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Abstract. This paper describes Coq libraries devoted to the semantic
of relaxed memory models. These libraries formalise a framework which
covers a large class of industrial models. Implementing this framework
inside a proof assistant has significantly helped improving its design and
crafting the most concise and relevant specifications. Similarly the use of
a proof assistant has been instrumental in the study of the semantic of
synchronisation primitives, which we illustrate by the formal proof of a
barrier placement theorem. We explain the choices we made to re-design
our Coq libraries, and in particular what we gained from adopting a
small-scale reflection methodology.

1 Introduction

Although multiprocessors are an industry standard nowadays, programming and
reasoning about such systems remains a challenge. Concurrent programs run-
ning on modern multiprocessors exhibit subtle behaviours, making them hard
to understand and to debug. Indeed, the order in which the read instructions
(e.g. loads) and write instructions (e.g. stores) of a given program are actually
executed may no longer be intuitive, i.e. may no longer follow the Sequential
Consistency (SC) model [16]. The SC model ensures that a program behaves as
an interleaving of the different instructions involved by the different threads or
processors. However, modern multiprocessors (e.g . x86 or Power) allow optimi-
sations such as instruction reordering, store buffering or write atomicity relax-

ation [2], leading to weak memory models, which are no more SC.
To understand the executions a concurrent program leads to, we need to

state precisely what are the guarantees provided by a given memory model. In
fact, a memory model should define what value a read instruction to a shared-
memory location can read. For some memory models, such as x86 [15] and Power
[1], the vendor documentation is in informal prose, thus ambiguous. Hence we
need to formalise these models in precise and rigorous mathematics, as already
highlighted by previous work [23, 10].

In [6], the first author and others proposed a framework for defining and
reasoning about a family of memory models, comprising SC, the Sparc hierar-
chy [25, 26], i .e. TSO (which is x86’s model [21]), PSO and RMO, Alpha [7], and
a significant fragment of Power [1]. The goal was to define formally whether a
given execution of a concurrent program is valid on one of these models.



This framework describes an execution of a program via partial orders over
the memory events yielded by the instructions of the program. These partial
orders model for example the program order per thread, the communication
through memory (e.g . which read reads from which write), and the orderings
induced by the memory barriers, which are special instructions provided by ar-
chitectures to prevent some of the aforementioned optimisations. The validity of
an execution boils down to the acyclicity of several combinations of these partial
orders. This formalisation is generic, in the sense that it allows to generalise or
reuse from one model to another the subtle reasonings required by weak memory
models. Thus, as exposed in [5], it becomes possible to obtain generic results on
the semantics of synchronisation primitives in a program running on a model of
this framework, to force this program to behave as if running on SC.

Yet, as in many other areas of program verification, the proofs involved in this
formalisation are tedious and intricate, even if they require a relatively small,
essentially combinatorics, mathematical background and even if the mathemat-
ical content of the proofs is most often uninteresting. We believe the use of a
proof assistant to be crucial for managing these investigations, both to craft the
most concise specifications of the models and to provide a high guarantee on the
correctness of the proofs and the consistency of the framework. The latter has
been demonstrated by impressive previous pieces of work in the formalisation of
semantics of instruction sets [19, 11, 12] or compiler issues [17, 24].

In [6, 5], the authors present the theoretical results they have obtained and
the testing tool they have developed, mentioning that all these results have
been formalised in the Coq [27, 8] system without describing their libraries. In
the constructive type theory underlying Coq, the main issue raised by such a
formalisation is to find a convenient representation for finite sets and to benefit
from a body of formalised theory of boolean binary relations. The formalisation
mentioned in [6, 5] is based on the standard library of Coq augmented with
the excluded middle axiom. In particular, it relies on the generic library on sets
which offers little support for our needs. These naive choices actually revealed
inappropriate, and the code is now difficult both to maintain and to extend.

The purpose of this paper is to present our ongoing rewriting of this formal-
isation, which covers so far the theoretical results described in [6]. The design
of the code has been improved along two directions: first we stand on a better
library on finite sets, second we use a small scale reflection methodology [13],
as coined by G. Gonthier after his formalisation of the proof of the Four Colour
Theorem. The first issue could have been addressed by choosing a better suited
library in the standard distribution of the Coq system. The second point con-
sists in choosing carefully the data-structures of the formalised objects so that
proofs can best benefit from the computational abilities of the Coq type theory.
We get rid of the excluded middle axiom by adopting boolean specifications,
which significantly eases the formalisation.

