.

4.3 On the second order sufficient condition

In this section we give a second order sufficient condition for the unconstrained
case and we briefly discuss the difficulties arising in the constrained case.

When U = L%, (HA4) is trivially satisfied and for every @ € U it holds that
Tu(a) = L_QF. The following proposition is a consequence of corollary 14.

Proposition 24. Assume that (H1)-(H3) hold and that U = L%. Suppose
that there exist o > 0 such that u € L%,— satisfies:

Yi(v) =0, and Yo(v) > a|v||3 for allv € L%. (71)
Then, there exists § > 0 such that for all v/ € LE with ||v'||s < 0, we have
J(@+v') > J(a) + a3 (72)

Only very partial results are obtained when U # L%. Let us recall (see [15])
that a quadratic form @ : H — R, where H is a Hilbert space, is a Legendre
form if it is weakly lower semi-continuous (w.l.s.c.) quadratic form over H,
such that, if hy — h weakly in H and Q(hy) — Q(h), then hy — h strongly.
We have the following proposition, whose proof follows the lines of the parallel
deterministic result (see [7, Section 3.3]):

Proposition 25. Assume that (H1)- (H3) hold. In addition, assume that at
u € U the quadratic form Yo is a Legendre form and there exist « > 0 such that

Ti(v) =0, and Yo(v) > al|v||3  for allv € C(u). (73)
Then, there exists § > 0 such that for all w € U with ||u — @ljc < 8, we have

J(w) = J (@) + galu—all3. (74)
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In the deterministic case it is well known that the application u € L([0, T]; R™) —

y1(u)(T) € R™ is weakly continuous. This allows to verify that the associated
quadratic form is a Legendre form iff some form of the strong Legendre condi-
tion holds. We show with two examples that u € L% — y1(u)(T) € L%, (R™) is
not weakly continuous.

Example 2 (o dependent on u). Let us take m = n = 1 and let us consider
the dynamics

dyi(t) = u(t)dW(t) for t € [0, T]; y1(0) =0.

Let u, be a (deterministic) orthonormal base of L?([0,7];R) and denote y,, :=
y1[un]. By the dominated convergence theorem it is easy to check that u,
converges weakly to 0 in L%, but

T 2 T
E [yn(T)?] =E (/0 un(t)dW(t)> :/0 u? (t)dt = 1.

Example 3 (o independent on u). We take m = n =1 and T = 2. Let us
consider the dynamics

dys(t) = u(t)dt for t € [0, T]; 31(0) = 0.

Let ¢, be an orthonormal base of the Hilbert space L?(R) endowed with the
scalar product

+oo 22
(9, h)« ::/_ g(z)h(x)e 2 da.

As a classical example (see e.g [16]) we can take ¢, (z) = hy(x)/v/27n!, where
hy, is the nth Hermite polynomial. Consider the sequence u,, € L%_— defined by
Un (t) := ¢n(W(1))[(1,9)(t) and set y,, := y1[uy,]. For every f € L%, we have

31 0wt )

E (en (W) J7 10
E[(anl (fl dt|W ))}—m,

by definition of ¢,,. Thus, u,, converges weakly to 0 in L_2;-. On the other hand,
2 2
E (ya(1)*) = E (U “"dt} ) =E (¢.(W(1))*) = 1.
0

5 Optimality conditions: The case of final state
constraints

In this section we suppose that U = LQ}- and we consider the problem
Minyey J(u) subject to E [¢°(yu(T))] =0, E[h(y,(T))] <0, (SP)

for all i € {1,...,ng}, j € {1,...,ns}. In the notation above, g’ : R" x @ — R
and h7 : R"™ x  — R. We make the following assumption:
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(H6) The maps g° and h/ satisfy the same assumptions made for ¢ in (H2).

