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Visual attention using spiking neural maps

Roberto A. Vazquez, Bernard Girau and Jean-Charles Quinton

Abstract—Visual attention is a mechanism that biological
systems have developed to reduce the large amount of visual
information in order to efficiently perform tasks such as
learning, recognition, tracking, etc. In this paper, we describe
a simple spiking neural network model that is able to detect,
focus on and track a stimulus even in the presence of noise or
distracters. Instead of using a regular rate-coding neuron model
based on the continuum neural field theory (CNFT), we propose
to use a time-based code by means of a network composed
of leaky integrate-and-fire (LIF) neurons. The proposal is
experimentally compared against the usual CNFT-based model.

I. INTRODUCTION

Attention enables us to dynamically select and enhance

the processing of the most relevant stimuli and events at

each moment [1]. Visual attention is a powerful mechanism

that enables perception to focus on a small subset (“where to

look”) of the information picked up by our eyes [2], based

on both bottom-up and top-down cues [3].

The control of focal visual attention involves an intricate

network of brain areas, spanning from the primary visual

cortex to the prefrontal cortex. Selecting where to attend next

is primarily controlled by the dorsal visual processing stream

(or “where/how” stream) which comprises cortical areas

in the posterior parietal cortex, whereas the ventral visual

processing stream (or “what” stream), comprising cortical

areas in the inferotemporal cortex, is primarily concerned

with localized object recognition [4].

Several computational theories and models have been

developed for how attention may be attracted towards a

particular object in the scene rather than another [5], [6], [7].

Recently, the authors in [8] have demonstrated that bottom-

up (i.e. stimulus driven) attention may be seen as an emergent

property of a neural population using the Continuum Neural

Field Theory. From a pool of neurons spread over two maps,

one input map feeding a focus map, a bubble of activity

emerges within the focus map at the precise location of a

stimulus presented within the input map. Furthermore, when

noise or distracters are added, the bubble of activity stays

focused on the chosen stimulus and then, between several

simultaneously possible objects, the model is able to maintain

visual attention onto the one stimulus it first focused.

The goal of this paper is to show that similar attentional

properties (detection, focus and tracking of a stimulus) can
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be obtained by a population of spiking neurons, with an

improved robustness in the presence of noise or distracters.

The visual attention model we propose is based on a simple

spiking neural model, the so-called leaky integrate-and-fire

(LIF) neurons. This model explicitly handles temporal events

(spikes) that are usually “hidden” in the rate-coding neuron

models used by the continuum neural field theory. This

proposal is experimentally compared against the CNFT-based

model corroborating its robustness to noise and distracters

while achieving the main visual functionalities depicted in

[8]: competitive behavior, tracking and target switching.

Section II describes the motivation for using spiking

neurons within neural models of visual attention, while

introducing both CNFT-based and LIF-based models. Our

model is precisely defined in section III. Its properties are

experimentally validated in section IV.

II. MOTIVATION AND RELATED WORK

Neural fields, and more specifically CNFT-based neural

fields, have proved very powerful to build neural models

able to perform more or less complex visual tasks such as

visual attention [8], scene exploration [9], overt attention [10]

or motion discrimination [11]. These models are massively

distributed, so that we aim at using them in autonomous

embedded systems thanks to their hardware parallel imple-

mentation. Preliminary attempts such as in [12] have shown

that their dense local interactions are too demanding to define

efficient parallel implementations of these models. On the

other hand, the study in [13] has shown that simple spiking

neurons may be efficiently assembled on a hardware device

such as an FPGA (Field Programmable Gate Array) thanks

to their reduced communication bandwidth: whatever the

level of complexity of the internal computations of each neu-

ron, simple 1-bit messages (spikes) are exchanged between

neurons. This has motivated the will to define populations

of simple spiking neurons that mimic the properties of the

CNFT-based models for visual attention. This is not the first

attempt to define spiking neural fields. A related approach

may be found in [14]. In order to precisely situate the

contribution of our model with respect to [8] and [14],

we now give more details about these two visual attention

models that are able to perform a tracking task of a target

even in the presence of very strong noise or in the presence

of a lot of distracters.

A. CNFT visual attention model

The Continuum Neural Field Theory is a kind of dynamic

neural field model that implements lateral competition within

cortical maps [15], [16]. The CNFT can be reduced to a

single differential equation that describes the evolution of



the membrane potential of neurons over cortical maps. This

is a continuous approximation of the evolution of large

populations of neurons that interact through excitatory and

inhibitory connections: close neurons tend to be reciprocally

excited, distant neurons inhibit themselves.