Since the last aspect had a positive impact on our formalisation, we used the
SSReflect extension [14] to the Coq system which provides a set of tactics
dedicated to this methodology. We also benefited from the Coq libraries de-



veloped by the Mathematical Component project 1, which include in particular
a theory of finite sets, finite graphs, and boolean relations. We have extended
the material already available in the existing Mathematical Component libraries
with some extra results needed for the present work, like a pigeon-hole lemma
and the formal correctness proof of a topological sorting procedure.

We first briefly overview in section 2 the data-structures that we adopted. In
section 3, we present the formalisation of the main objects of our study: event
structures, executions and architectures. In section 4, we show how to encode a
memory model in this framework. Section 5 presents the formal proof of the main
theorem of [6] on barrier placement. In section 6, we conclude by presenting first
some related work, then some directions of future work. The old implementation
and our ongoing development are available online2.

2 Boolean relations, finite sets, pigeon hole arguments

We present here the features of the Mathematical Component library that we
rely on in the present work. Thus, most of the material is not new, except
the pigeon-hole lemma—suggested by C. Cohen—and the correctness of the
topological sorting procedure.

Boolean reflection. In the standard Coq related literature, reflection usually
refers to a proof methodology, where a symbolic representation—usually an in-
ductive type—models a fragment of the inhabitants of a given logical type. This
symbolic representation then becomes the input of some decision or simplifica-
tion procedure and enables relatively large scale computations. Most often, this
symbolic representation is hidden to the user, and translated back to its logical
form once the desired computation has been performed. By contrast, the small-
scale reflection [13] leaves the symbolic representations explicit in the definitions
and lemmas, and the translations between symbolic and logical worlds should
be locally and explicitly performed by the user when needed in the proof.

Boolean reflection is an instance of small-scale reflection, where the bool

data type reflects the fragment of the Coq Prop sort on which the excluded
middle holds. Thus, any statement whose truth value can be effectively com-
puted should be modeled by a boolean predicate, coerced to the Prop sort. The
excluded middle principle on a boolean statement boils down to case analysis
on the value of the boolean, and equivalences between boolean statements are
boolean equalities. Hence, the simplification of large boolean conjunctions or
disjunctions becomes very fluid, whereas it otherwise imposes a tedious split-
ting and casing bureaucracy. Rewriting becomes prominent in the proof scripts:
we replace subparts of the statements by simpler, equivalent, boolean expres-
sions, up to the point they get an explicit value—true or false—then partially
evaluate the whole boolean expression.

1 http://www.msr-inria.inria.fr/math-components
2 http://www.comlab.ox.ac.uk/people/jade.alglave/wmm/



The current standard tactic language of the Coq system actually provides lit-
tle support for small scale methodology, specially regarding the pervasive trans-
lations between logical and boolean worlds. For this reason, the present develop-
ment makes use of the SSReflect tactic extension language distributed with
the Mathematical Component libraries.

In what follows, (pred T) is the type of boolean unary predicates on the ar-
bitrary type T and (rel T) is the type of boolean binary relations on T. We use
the notations provided by the library; for example, [pred x : T | E] denotes
the predicate (fun x => E) and [rel x y | E] denotes the relation
(fun x y => E). The notation (relU r s) is the union of two relations oper-
ating on the same type, and (subrel r s) denotes the (non-boolean) property
that the relation r is included in the relation s.

Equality types, finite types, finite sets. We call equality type a type equipped
with a boolean comparison operator. This operator, denoted by a generic infix
(_ == _) notation, should be proved equivalent to the default structural Prop
equality provided by Coq on this type, denoted (_ = _). In this paper, we will
in fact only work with data (values, locations, processor indexes,. . . ) modeled
by types with a finite, abstract and arbitrary large number of inhabitants, called
the size of the universe. The Mathematical Component distribution defines a
finite type (T : finType) by the duplicate free enumeration of its inhabitants.
A finite ordinal (’I_n : finType), which is the type of natural numbers smaller
than n, is a typical example of such finite type. A finite type can be canonically
equipped with a structure of equality type. The distributed library provides a
comprehensive corpus of operators and formalised theory for these finite types,
which we introduce when necessary. Sets of elements on a finite type carrier T
have the type {set T} (see [13] for more details).

Finite types benefit constructively from classical logic and choice principles,
since comparison and testing boolean properties become effective on such types.
Thus, properties arbitrarily quantified on a finite type can be tested, hence
modeled by boolean predicates. The notation (forallb x : T, P) denotes the
boolean proposition: for all (x : T), the boolean property P holds. The notation
(existsb x : T, P) refers to the existential boolean quantifier. The classical
lemmas on the negation of quantified formulas become provable, stated as an
equality between two boolean values:

Lemma negb_forall (T : finType)(P : pred T) :

~~ (forallb x, P x) = (existsb x, ~~ P x).