In order to provide first and second order necessary conditions for (SP’) we will
need the following lemma:

Lemma 26. Let u € U and consider a function ¢ : R™ x Q — R satisfying the
assumptions for ¢ in (H2). Then, the map

veLF — &) :=E[c(yarn(T))] € R

is differentiable with a Lipschitz derivative and admits the following second order
expansion at v =0

&(v) = ¢(0) + Y5 (v) + 3T5(v) + O(llvlL), (75)

Ti(v) := % [ey (ya(T))yn[w, v](T)] = O(][v]]2),

T5(v) = E [ey (ya(T))ya[@, v)(T) + cyy (ya(T)) (y1[a, v)(T))?] = O(”v”go)&’?(;)
If in addition c satisfies the assumptions for ¢ in (H3), then
T5(v) := O(||v]3)- (77)

Proof. Letting £ = 0 and ¢ = ¢ in proposition 13 yields (75) as well as the
estimates in (76) and (77). It remains to show that the derivative of é(v) is
Lipschitz. In view of proposition 6 and the chain rule, it suffices to show that
y € Y2 — é(y) := Ele(y(T))] is differentiable with a Lipschitz derivative given
by

Dé(y)(y) = E ey (5(D)y(T)]  for all g,y € Y*. (78)

For any 7,y € Y2, we have, for a.a. w:

1
(i +) = ) + e+ [ i+ 0n) - e @lis. (1)
Using (H2) and the Cauchy-Schwarz inequality, it follows that

E [e(3(T) + y(T))] = E[e(5(T)) + e, (5(T)) (o(T) — 5(T)] + 0 (lly ~ 513..)
E [ey(5(T)) 0(T) = (7)) = O (Ily = #llz.00) -

Thus, expression (78) holds. We next prove that the derivative is Lipschitz. For
7 and ¢ in V2, define

A, 9) == max_ | ([c,(y) — cy(5)]y)] (80)

lyll2,00 <1

By (H2) Dec(-,w) is Lipschitz, hence the Cauchy-Schwarz inequality implies
that

A(y,9) < Lo E(ly — gl lyl) < La||y = §ll2,0- (81)
The result follows. O

Remark 9. If T§(.) is surjective then Graves theorem [12] (see also Dontchev
[10]) implies that ¢ enjoys the metric reqularity property. In other words, if
¢(0) = 0 and ||v|| oo is small enough, then there exists v’ € L such that é¢(v') =0

and [[v" —v|lee = O(|E(v)])-
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5.1 First order necessary condition

Let @ € L% be a local solution of (SP’) and denote by ¥ its associated state.
Lemma 26 implies that the maps

vELE =) = E[g(yasa(T))] R, )
vELF = hi(v) = E[M(yars(T))] €R,
are C'! with derivatives at ¥ = 0 given respectively by
T4 = E[g)(a(T)pla (T -
T4 = E[(ya(D))yla, )(T)].

For notational convenience we write § := (g1, .., gn,) and Y7 := (¥{;,..., 11, ).

The set I'(u) of active constraints is defined as

(@) = {j € {1,om} / E[W (5(T))] =0} (34)
We assume the following constraint qualification condition:
(H7) The following assertions hold true:

(i) The application T9 : L — R™ is surjective.
(ii) There exists o € (Y9)™ N L% such that T};(0) <0 for all j € I'(a).

We will need the following density lemma, proved in [9, Lemma 1].

Lemma 27. Let X be a normed vector space. Given a;, i =1 to q, in X*, and
b e R, define
K:={xeX /{a;x)<b;, i=1,..,q}.

If Y is a dense subspace of X, then K NY 1is a dense subset of K.

Let us define the cones T5 (1), Too (@) as

To(w) = {v€lf Y() =0, Ti(w) <0, jel@}, g
Too(u) = To(u)NLE.
Lemma 28. Under (H1),(H2),(H6),(H7), problem
Miny,eyy Y1(v) subject to v € Ty(1) (86)

admits v =0 as a solution.

Proof. Let v € T (@) and consider € > 0. Assumption (H7) (ii) implies that
for 6 > 0:
§(0(v+ev)) = g(0) + 679 (v + v) + 0o(8) = o(6).