In [8] the authors propose a visual attention model based

on a discrete version of the CNFT. This model is highly

robust and it is able to track a static or moving target in

the presence of noise with high intensity or despite a lot of

distracters possibly more salient than the target. The main

hypothesis about the target stimulus is that it has a spatio-

temporal continuity that should be observable by the model.

A neural position is labeled by a vector x, which represents

a two-component quantity designing a position on a manifold

M in bijection with [0, 1]
2
. The membrane potential of a

neuron at position x and time t is denoted by u (x, t). The
lateral connection weight function w (x− x′) is a difference

of Gaussian function applied to distance |x− x′|. An afferent
connection weight s (xM′ ,xM) applies to the local stimulus

received at position xM in manifold M from position xM′

in manifold M′. The membrane potential u (x, t) satisfies

the following equation:

τ
∂u(x,t)

∂t
= −u (x, t) +h

+ 1
α

∫

M
wM (x− x′)f [u (x′, t)] dx′

+ 1
α

∫

M ′ s (x,y) I (y, t) dy
(1)

where f represents the mean firing rate as some function of

the membrane potential u of the relevant cell, I (y, t) is the
external stimulus at position y and time t in M′, h is the

neuron threshold and α is a scaling term.

Lateral connection weights are given by:

wM (x− x′) = Ae
|x−x

′|2

a2 −Be
|x−x

′|2

b2 (2)

and afferent connection weights are given by:

s (x,y) = Ce
|x−y|2

c2 (3)

Furthermore, the activity of a neuron is bounded between

0 and 1: if u (x, t) > 1, u (x, t) = 1, and if u (x, t) < 0,
u (x, t) = 0.
The model consists of two maps, input and focus, each of

them being of size n× n units. The input map corresponds

to an entry that is feeding the focus map, whereas the focus

map represents a cortical layer whose units possess localized

receptive fields on the surface of the input. Each unit xij of

the focus map receives its input from the input map using Eq.

3 which corresponds to a localized receptive field. While the

input map does not have any lateral interaction or feedback,

the units in the focus map are laterally connected using a

difference of Gaussians.

B. LIF visual attention model

In [14] the authors propose a visual attention model based

on Leaky Integrate and Fire neurons. This work can be seen

as a direct transformation of the CNFT-based model of [8] by

using spike-based computations. It may also be seen as the

attentional part of a more general model of covert attention

that includes an additional pre-attentional part [17]. This

visual attention model is again able to focus and stay focused

even when the stimulus moves. In addition, they show that

noisy backgrounds and distracters only have a small influence

on the behavior of the model. Indeed, the experimental results

are close to those observed with a CNFT model, although

the CNFT-based model seems to be more accurate than the

LIF-based model. The authors also experimentally validate

the fast computation time achieved by their model.

Again, this model consists of two maps, input and focus,

each of them being of size n × n units. Depending on the

parameters used to model a neuron, this set of neurons can

either integrate the information over a predefined temporal

window or act as a synchrony detector (emitting spikes when

inputs are condensed in a small period of time). Neurons

from the input map behave as integrators and neurons from

the focus map as synchrony detectors.

The input map translates an input stimulus into spike

trains. Each unit of the input map is connected to each unit

of the focus map through a Gaussian mask. A mask is a static

weight matrix and it defines a generic projection of a neural

map onto another. The weight matrix values of the Gaussian

mask can be viewed as the parameters of a Gaussian image

filter. On the other hand, this projection could be related to

the afferent connections given by Eq. 3.

The focus map is laterally connected using a difference

of Gaussians as in [8], see Eq. 2, which mutually excites

adjacent neighbors and inhibits distant ones. This lateral con-

nectivity alone is not sufficient to maintain a self-sustained

activity. For this purpose, it needs the spikes from the input

map to have an ongoing activity.

III. PROPOSED MODEL

Instead of using rate-coded neurons as in [8], the model

we propose uses leaky integrate-and-fire neurons as in [14].

A. Definition

Our model mostly consists of a 2D neural map of size

n×n LIF neurons that emit their spikes at discrete times. The

membrane potential Vi of neuron i is given by the following

differential equation:

τ
∂Vi

∂t
= −gleak (Vi (t)− Eleak) + γ · Ii (t) (4)

where gleak and Eleak are the conductance and the reversal

potential of the voltage-independent leak current, and τ is the

membrane time constant. Ii (t) is the input stimulus given at

time t, and γ is a scaling term. Each neuron is associated with

a pixel, i.e. the pixel luminance determines the input term

Ii (t) of the corresponding neuron. This differential equation
is approximated through a simple Euler scheme (see [18]

to assert that simple discrete-time generalized LIF neurons

have the same expressive power as the underlying continuous

models).