Equivalence lemmas allow to switch back and forth between the boolean quanti-
fiers and the usual logical quantifiers in the Prop sort when possible and needed.

When a function (f : aT -> rT) has a finite domain (aT : finType), and
an equality type codomain (rT : eqType), its injectivity becomes testable, by
checking whether the sequence obtained by mapping f on the enumeration of aT
is duplicate-free. In addition, we can exhibit two distinct elements in the domain
of f which have the same image when f is not injective. This is the cornerstone



of pigeon-hole based arguments, a frequent key point of our proofs (see sections
4 and 5). We have proved formally the following version of pigeon-hole:

Lemma pigeon_hole (T : finType)(f : nat -> T) :

{i : nat & {d : nat | i + d <= #|T| & f i = f (i + d.+1)}}.

which we found the most useful generic formulation in our setting. This lemma
states that for any function (f : nat -> T) where T is a finite type, it is possible
to compute two natural numbers i and d, such that (i + d) is smaller than the
number of elements of T and such that (f i = f (i + d + 1). We first prove
that the restriction (g : ’I_#|T|.+1 -> T) of f to the natural numbers smaller
than (#|T|.+1) cannot be injective, hence the existence of two numbers mapped
to the same image. We typically use this lemma to show that for a function (

phi : T -> T) where T is a finite type, the iteration of phi starting from an
(x0 : T) is necessarily cyclic. In that case, we apply the pigeon_hole lemma
to the function associating a number n with the n-th iteration of phi on x0.

2.1 Order extensions

The Mathematical Component libraries also contain libraries on sequences (lists),
paths and finite graphs which originate from G. Gonthier’s proof of the Four
Colour Theorem. Consider an arbitrary equality type T, a relation (e : rel

T), an element (x : T) and a sequence (p : seq T). Let [x0, . . . , xn] denote
the sequence (x :: p) where x0 is x and xn is (last x p), the last element
of p with default value x. The sequence (x :: p) is by definition a path for
the relation e, denoted (path e x p), if (e xi xi+1) holds for any i < n. For
instance, (traject f x n) is the sequence of length n obtained by successive
iterations of the function f starting from x. It is a path for the relation which
links a point to its image by f. A sequence p is a cycle for the relation e, denoted
(cycle e p), if (path e x (rcons p x)) holds, where (rcons p x) adds x at
the end of p.

The Mathematical Component library provides a specific library devoted to
boolean relations on a finite type domain, which can be seen as a formalisation of
finite graphs. This library provides in particular the construction of the transi-
tive closure (connect e) of a relation (e : rel T), where T is a finite type, by
implementing and certifying a depth-first search algorithm (see [13]). Following
the same approach, we have implemented the construction of a total acyclic rela-
tion from an acyclic relation by implementing a topological sorting algorithm. To
do so, we use the choice operator on finite types, which inspects all the elements
of the finite type in the order provided by the underlying enumeration: [pick
x \in A] (resp. [pick x \in A | P]) is an element in (option T), which is
(Some x) if a witness of A (resp. a witness of the boolean predicate P satisfying
A) has been found among the elements of T and None otherwise. We define the
topological sorting as follows:

Variable T : finType.

Fixpoint topo_rec (e : rel T) (s : {set T}) (n : nat) :=



if n is n’.+1 then

if [pick x \in s | forallb y, (y \in s) ==> ~~ e y x]

is Some x

then

let e’ a b :=

if (a == x) && (b \in (s :\ x)) then true else e a b

in topo_rec e’ (s :\ x) n’

else e

else e.

We define this function recursively on a counter n and the topological sorting
is local to the set s. The counter is imposed by the Fixpoint construction of
the Coq system, which requires a syntactic termination check. If the counter
is non-zero, then the function looks for an element in the set s which has no
predecessor by the relation e. If there is no such element, the relation is e itself.
If there is a witness x, the relation is the union of the topological sorting of the
set (s :\ x) (s where x has been removed), and of the relation which relates x
to any element of (s :\ x). Since since one element is removed from the initial
set at each recursive call, the complete topological sorting is performed as soon
as the counter is equal to or larger than the cardinal of the set s. We prove easily
that this relation is always an extension of its argument:

Lemma topo_rec_subrel (e : rel T) (s : {set T}) (n : nat) :

subrel e (topo_rec e s n).