Remark 9 implies that there exists 0 (0) € LF, with ||0so(8)]/cc/0 — 0as 8 | 0,
such that §(0(v + €v) + 0 (0)) = 0. Therefore, setting 4 (0) := @ + 0(v 4 €v) +
050 (0), we obtain that E (g(ya)(T))) = 0 for 6 > 0 small enough. On the other
hand, for every j € {1,...,np},

E (W (4(0))) = W (O(v + €0) + 000(0)) = h(0) + QT'fj(v +e0) + 0(0).
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Thus, if the jth constraint is active at 4, then by (HT)(ii), we have that
E(h? (0(0))) = sGT’fj (0) +0(0) <0 for all # small enough.

If the constraint is not active the same conclusion trivially holds. Therefore,
there exists 6. such that for 8 € [0,0), 4(0) is feasible. Thus,

0 < J(@(0)) — J(@) = 01 (v + £7) + o(0),

which implies that Y;(v 4 ev) > 0. Since € is arbitrary, we have Y;(v) > 0.
Since LY is dense in L% and T; is continuous, the result follows from lemma
27. O

For A = (g, Ap) € R" x R™ let us set (px,qx) € V? x L% for the unique
solution of

dp(t) = - [éy(t)T + f,(t) Tp(t) + Za;(t)—rqi(t)] dt +g(OAW (), o7y

i=1
p(T) = ¢y(g(T))T + gy(l_/(T))TAg + hy(g(T))T)\h-
We say that A := (Mg, Ap) € R™ x R™ is a Lagrange multiplier at @ if the
following conditions hold
Hu(t» ﬂ(t), ﬂ(t)»PA(t)a q/\(t)7w) =0 foraa. (tv OJ), (88)

ME (R (5(T))) =0 and N, >0 forall j € {1,...,ny}. (89)
We denote by A(u) for the set of Lagrange multipliers at .
Proposition 29. Under (H1),(H2),(H6),(H7) the set A(@) is a nonempty
compact subset of R"s x R™.

Proof. Lemma 28 implies that the linear program (86) has value 0. By a stan-
dard duality result for linear programs (affine cost function and constraints) in a

Banach space setting (see e.g. [7, Thm 2.202]), the set of (Ag, Ap,) € R™s fo(ﬁ)
such that for all v € L%

Yi(v)+ Y MNTL@+ > ML) =0 (90)
i=1 Jer(a)

is a nonempty compact subset of R™s x R™». Letting )\fl = 0if j ¢ I'(u) relation

(89) trivially holds, while equation (88) follows from (90) and lemma 3, along

the lines of the proof of lemma 7. O

Now we treat the so-called non qualified case. For o € R let us define the
generalized Hamiltonian H : R x [0, 7] x R™® x R™ x R™ x R"*4 x () — R by

d
He, by, u,p, q,w) = al(t,y,u,w) +p- f(ty,u,w)+ Y g o' (t,y,u,w).
=1

We say that X := (a,Ag,A\n) € R x R™ x R™ is a generalized Lagrange
multiplier at @ if A # 0 and the following conditions hold

Hu(aa ta g(t)a ﬂ(t),p)\(t), q)\(t)vw) =0 fora.a. (tvw)v (91)

ME (R (5(T))) =0, X, >0 forall j€{l,..,n;} and a > 0. (92)

We denote by A9¢"(u) for the set of generalized Lagrange multipliers at @.
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Proposition 30. Under (H1),(H2) the set A9 () is nonempty.

Proof. 1f (H6),(HT7) hold then proposition 29 yields that () # A(u) C A" (u).
If (H6) does not hold there exists A\, # 0 orthogonal to the image of Y{.
Therefore, lemma 3 yields that (0, A4, 0) is a generalized Lagrange multiplier at
@. If (H6) hold but (HT7) does not, then the pair (0,0) € R x L¥ is a solution
of

Min z s.t. T{(v) =0, T?j(v) <z forjeI'(a).