Whenever the membrane potential V reaches the threshold

θ, a spike is fired, and V is instantaneously reset to rest.



Finally, the membrane potential Vi of neuron i takes into

account the influence of incoming spikes by means of the

following equation:

Vi(t+ dt) = Vi(t) + τ
∂Vi

∂t
dt+

I
syn
i (t)

γ
(5)

where I
syn
i (t) is the synaptic current due to the action of

other neurons of the network describing the influence of

incoming spikes on the membrane potential. It is given by

the following equation:

I
syn
i (t) =

∑

j

wijSj (t) (6)

where wij is a weight matrix given by a difference of

Gaussians (see Eq. 2) centered at neuron i, which excites

adjacent neighbors and inhibits distant ones. Finally, the

instantaneous spike Sj (t) is given by:

Sj (t) =

{

1 Vj (t) ≥ θ

0 Vj (t) < θ
(7)

B. Model positioning

Although this model uses the same kind of LIF neurons

as in the model proposed in [14], there are three main

differences that impact the computational cost of the model

and its behavior.

First of all, our proposal could be seen as a reduced version

of the model in [14], since the focus neural map is the

only one composed by LIF neurons. The input map simply

sends the stimulus information to the focus map. Therefore

the input stimulus is not transformed into spike trains as

in [14], it directly feeds the focus map. This simplification

not only induces a lower computational cost1, above all it

has a strong influence on the future ability of the model to

be mapped onto hardware parallel devices, since it avoids

the complex connection topology required by two neural

maps interconnected in a retinotopical way with multiple

overlapping receptive fields.

Another difference is related to the use of filters. In [14]

the output of the input map is filtered by means of a Gaussian

filter and then it is sent to the focus map. Our model does

not apply any Gaussian filter, the receptive fields in the input

map being directly received by the focus map without any

type of weighted afferent connections. The lateral weights

of the focus map appear as sufficient to spatially smooth out

the activity of the neurons over small receptive fields.

A third difference is the γ scaling term that appears both

in the evolution of the membrane potential with respect to the

received stimulus and in the influence of the incoming spikes.

This parameter enables us to easily balance both kinds of

influences. The experimental results in section IV includes

1The architecture of [14] is based on a one-to-one correspondance
between both maps of LIF neurons. The computational cost mainly lies
in the constant update of neuron potentials in both maps. Therefore a rough
approximation of the computational cost of [14] is twice the computational
cost of our model.

a detailed study of the impact of such a balance on both

robustness and behavior of the model.

Finally, we not only propose a LIF-based model that

exhibits similar properties as the initial CNFT-based model,

we perform a large experimental study so as to quantitatively

compare the degree of robustness of both models.

IV. EXPERIMENTAL RESULTS

Before studying the robustness of the model in the pres-

ence of perturbations, it is necessary to validate its ability to

provide the attentional properties that are typical of the usual

CNFT-based model.

A. Experimental setup

In order to test the proposed model, we use an experi-

mental setup similar to [8] and [14]: a stimulus follows a

circular path on a n×n pixels input image with either noise

or distracters in the background. The stimulus is a Gaussian

patch whose center is localized at (xc, yc) of width W and

intensity I given by:

S (x, y, r, θ,W, I) = Ie
−(x−xc)

2

W2 e
−(y−yc)2

W2 (8)

where xc = r sin θ and yc = r cos θ.
On the one hand, distracters are exact copies of the Gaus-

sian patch, but they lack spatio-temporal continuity. On the

other hand, the added noise is assumed to be independently

drawn from a Gaussian distribution with different variance

levels σ and mean zero.

Parameters for generating the synaptic weight connections

are defined as: α = n/2, A = 25/α, a = 5/n, B = 12.5/α
and b = 75/n. It must be noted that these weights could be

tuned to optimize each type of expected behavior as in [19],

but in this work, we rather adopt the approach of [8] where

the authors study the ability of the model to simultaneously

exhibit all properties with the same set of weights that are

experimentally chosen.

During the integration step dt = 0.1, τ = 1. Based on eq.