We also prove by induction on the counter that it is asymmetric (resp. transitive)
as soon as its argument is asymmetric (resp. transitive) on the input set:

Lemma topo_rec_anti (e : rel T) (s : {set T}) (s’ : {set T})

(ae : {in s’ & &, asymmetric e}) (n : nat) :

{in s’ & &, asymmetric (topo_rec e s n)}.

where {in s & &, p} means that the binary (non necessarily boolean) pred-
icate p holds when both its arguments are in s. For the last two proofs, we
distinguish the set on which the sorting is performed from the set on which the
property is transmitted. Thus, we obtain directly an induction hypothesis which
is strong enough for the induction on the counter to solve the proof easily. From
its asymmetry, we trivially deduce that topological sorting is irreflexive and since
it is also transitive, it is acyclic.

Finally if the value of the counter is large enough, the output relation is total
on its input set as soon as its input relation is acyclic:

Lemma topo_rec_total (e : rel T) (s : {set T}) :

acyclic_on s e -> {in s & &, strict_total (topo_rec e s #|s|)}.

where the acyclic_on Prop predicate ensures that no sequence of elements in
s is a cycle for e, and the strict_total Prop predicate on boolean relations
ensures that for any two distinct elements x and y, either (e x y) or (e y x).
For this property, the value of the counter matters, because if the counter is not



large enough, the sorting stops at an intermediate state, and there is no reason
why the computed relation should be already total. This proof mainly consists in
showing that the acyclicity hypothesis ensures the existence of a predecessor-free
witness at each recursive call: if every element of the set on which we operate
has a predecessor, then we can find a cycle for the relation among the elements
of this finite set using the pigeon-hole principle.

We were able to find only one reference which explicitly mentions a formal
proof of correctness of a topological sorting [22], available as part of the Coq

CoLoR library [9]. Its computational content is only available through extraction
and not as a computable Coq program. However, the underlying algorithm is
not realistic, in particular due to repeated calls to a transitive closure process to
ensure transitivity: computation was certainly not the motivation of the authors
but rather the theoretical existence of the linearisation process. By contrast, we
wanted to describe an ideal implementation in Coq of the algorithm, with naive
data structures (such as the generic pick), but with a code fairly close to a
realistic functional implementation (see section 6). We have however proved the
specification of the non-tail recursive version because it was easier to handle in
the proof. Proving the equivalence of the above program with its tail recursive
counterpart is then a straightforward induction on the counter.

3 Event structures, executions, architectures

The framework proposed in [3, 6] abstracts from the semantic of assembly code
instructions by reasoning only about the memory events issued by the instruc-
tions of a given program. We first define the finite types Value, Proc, Location,
Eiid and poi which are respectively modelling values, a set of unique identifiers
for processors, locations, a set of unique identifiers for events and the type of
indexes in programs order, as natural numbers bounded by a global constant.

Event structures A memory event (m : Event) is a triple which consists of
a unique identifier (e : Eiid), an instruction identifier (i : Iiid) and the
action (a : Action) it performs. An instruction identifier consists of a pair of a
processor identifier (p : Proc) and the index of its line (l : poi). An action

is an access in the memory and is encoded as a triple containing the direction
Dirn (read R or write W) of the action, its location and its value:

Definition Action := (Dirn * Location * Value).

Definition Access d l v : Action := (d, l, v).

For instance, the event “At the line 1 of the program, the value 2 is read from

location x on processor P0” uniquely identified by the label 12 is represented by
the term: (mkEvent 12 (mkiid 0 1)(Access R x 2)).

Programs are abstracted by event structures. An event structure E , (E,
dp
→),

is composed of a (finite) set of events E and the dependency (boolean) relation
dp
→:

Definition Event_struct := {set Event} * (rel Event).



Definition events_of_ES E := let: (evts, _) := E in evts.

Definition dp_of_ES E := let: (_, dp) := E in dp.

The
dp
→ relation abstracts the instruction semantics3. The

dp
→ relation models the

dependencies between instructions, e.g . when we compute the address of a load
or store from the value of a preceding load.

We can compute the program order relation (po E) of an event structure E

by the comparing the program indexes of events occurring on the same processor:

Definition po (E : Event_struct) : rel Event := [rel e1 e2 |

same_proc_same_ES E e1 e2 &&(poi_of_Event e1 <= poi_of_Event e2)].

A well-formed event structure E requires
dp
→ to be a subset of the program order.

Moreover, since dependencies arise between instructions only when the first one

is a load [25, 26, 7, 1], we impose the source of
dp
→ to be always a read.

Execution witnesses A given event structure corresponds to several executions
of the same program. To model one of these executions, we define execution

witnesses. An execution witness X , (
ws
→,

rf
→) provides two relations on events,

ws
→ (for write serialisation) and

rf
→ (for read-from map):

Definition Execution_witness := (rel Event * rel Event).

Definition ws_of_EW (X : Execution_witness) := X.1.

Definition rf_of_EW (X : Execution_witness) := X.2.