By considering the dual problem, we obtain the existence of a not null (\y, Ap,) €
R™s x Ri ™ such that for all v € Ly

i XYY () + Y N (93)
i=1

jeIt(u)

Define Ap, € R™ as /\fl = S\fl if j € I'(u) and 0 otherwhise. The result follows,
since lemma 3 implies that (0, Ay, A\p) € A9 (a). O

Remark 10. Proposition 30 is a particular case of the Pontryagin mazimum
principle in [25].
5.2 Second order necessary condition

Lemma 26 implies that the maps §;, h; defined in (82) admit a second order
expansion at ¥ = 0. Let us denote respectively by 19, ng the associated
quadratic forms. As for TY,, we set T§ := (Y%,,...,T9,). Define the cones

Cy(u), Coo(u) by

Cy ﬂ) = {’U S TQ(ﬂ) 3 Tl(v) = 0},
Cx(u) = Cy(u)NLP.

(94)
I*(w,v) = {j € I(u) ; T}fj(v) =0}.
Lemma 31. Under (H1),(H2),(H6),(H7), for everyv € Cs (@), the problem
Min yerz T (w) + Ta(v)

st Y(w )+T9()

=0 (QP,)
T@(w) Thi(v) <0 forj € I*(a,v)

has a nonempty feasible set and a non-negative value.

Proof. By (HT) the feasible set of (QP,) is nonempty. Let w € L¥ be feasible
and o satisfy (H7) (ii). Fix € > 0 and for 6 > 0 set

w(f) =+ v + 16 (w + ev). (95)
By lemma 12 applied to the equality constraints, we have that

Elg(yu(e)(T)] = 50° [T{(w) + T5(v)] + 0(6%) = o(6%). (96)
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Remark 9 implies that there exists a path of the form @(0) = u() + 0 (0?) €
LE, where [|0s0(6?)]|oc/0? — 0, such that E[g(yae)(T))] = 0. At the same
time,
E[hj(yﬂ(e) (1) = 192 [T (w+ev) + TQJ( )] +0(0?) for all j € I*(u,v).
(97)
It follows that, for # > 0 small enough, @(#) is feasible and therefore by lemma

12 _ ~
0 < tim 200 = T (@)

610 162 = Ti(w) + Ta(v) (98)

as was to be proved. O
For A = (Ag, \p) € R™ x R™ and z € R" let us set

HyupN(t) = Hg, u)2<t g(t), a(t), pa(t), gx(t)),
\Ilyyp‘](z)2 Pyy(z z)? + an )‘lgyy( z)? "‘Znh )‘] hj ( )%

where (px,gx) is defined by (87). Now we are able to prove a second order
necessary condition for the local minimum % of (SP’).

(99)

Theorem 32. Assume that (H1)-(H3),(H6),(H7) hold and that §;, h; sat-
isfy the assumptions for ¢ in (H3). Then for every v € Co(u) we have that

e (/ H g2 () (1 (8), v () dt + ‘I'yy[)‘](y(T))(yl(T))2> > 0.

AeA(u)
(100)

Proof. Let v € Cuo(@). Using lemma 31 and considering the dual problem
associated to (QP,), we obtain that

max_ Yo(v) + Z AYE(v) + Z )\Zng(v) >0, (101)
(Agvkh)eA(a) i=1

jer?(aw)
where
R@) =4 O ) €R™ x REOY 0, ()1 320,00+ 3 AT

JjEI?(u,v)

On the other hand, since v € Coo (@) , for every A = (Ag, An) € A(@) we have

that ‘
> XY (v) = 0.
JEI (@\I?(a,v)
Since A, > 0 and v € C (@), each term in the above sum is nonpositive, and
hence equal to zero since the sum is null. Thus, by definition of I?*(u,v), we
have that )\iL =0 for all j € I'() \ I*(i,v). Therefore, by (101)

T h

z 7 h >
AIGH/?};) To(v Z Ay Y5 (v) + Z:)\hTQJ (v) > 0. (102)

Inequality (100) for every v € C (@) then follows from lemma 3, along the lines
of the proof of lemma 11. Using that C (@) is dense in Cy(@), estimate (77)
and that A(a) is compact, we obtain the result for all v € Cy(a). O
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6 Appendix

6.1 Technical estimates in the expansion of solution of
SDEs

Here we prove some technical estimates stated in section 3.