4, we choose to increase the influence of the input compared

to the lateral connections by setting γ = 10. This gaining

factor helps the neurons in the focus map to rapidly generate

a spike. The exact influence of γ is analyzed in IV-C.

As in [8] and [14], the input image only contains the

stimulus target until the first spikes appear on the focus

map. In order to ensure that the spikes emerge in the focus

map, we wait ten computational steps (one second) before

the Gaussian patch starts to move, or before adding some

distracters or noise. After that, we generate a new image

each 10 computational steps.

To validate the accuracy of the proposal, we compute the

normalized euclidean distance between the stimulus center

and the center of the activity in the focus map. Following the

same definition as in [14], the center of activity is defined

as the center of all spikes emitted by the focus map during

the integration steps of the image presentation. This center

of activity is computed as in [8] by means of the following

equation:



(xc, yc) =

(

∑

i,j
i
n
a (i, j)

∑

i,j a (i, j)
,

∑

i,j
j
n
a (i, j)

∑

i,j a (i, j)

)

(9)

where a (i, j) is the value at position (i, j).
As explained in this section, our experiments use synthetic

inputs, since we aim at comparing the models with the same

criteria already used in similar studies ([8], [14], [19]) that

clearly quantify the visual attention properties alone. The

question of how the models perform on real video sequences

is not addressed in this paper. Nevertheless, it must be noted

that all these attentional models may be used for real video

sequences, adding a pre-attentional processing part (as in

[17] or [12]), but in this case the performance of the model

strongly depends on the pre-attentional processing and its

ability to properly extract moving objects.

B. Behavioral properties

Following the scenarios defined in [19] to characterize the

main expected properties of visual attentional models, we

may summarize these properties as competition (ability to

focus on a specific target when multiple targets appear in

the visual stimulus), tracking (ability to track a focused target

that moves), switching (ability to focus on a new target when

the previous one disappears), and tolerance to perturbations

(noise and/or distracters). Since the latter is directly linked to

the study of the robustness of the model in IV-C, we consider

here the three first attentional properties.

1) Competitive behavior: The proposed model exhibits a

competitive behavior with the same set of synaptic weights

used throughout this paper. Furthermore, even when targets

are too close, the model is able to focus on only one target

after a small number of computational steps.

The only constraint that should be satisfied is that for a

pair number of targets, they should not be placed regularly

and equidistantly from the center of the focus map: this

is a well-known side effect of pure synchronous evaluation

when interactions are perfectly symmetrical, that results in

all bubbles cyclically appearing and disappearing. Any level

of noise of asynchronous evaluation avoids this side effect

[20].

2) Tracking: The model is able to track a focused target

that moves in the visual scene. Nonetheless, we found that the

velocity at which the targets update their position should be at

least two computational steps, with the chosen setup. Again,

this is a well-known property of the CNFT-based model:

when the target moves too fast, it rapidly goes out of the

excitatory range of the emerged bubble, and thus becomes

unable to attract it towards the new position of the target.

As expected, we also observed that faster tracking can be

achieved with an appropriate set of synaptic weights.

3) Switching: Again, the qualitative behavior is preserved:

when the initial target disappears, a self-sustained bubble of

activity remains a few computational steps at the last location

of the bubble, but its amplitude decreases and the system

finally focuses on another target. In addition, we observed

that the reactivity of the model is strongly linked to the

spiking threshold of the neurons: a higher threshold reduces

the ability of the bubble to have a long self-sustained activity.

C. Robustness

Three types of experiments were performed to evaluate

the robustness of the proposal. The first set of experiments

evaluates the robustness of the proposal in the presence of

noise. The second set of experiments verifies the robustness

of the proposal in the presence of distracters. Finally, in the

third set of experiments, we study the effect of changing the

gaining factor γ in the accuracy and reactivity of the pro-

posed model. In all experiments, we consider perturbations

added to a bell-shaped input such as depicted in figure 1.

In [8] and [14], the authors assume that noise or dis-

tracters are added each computational step. It is important

to notice that in those experiments the time that noise or

distracters remain in the same position might be too short to

significantly alter the behavior of the model. In this paper

we study the behavior of the model when the noise or

distracters are updated at the same rate as the target as well

as when distracters and noise are updated at a slower or

faster rate than the target, so as to assert that some results

are not obtained only thanks to an unfair instability of the

perturbations, as it might sometimes be the case in [8] and

[14].
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Fig. 1. Input is a bell-shaped curve centered around (xc, yc) representing
an external input. This information is received by the input map which is
directly connected to the focus map. (a) Noiseless input. (b) Neurons firing
in the focus map as a response to the noiseless input.
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Fig. 2. Noisy input. The added noise is assumed to be independently drawn
from a Gaussian distribution. (a) Noisy input with σ = 1. (b) Neurons firing
in the focus map.