A well-formed execution witness requires its write serialisation to be a per-
location total order on the write events. This models the memory coherence

assumed by modern architectures [7, 1, 25, 26, 15], linking a write w to any write

w′ to the same location hitting the memory after w. In addition, the read-from

map
rf
→ should link a write w to a read r from the same location that reads

from w. We also require that for every read from a given location, there exists a
unique write to the same location from which the read takes its value.

Note that until now, all the relations that we defined would also be necessary
to describe SC executions. To integrate weak memory models considerations into

the picture, we derive an additional relation
fr
→ (for from-read map), from the

write serialisation and the read-from map relations, which relates two events er

and ew such that there is a write ew′ from which er reads (ie. ew′
rf
→ er) and ew′

hits the memory before ew does (ie. ew′
ws
→ ew).

The semantics intuition of
fr
→ is as follows. Some of the weaknesses of memory

models arise in our framework because the read events may take their values not
only from the main memory, but also from store buffers and caches. This means

3 We also implement the relation iico between events coming from the same instruc-
tion, which we omit here for brevity. For example, a load instruction reads from a
location x then writes the contents of x into a register r. In this case, the read event
from x and the write event to r are linked by iico. This requires to add register
events to the formalism, which is straightforward.



that we cannot determine at which instant of time the value read by a given read

event is actually in the main memory. We can only determine an interval of time
in which this value is in the memory, i.e. between the write that wrote this value
hit the memory and the next write to the same location in the write serialisation.

Thus, the
fr
→ relation allows us to represent this interval, for it relates a given

read event to both the write from which it reads its value (via the
rf
→ relation)

and the next write to the same location in
ws
→.

Architectures Finally we describe a given memory model by implementing what
we call its architecture:

Record Archi : Type := mkArchi{

ppo : Event_struct -> rel Event;

grf : Execution_witness -> rel Event;

ab : Event_struct -> Execution_witness -> rel Event;

grf_valid : forall X, subrel (grf X) (rf_of_EW X);

ppo_valid : forall E, subrel (ppo E) (po E);

ab_evts : forall E X,

subrel (ab E X) [rel x y \in (events_of_ES E)]}.

An architecture is characterized by its preserved program order
ppo
→ , its global

read-from map relation
grf
→ and its barrier semantics

ab
→.

In a shared-memory multiprocessor, some pairs of instructions in the program
order may be reordered. Hence in an event structure e, for two events e1 and

e2 such that e1
po
→ e2, we only know that they will happen in this order if the

architecture ensures that e1
ppo
→ e2. TSO for example authorises write-read pairs

to be reordered, but nothing else [25, 26]:
ppo
→ =

po
→\ (W× R).

On any architecture, in any execution, as soon as e1
ws
→ e2 or e1

fr
→ e2,

we know that the event e1 happens before event e2. However, in most if not
all shared-memory multiprocessors, a write may be committed first into a store
buffer, then into memory; this optimisation is known as store buffering [2]. In
some architectures, like PowerPC, a write can be written first to a cache, then
to the main memory; in this case we say that the write is not atomic, for this
optimisation is known as store atomicity relaxation [2]. In practice, these two
optimisations mean that while a write transits in store buffers and caches, a
processor may read a past value. Hence in an execution x, for two events e1 and

e2 such that e1
rf
→ e2, we only know that the event e1 will happen before e2 if the

architecture ensures that e1
grf
→ e2. This captures the specification of TSO which

authorises store buffering but considers stores to be atomic or the specification
of Power which relaxes the atomicity of writes.

Last, architectures provide barrier instructions to order on certain pairs of

events. We gather the orderings induced by barriers in the global relation
ab
→ :

as soon as e1
ab
→ e2, we know that the event e1 happens before event e2.

We are now able to define a global happens before relation
ghb
→ . If two events e1

and e2 in an execution witness of a given event structure are ordered by e1
ghb
→ e2,



then the architecture ensures that the event e1 happens before event e2. On an
architecture A, and an execution X of the event structure E, this relation

ghb
→ is

defined as the union of the relations known to be global on A:

Definition ghb A E X : rel Event :=

relU (relU (relU (relU (grf A X) (ab A E X)) (ws_of_EW X)) (fr X))

In our framework, the main validity condition of an execution consists of the
acyclicity of the

ghb
→ relation, which means that we can think of an execution as

exhibiting a global timeline of certain events from the memory point of view.

Validity We now need to determine when a given execution of an event structure
is considered as valid on a given architecture. For this purpose, we first define a
relation gathering all the communication arrows between events of an execution:

Definition com (X : Execution_witness) : rel Event :=

relU (relU (rf_of_EW X) (fr X)) (ws_of_EW X).