Proof of lemma 5 For notational convenience we will suppose that m =n =
d =1. We have

asy(t) = [F,08y(t) + Fulye(t)] dt + 5,00y () + Fu(o()] AW (1),
oy(0) = 0.
(103)
where, for ¢ = f, o,
Py(t) = fo by (5(t) + 00y(t), u(t) + Ov(t)) do,
Dult) = [y u (G(1) + 05y (1), ut) + Ov(t)) 6.

Using the second assumption in (4), estimates (20), (20) follow from corollary
2 applied to (103) and (19) respectively.

We next prove (21). We have that
ddr(t) = [F03u) = ,Oun @) + (@) = fu0) v(®)] dt +
di(0) = 0.

For ¢ = f,o, we have that [?Ly(t) - %(t)} y1(t) = O ([ oy(@)] + [v(®)] Ty (t)]) -
Also,

. _J O(oy@®)]lv(@®)]) if oy =0,
[ou(®) = ou®]v(t) = { O ([ |16y(@®)| + [v(®)| ] lv(t)]) otherwise.

Therefore, the following equation holds for d;:
ddy (t) = [fy(t)d1(t) + O [0y + v@® ][Iy (B)] + [v(®)[]) | dt +
[6y()d1(t) + O (D(8y,y1,v))] AW (t),
where

{1+ @] [ O] + (0] — @ i o =0,
D(‘Sy“)’yl“)’““”‘{ 169+ o)l 1 (5] + (0] otherwise.

By (20) and the Cauchy Schwarz inequality

B8
2

|5 v Phacorar) |
O [E (sup 18y(0)] 11 (£))°)] N (100)
0 ([E (sup I80(6)))# [£ (sup s (0)

= (HUHzﬂ 2):

I 16yllya] 115
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By similar arguments,

B
2

I alll 13 =& | () ba@PloPar)’| = odols)
I ioulel 15,2 =B | (7 6wte)hoe >|2dtﬂ

(||U||2/3 2);

and (21) follows by corollary 2, since ||v2||g ||’UH25 5 and HvQHB 5 = ||v||2B 4
Proof of lemma 10. As in the proof of lemma 5 we suppose that m = n =
d = 1. We will use repeatedly that for every 8, p,q € [1,00), we have

I le)l5, = v, forall ve L¥P.
Proof of (30): Recall that, by (H1), for ¢ = f, o we assume that ¢, 1, and
Yun are bounded. Using (20)

B

2

||yf||§2 =K </0 |y1(t)|4dt> =0 []E (SUP \y1(t)|2ﬁ)] (HUHM 2)

(105)
Analogously, the estimates associated with the term yiv is of order ||v||§g 9

Estimate (30) follows from corollary 2 since ||v2||ﬁ L= ”UH2B2 and ||112||§’2 =
HU||25 4°

Proof of (31): Recall that do = 0y —y1 — %yg. We have, omitting time from the
arguments,

ddZ(t) = [fyd2 + %fyy [53/]2 - %fyy [y1]2 + fyu(syv fyuylv + 7'26 5:% 2] dt+
[Uy(t)dQ + %ny [6y]* — Oyy [y1]* + OyudYv — oy Y10 + 1e(0 )(5% )2] dW (t).

where for ¢ = f, o the map ry() is defined by

ri(¢) ==/O (1= 0) [y (5(t) + 06y (2), u(t) + Ov(t)) — Py (5(1), u(t))] 6.

Recall that if @ is a quadratic form and «a is the associated symmetric bilinear
form, we have the identity Q(y) — Q(z) = a(y + =,y — x). Thus, since Dy is
Lipschitz, we obtain

ddaft) = [fyda+ O el (18] + ]} + [dalfe] + el )t o0
loyda + O (|du| {[0y] + |y1]} + |da]|v] + ce(0))] AW (¢)
where, for ¢ = f, o,

_ [ 1oy@®P +[o@®)P if Y # 0,
) = { oy(@)1* + 18y(B)] [v()? if Yuuu = 0.

Now, let us estimate the terms in the dW (¢) part of (106),

[(fo s (1) 1oyt >|2dt)§} = O [E (sup s (1) |3 (1)?)]