1) Robustness of the model in the presence of noise:

During the first set of experiments we could observe that the

proposed model was able to track the stimulus even when

the intensity of the noise was greater than the input stimulus

(see Figure 2(a) and Figure 2(b)). The obtained results show

that the proposed model is highly robust to the presence of

noise (see Figure 4(a)). Despite the high intensity of the noise

added to the input, the proposed model stays focused on the

input target (see Figure 3).

As was demonstrated in [8], the CNFT visual attention

model also provides highly acceptable results when the target

is perturbed by some noise (see Figures 4(b)). However, the

accuracy of the CNFT model starts to decrease when the

intensity of the noise added to the background exceeds the

intensity of the target (variance greater than 0.5).

As can be observed from Figures 4(a) and 4(b), the time

that noise remains without change modifies the accuracy

of the model. If noise changes rapidly, for example every

computational step (0.1 second), the accuracy that the model

provides is higher than the accuracy achieved when the noise

changes slowly. This phenomenon may be easily explained

by the inertia of the bubble of activity that is less disturbed by

transient perturbations. Nevertheless, the accuracy obtained

with the proposed method is still highly acceptable when

noise is updated every two seconds. On the contrary, under

the same conditions, the accuracy achieved by the CNFT-
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Fig. 3. Trajectories followed by the bubble of activity in the focus map
when the target changes its position each ten computational steps along
its circular trajectory. Each column presents the trajectory followed by the
bubble when the input is perturbed by different levels of Gaussian noise (0.2,
0.4, 0.6 and 0.9). Each row presents the trajectory followed by the bubble
when the noise is updated at different rates (1, 5, 10 and 20 computational
steps).

based model decreases more rapidly when noise shows some

inertia.

The LIF visual attention model of [14] also provides

highly acceptable results when the target is perturbed by

noise, though the influence of the noise inertia is not studied.

Anyway, our model provides comparable results even when

the background is highly noisy, despite its simplicity (one

map of LIF neurons).

2) Robustness of the model in the presence of distracters:

During the second set of experiments, we observed that the

proposed model was also robust in the presence of several

distracters (even more salient than the target), see Figure 5(a)

and Figure 5(b). The obtained results show that the proposed

model is highly robust to the presence of distracters (see

Figure 7(a)). Despite the number of distracters added to the

input, the proposed model stays focused on the input target

(see Figure 6).

On the other hand, as was stated before, the CNFT visual

attention model also provides highly acceptable results when

the target is perturbed by distracters. However, the accuracy

of the CNFT model starts to decrease when the number of

distracters added to the background is greater than 10 (see

Figures 7(b)).

Again, the time that distracters remain unchanged modi-

fies the accuracy of the model, see Figures 7(a) and 7(b).

As for the noisy conditions, the accuracy is better with

rapidly changing distracters (e.g. changing every computa-

tional step), but still highly acceptable when the positions

of distracters are updated every two seconds, whereas the

CNFT-based model accuracy decreases more rapidly with

slightly more inertial distracters.

From these two first sets of experiments, we can state
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Fig. 4. A zero-mean Gaussian noise with different variances from 0 to 1 has
been added to the input stimulus. The target changes its position every ten
computational steps (one second) and the noise changes at differents rates
(every 1, 5, 10, 15 or 20 computational steps of 0.1 second, as represented
by the bars from left to right for each level of noise). (a) Accuracy of the
proposed model in terms of the error level as a measure of the distance to
the target using a focus map with n = 50 (using a normalized distance, i.e.
computed in the [0, 1]× [0, 1] continuous field that is discretized onto the
n×n neurons). (b) Accuracy of the CNFT model in terms of the error level
as a measure of the distance to the target using a focus map with n = 50.

that the proposed model not only reproduces the robustness

of the initial CNFT-based model, it clearly improves this

robustness.

3) Robustness of the model with different values of γ: In

this set of experiments, we modified the value of the γ factor

in order to see its influence on the behavior of the proposed

model.

All previous experiments were performed using γ = 10. In
this section the same experiments are studied while setting

γ with 1, 5, 15 and 20. Figure 8 shows the experimental

results obtained using different values of γ: each bar shows

the average accuracy of the model computed when the target

and noise or distracters are updated at different rates.