We need to define also the
po-loc
→ relation, which corresponds to the program order

restricted to events that share the same memory location. The uniproc(E,X) ,
acyclic(

com
→ ∪

po-loc
→ ) condition models the fact that all the values that a given

memory location can take on a weak memory model are in fact already accessible
on SC4. This is how we model thememory coherence property, as widely assumed
by the existing architectures [7, 1, 25, 26, 15].

The thin(E,X) , acyclic(
rf
→ ∪

dp
→) condition prevents executions where val-

ues seem to come out of thin air [18]. We only need to add the thin check on our
framework so as to embrace Alpha in our framework: for all the other models,

because
dp
→ ⊆

ppo
→ , the thin check is subsumed by the acyclicity check of

ghb
→ [3].

Finally, an execution (E,X) is valid on an architecture A when the relation
A.ghb(E,X) is acyclic, together with the two above checks. We model this in
Coq by the following three component conjunction:

Definition valid_execution A E X : Prop :=

[/\ acyclic (relU (com X) (po_loc E)),

acyclic (relU (rf_of_EW X) (dp_of_ES E)) &

acyclic (ghb A E X)].

Amongst these three requirements, only the last one actually depends on the
architecture. We consider an architecture as a filter over executions, determin-
ing whether they are valid or not, whereas the well-formedness check gathers
constraints over programs. Hence, since the first two checks model constraints
over executions and not on programs, we include them in the execution filter.

4 All the results presented here and in [6, 5] hold with a weaker version of uniproc,
that allows us to embrace Sun’s RMO in our framework. We omit this restriction
for clarity and brevity, but more details can be found in [3, p.47-48].



4 Implementations of existing architectures

The native definition An of a real-world architecture as exposed in the vendor
documentation, never matches the form of an architecture as defined in Sec. 3.
Thus, we should check that An and its encoding A in this framework define
the same validity conditions over executions. All the documentations or model
descriptions that we studied (i.e. SC, Sun TSO, PSO, RMO, Alpha, Power and
x86) share a common style, as exposed below, except Power and x86. The x86
model has been discussed to be a TSO model [21], thus what follows apply. We
discuss the case of Power at the end of this section. We now explain how we
model each architecture in a generic style close to the documentation, then how
we encode it into the framework presented in section 3.

A common description of native architectures The description of SC [16] and
the documentations of Sun TSO, PSO, RMO [25, 26] and Alpha [7] all describe
an execution as an order ex on events. They define the execution ex to be valid
if it is a strict partial order on events which moreover contains a certain (archi-
tecture dependant) subrelation of the program order5. The relation ex should be
understood as our global happens-before relation.

For convenience, and since we proved formally in Sec. 2 that any partial
order can be extended to a total order, we describe the native models in terms
of a total order. This means that for an execution defined as a partial order, we
consider all its linear extensions to be valid native executions.

For a given architecture An, and an event structure E, we write An.ppo(E)
for the subrelation of the program order distinguished by the architecture. We
write A.native(E, ex) when ex satisfies the conditions imposed by An. The literal
formalisation of a vendor documentation is hence of the form:

A.native(E, ex) , total-order(ex, evts(E)) ∧ (An.ppo(E) ⊆ ex))

Equivalence proofs Given a native architecture An, we want to show that we can
build an instance of the framework which defines a validity criterium A.valid on
execution witnesses equivalent to the check A.native. This means that whenever
an execution ex satisfies A.native, we can build an execution witness (E,X)
which is valid on A, such that ex and (E,X) have the same events and the same

communication relations
ws
→ and

fr
→. Conversely, from an execution (E,X) valid

on A, we should be able to build an execution ex valid on An with the same
events and communication relations. Formally, we need to build an instance A

of the generic framework such that:

∀EX, A.valid(E,X) ⇔ ∃ ex, A.native(E, ex) ∧ wit(ex) = X

where wit(ex) stands for an execution witness built from ex.

5 In fact, the execution ex also satisfies the uniproc and thin checks as defined in
Sec. 3, but we omit the details for brevity.



Candidate execution witnesses We now explain how to extract execution witness
candidate from the order relation ex, i.e. how to build wit(ex).

For this purpose, we need to extract
rf
→ and

ws
→ from an order ex. We write

rf(ex) (resp. ws(ex)) for the
rf
→ (resp.

ws
→) extracted from ex. We define (x, y) to

be in rf(ex) when x is a write and y a read, both to the same location, such that
x is a maximal previous write to this location before y in ex, written pw(ex, r).
Formally, we have pw(ex, r) , {w | loc(w) = loc(r) ∧w ex r}, writing loc(m) for
the location of an event e, and rf(ex) , {(w, r) | w = maxex (pw((ex), r))}.