(HU“Q/} 2””“4,8 1)

I lda[8y] 117
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by (20) and (21). Analogously, estimates for the terms dyy; and dyv are of the
same order. Let us estimate the terms appearing in o4(c). Using (20),

T
< / |ay<t>|6dt>
0

B
2

I 16y*]15,, =E

] = O [E (sup|oy(t)[**)] = O(|lv][35 )-

(107)
By (20), we obtain

il B2 = & [( IsoRar)
= o (& [l (7 o) ]) = oGl i

Also, we have that H’U3H61 = HU||353 and ||U3||52 = ||v|\3ﬁ6 By the Cauchy
Schwarz inequality,

T B T 5 T 5
o, =E (/ |v<t>3dt) <E (/ |v<t>|2dt> (/ |v<t>4dt>

Using the Cauchy Schwarz inequality again, we get ||11H3B o= O(||11||25 2||v||4ﬁ 4)-
Therefore, estimate (31) follows from corollary 2.

Proof of lemma 12 As in the proof or proposition 8 we denote 6J := J(u +
v) — J(@). By definition,

6J=E< / [ or T+ ) — 07, 0)] At + $(yaso (T)) - ¢<y<T>>> — I+ by,

where, omitting the time argument in the integral,

L = E (fOT [€,0y + L + 5Ly 002 (8y,v)? + 100y, v)?] dt) ,
I = E[yG(T))oy(T) + 36y, (5(T))(0y(T))* + w(y(T))(éy(T))Q](- |
108
Recalling that 6y = y1 + di = y1 + 3y2 + do, assumption (8) in (H2) yields
L = E (foT Cy(t)(y1 + 392) + Lu(t)o + %D%(t)(yl,v)?dt) +E (foT Eyd2dt)
+0(z1(v)),

where, omitting time from function arguments,
21(v) == E (sup [|di|* + [di (t)[|y2] + [8yI°]) + 0] E (sup |di]) + [|v]]3.
On the other hand,
I = E[6,5(T) (5n(1) + $a(1) + 36, (5(1) (52 (1))’
FTE 6y (4(T))d2(T)] + O(22(v)),

where

22(v) = E (|6y(T) + [yo(D)]dv (T)] + [ (T)]?) -
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Denoting z(v) := z1(v) 4+ 22(v) we get that
60J = E (/0 [Ky(t>(y1 (t) + %92(0) + Eu(t)v(t) + %E(y,u)2 (t)(y1 (t),’l)(t))Q] dt)

E [8,(5T) 61 (T) + 3a(1) + 3, BD)) (51 (T))?] + C0) + 2(0),

Therefore, using (25) and (33), we get (34). Now, we proceed to estimate z(v).
By (21) we have that

E ( sup |d1(t)|2> = O(|lvll3) = Ollvl%[Ivl3).

te[o,T)

Estimates (20), (21) and the Cauchy Schwarz inequality yield

E ( sup Idl(t)||y1(t)l> = O ([lliZllvll2) = O ([l lvl3) -

te[0,T)

Analogously, using (21), we have
E (lvlll sup dl(t)|> = O ([vllillvll21) = O ([[vllcllv]3) -
t€(0,T]

Estimate (20) yields E (Supte[O,T] |6y(t)|3) = O(||v[|3 7). But

/OT lo(#)[2dt

and[[v[§ = O (||v]lsc[v[|3). Thus, 2(v) = O ([[v]lwlv]3)-

3
2

lol5 2 =E = O ([lvllsllvl3) ,

6.2 Adapted projections

This subsection discusses projections in L% in the case of local constraints. In
order to give the expression of the tangent cone to U, when U is defined by (51),
we need a characterization of measurable multifunctions with closed values.
We call Castaing representation of a (B[0,T] x Fr)-measurable multifunction
U :[0,T]xQ — P(R™) a countable family of (B[0, T] x Fr)/B(R™)-measurable
functions wy, : [0,T] x & — R™ such that U(t,w) = clo{wy(t,w), k € N}. We
say that the Castaing representation is adapted if each process (wx(t))iepo,m)
is adapted. By a result due to C. Castaing (see e.g. [28, Thm 1B, p. 161]),
any multifunction with closed values that is measurable in L%—T has a Castaing
representation in the same space. We next extend the result to the adapted
case.