The behavior of the model when the input is altered by

noise and using different values of γ is shown in Figure 8(a).
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Fig. 5. Distracters are exact copies of the input Gaussian patch, but they
lack spatio-temporal continuity. (a) Input with 30 distracters (b) Neurons
firing in the focus map.
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Fig. 6. Trajectories followed by the bubble of activity in the focus map
when the target changes its position each ten computational steps. Each
column presents the trajectory followed by the bubble when some distracters
are added (3, 6, 12 and 24 distracters). Each row presents the trajectory
followed by the bubble when distracters are updated at different rates (every
1, 5, 10 and 20 computational steps).
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Fig. 7. Zero to 30 distracters (with same width and intensity as the original
stimulus) were added to the stimulus. The target changes its position every
ten computational steps (one second) and the distracters’ positions change
at different rates. (a) Accuracy of the proposed model in terms of the error
level as a measure of the distance to the target using a focus map with
n = 50. (b) Accuracy of the CNFT model in terms of the error level as a
measure of the distance to the target using a focus map with n = 50.

The first fact that we have to point out is that when γ = 1 and
the input stimulus lacks of noise, the neurons of the model

do not spike at all; when some noise is added to the input

stimulus the neurons of the model spike but the model is

not able to focus on and track the input target. On the other

hand, the accuracy of the model starts to decrease when the

noise added to the input is greater that 0.6 and γ is greater

than 15.

The behavior of the model when several distracters are

added to the input with different values of γ is shown in

Figure 8(b). In these experiments we observed that no matter

the number of distracters, if γ = 1 the neurons of the model

do not spike, whereas the behavior of the model is rather

similar for all values of γ that are strictly greater than 1.

4) Reaction time of the proposed model: In this set of

experiments we studied the influence of changing γ in terms

of the reaction time of the proposed model. Using the same

experimental setup described in the previous section, we
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Fig. 8. Average accuracy of the proposed model in terms of the error level
as a measure of the distance to the target using a focus map with n = 50
and different values of γ (1, 5, 10, 15 and 20, as represented by the bars
from left to right). The target changes its position every ten computational
steps. (a) A zero-mean Gaussian noise with different variances from 0 to 1
is added to the input stimulus. The noise changes every ten computational
steps. (b) Zero to 30 distracters (with same width and intensity as the original
stimulus) are added to the stimulus. The distracters’ positions change every
ten computational steps.

count the number of computational steps that the model

needs before the first spike emerges.

The number of computational steps required by the model

in order to generate the first spikes are shown in Figure

9. When the value of γ is small, the model requires more

computational steps to generate the first spikes in the focus

map, see Figure 9(a). Nevertheless, this influence remains

weak, except for the case γ = 1.

V. CONCLUSION

A simple visual attention model based of leaky integrate-

and-fire neurons has been described in this paper. Through

several experiments, this model has been proved to be very

robust and able to track one moving target in the presence
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Fig. 9. Computational steps required by the model in order to generate
the first spike using different values of γ. The target changes its position
every ten computational steps. (a) A zero-mean Gaussian noise with different
variances from 0 to 1 is added to the input stimulus. The noise changes every
ten computational steps. (b) Zero to 30 distracters (with same width and
intensity as the original stimulus) are added to the stimulus. The distracters’
positions change every ten computational steps.

of noise with very high intensity or in the presence of a lot

of distracters.

The experimental results obtained with the proposal are

comparable to those provided by previously defined CNFT-

based and LIF-based models, in terms of both behavioral

properties and robustness. However, the level of robustness

is greatly improved with respect to the initial CNFT-based

model, and, compared against the previous LIF-based model,

no filtering technique is used and the computational resources

reduce to only one neural map of LIF neurons.

Our model introduces a gaining factor that increases the in-

fluence of the input stimulus. The experimental study shows

that its influence remains limited, except for its lowest values.

Nevertheless, it could have a more significant influence when

assembling several spiking neural maps to perform more

complex visual tasks such as overt attention.

Though reducing the topological constraints of future

hardware parallel implementations thanks to 1-bit communi-

cations between neurons (spikes), this model still is not able

to be mapped onto hardware devices with a fully parallel

approach because of the dense lateral connections. Current

efforts aim at exploiting the robustness of the spike-based

approach so as to reduce the range of the lateral connec-

tion kernel while maintaining highly satisfactory attentional

properties.
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