We define (x, y) to be in ws(ex) when x and y are writes to the same location
and x ex y. Formally, writing Wℓ for the set of write events to the location ℓ, we
have ws(ex) ,

⋃

ℓ(Wℓ ×Wℓ)∩ ex. We derive the from-read map fr(ex) following
the definition given in Sec. 3.

Note that the extracted
rf
→ and

ws
→ are well-formed in a finite execution, hence

the execution witness wit(ex) = (ws(ex), rf(ex)) is well-formed as well.

From native architectures to the framework At that point, finding a suitable
candidate well-formed instance of the generic framework capturing the native
architecture causes no difficulty. We simply take A = (An.ppo, An.grf, ∅), where
An.grf(ex) returns the fragment of rf(ex) defined to be global by An. For exam-
ple, on TSO, the store atomicity relaxation is not allowed, but store buffering

is, hence An.grf(ex) will return the internal
rf
→, i.e. the fragment of rf(ex) that

relates events from the same processor.
Now we need to show that, for a given event structure E, we can build an

execution X, associated with E and valid on A. It follows from their definition
that the extracted read-from maps rf(ex), write serialisation ws(ex) and the
extracted from-read maps fr(ex) are included in ex. Moreover, since ex contains
An ppo(E), we know that ex contains the

ghb
→ relation of the extracted execution

witness wit(ex). Thus, the acyclicity of
ghb
→ follows from ex being a total order6:

∀E ex, A.native(E, ex) ⇒ A.valid(E,wit(ex))

From the framework to native architectures This step causes no difficulty as
well: the ex relation is the topological sort of the transitive closure of the global-
happens-before

ghb
→ relation provided by the candidate architecture. By well-

formedness hypothesis (see section 3) of the execution,
ghb
→ should be acyclic on

the events. This acyclicity property is preserved by the transitive closure, which
is hence transitive and irreflexive. Hence we can apply the topological sorting
construction described in section 2, which results in the appropriate ex.

Implemented models In the original formalisation, we have defined SC, Sun TSO,
PSO, RMO and Alpha as instances of our framework and proved in Coq the
equivalence of our definitions with the original definitions. The code can be
browsed online. At the time of submission, only the SC model has been re-
implemented. We plan to add the re-implementation of the other models online

6 Again, we omit the uniproc and thin checks for brevity.



during the review process, which should be without difficulty as these formal
proofs are rather routine work.

The framework of Sec. 3 embraces a fragment of Power as well. For Power,
since no formal definition existed, the first author and others presented in [6] an
intensive testing experiment against three generations of Power machines. This
lead to the design of a fragment of a Power model, given in [6], as an instance
of the framework presented in Sec. 3.

5 Semantics of barriers

We now present the formalisation of the main theorem presented in [6], which
addresses the semantics and placement of memory barriers in a program, to
ensure that it only has strong executions, for example SC ones. We say that an
architecture A1 is weaker than an architecture A2 if A1 exhibits at least all the
behaviors of the stronger one A2:

∀A1A2, (A1 ≤ A2) , (∀EX,Aǫ
2.valid(E,X) ⇒ Aǫ

1.valid(E,X))

where Aǫ represents A without barriers, i.e.
ab
→= ∅. For instance, the SC model

is stronger than any weak architecture we have mentioned so far. Observe that
this definition can be implemented as: A1 ≤ A2 , (

ppo1→ ⊆
ppo2→ ) ∧ (

grf1→⊆
grf2→ ).

We now want to study how to simulate the behavior of a strong architecture
over a weaker one, by studying the semantic of the barrier instructions. For
instance we may want to show that the semantic of barrier instructions, together
with a correct placement of these barriers in the code make possible to forbid non-
SC executions on a weak architecture. For this purpose, we define the predicate fb
(fully barriered) on A1 ≤ A2 as:

A1.fbA2
(E,X) ,

(

(
ppo2\1→ ) ∪ (

grf2\1→ ;
ppo2→ )

)

⊆
ab1→

where
r2\1→ ,

r2→ \
r1→ is the set difference, and x

r1→;
r2→ y , ∃z. x

r1→ z ∧ z
r2→ y

stands for the sequence.
The fb predicate provides an insight on the strength that the barriers of

the architecture A1 should have to restore the stronger A2. They should (i)
maintain the pairs preserved in the program order on A2 and not on A1 and
(ii) compensate for the fact that some writes may not atomic on A1 while they

are on A2, which we model by (some subrelation of)
rf
→ not being global on A1

while it is on A2. The main theorem of [6] shows that the above condition on
ab1→ regains Aǫ