Proposition 33. Let U : [0,T] x Q — P(R™) be an (B[0,T] x Fr)-measurable,
F-adapted closed-convez-valued multifunction. Then:

(i) For any a € R™ the map (t,w) € [0,T] x Q@ = Py(t,w) := Py (a) € R™
is (B[0,T] x Fr)/B(R™)-measurable and F-adapted.

(ii) For any countable dense subset {21 }ren of R™ we have that { Py (s, (2x), k €
N} is an F-adapted Castaing representation of U.
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Proof. First note that (ii) follows directly from (i). In order to prove (i) we essen-
tially reproduce the proof in [28] to obtain that P, (t,w) is (B[0, T] x Fr)/B(R™)-
measurable and, using that U is F-adapted, we prove that P, (¢, w) is F-adapted.
Let us fix a € R™ and consider the sequence of multifunctions

Up(t,w) := {v € R™; dist(v, U(t,w)) < k™% v —a| < dist(a,U(t,w)) + &'}
(109)

Let C be a closed subset of R™. Then P,(t,w) € C iff C N U(t,w) # 0 for all

k, thus

P7HC) = U (). (110)

a

Next, let D be a countable dense subset of C, which always exists. We claim
that
U1 (C) = U (D) = Uae Uy ' (d). (111)

The second equality is obvious and since D is a dense subset of C, in order to
establish the first equality it suffices to check that if ¢ € C and (to,wo) € Uy '(c),
then for ¢ close enough to ¢ we have that (tg,wo) € U, *(¢). But this follows
directly from the definition of Uy (t,w) in (109). Our claim follows.

On the other hand, for any v € R™ and a > 0 we have

{(t,w) € 0,T] x Q ; dist(v,U(t,w)) < a} =U (v +aB), (112)

where B is the unit ball in R™. Thus, since U is B[0, T] x Fr-measurable, so is
the process dist(v, U(t)). Similarly, for a.a. t € [0, 7], we have that

{weQ; dist(v,U(t,w)) < a} =U *(v+aB). (113)

Since U is F-adapted, it follows that so is dist(v, U(t)). Therefore, from the
definition (109), for any (t,d) € [0,T]x € R™ we have that U, '(d) € B[0,T] x
Fr and U, '(t,-)(d) € F;. Using (110)-(111) we finally obtain that P, has the
desired properties. O

Lemma 34. Let U be defined by (51) with U being a (B[0,T] x Fr)/B(R™)-
measurable, F-adapted closed-conver-valued multifunction. For u € L%— we have
that w = Py(u) iff w(t,w) = Py (u(t,w)) for a.a. (t,w) €[0,T] x Q.

Proof. By the definition of a projection, w is characterized as the solution of
the minimization problem

Min E

2
weL%:

/T lw(t,w) —u(t,w)?dt|; wel. (114)
0

Let ug (k > 1) be a F-adapted Castaing representation of U and let the sequence
u; € L%— be defined as follows: u( is an arbitrary element of &, and for k > 0
set

U;H-l(t w) _ { u5€+1(t»w) if |uk+1.(tvw) - u(t’w)l < ‘u;c(t7w) - u(t,w)|,
’ uy(t,w) otherwise.

(115)

Then u), is a sequence of measurable and adapted functions, and since uy is

a Castaing representation, |uj(t,w) — u(t,w)| — inf,cyw) |u(t,w) — al fort

a.a. (t,w). Therefore, since U(t,w) is closed and convex, we obtain that
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up(t,w) — Pywu(t,w) for a.a. (t,w). Using the dominated convergence
theorem, we deduce that u) has a limit in L% equal to Pyt (u(t,w)) for
a.a. (t,w) . It follows that the value of problem (114) is less or equal than

E UOT | Pu(t,wyu(t,w) — u(t,w)\zdt]. Since obviously it cannot be less, and the
projection problem has a unique solution, the conclusion follows. O
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