2 from A1, a property that we call the barrier guarantee:

∀A1A2, (A1 ≤ A2) ⇒ (∀EX,A1.valid(E,X) ∧A1.fbA2
(E,X) ⇒ Aǫ

2.valid(E,X))

The only difficulty of this proof is to show the acyclicity of the global happens
before relation of the stronger architecture A2 under the assumptions of the
theorem. We have simplified the argument previously formalised, and described
in [3], to reduce it the (somehow ad-hoc) following acyclicity criterium:



Lemma acyclicity_crit : forall (T : finType)(r1 r2 : rel T),

acyclic r1 ->

(forall x y z, r2 x y -> r2 y z -> r1 x y || r1 x z) ->

acyclic r2.

This lemma is again a simple application of the pigeon-hole principle: if a given
sequence is a cycle for the relation r2, then the hypothesis of the criterium en-
sures that any element in the sequence has a successor by relation r1 among
the other elements of the sequence: either its successor in the r2-cycle, or the
successor of its successor. Therefore, the pigeon-hole principle ensures the exis-
tence of a r1-cycle built from elements in the initial r2-cycle. But this violates
the acyclicity hypothesis on r1.

Let us now go back to the proof of our the barrier guarantee. Let
ghb1→ be the

global happens before relation on A1. Since (E,X) is valid on A1, this relation
is acyclic. Let

ghb2→ be the global happens before relation on Aǫ
2. We only need to

show that these relations satisfy the hypothesis of acyclicity_crit. Recall from

Sec. 3 that for any architectureA we haveA.ghb(E,X) ,
ws
→ ∪

fr
→ ∪

ppo
→ ∪

grf
→ ∪

ab
→

and that for
ghb2→ ,

ab
→ is empty by definition.

Now suppose that e1
ghb2→ e2

ghb2→ e3 but that e1
ghb1→ e2 does not hold. In

that case, under the hypothesis of a valid execution, the only possibility is that
e1

grf2→ e2, but not e1
grf1→ e2, and that e2

ppo2→ e3. Other possibilities are excluded,
for instance by the fact that e2 cannot be simultaneously a write and a read event.
But then we have exactly e1

grf2\1→ e2, followed by e2
ppo2→ e3, which means that e1

and e3 are related by
grf2\1→ ;

ppo2→ which is included in
ab1→ under the hypothesis

A1.fbA2
(E,X). Hence e1

ab1→ e3 thus e1
ghb1→ e3. Finally, the hypotheses of the

criterium are satisfied with r1 set at A1.ghb(E,X) and r2 set at Aǫ
2.ghb(E,X),

which completes the formal proof of the barrier guarantee.

6 Related Work and Conclusion

There is extensive related work on the semantics issues associated with memory
models. For the sake of brevity, we focus here exclusively on the formalisation of
hardware models inside a proof assistant. The work presented in [11, 12] studies
the formalisation of the ARM architecture, with a particular focus on the in-
struction set. In our context, we abstract away from the instruction semantics

via for example the
dp
→ relation, and leave the integration of instruction sets for

further work. The work presented in e.g . [23, 21] focus on the formalisation the
x86 model in a proof assistant. A few semantics results are proved on top of the
formalisation, as a sanity check. Later on, S. Owens proposed in [20] a gener-
alisation of the DRF guarantee, built on top of the formalisation given in [21].
Thus, all these previous pieces of work consider one architecture at a time, ex-
cept [19], but in this case, only the sequential case is studied, and from the point
of view of the instruction set’s semantics. By contrast to these previous pieces of
work, we provide both a unifying and formalised framework, which nonetheless
captures the store atomicity relaxation.



After completing the re-formalisation of the architectures mentioned in sec-
tion 4, we plan to extend our libraries to the results described in [4, 5, 3], in a
small-scale reflection fashion. We do not expect significant difficulties, since the
proofs of these extra results rely on the same techniques as used in the formali-
sation of [6]. Hence the formalisation methods successfully employed in the new
library described in the present paper should scale.

Following the approach of M. Myreen et al. [19, 11, 12], one of the main mo-
tivation of the present re-development is actually the design a certifying layer
for the tools described in [6, 4, 5, 3], e.g. memevents [23] and offence [5].

The memevents tool [23] is a simulator written in OCaml, which, given a
small Power or x86 program and a memory model (amongst which the x86 ones
from [23, 21] and the Power one from [6]), outputs all the executions (i .e. the
event structures and executions witnesses) of this programm that are allowed
by the specified memory model. We would like to validate the specifications
implemented in memevents, i .e. make sure that they actually implement the
memory model they are supposed to.

We proposed in [5] a generalisation of the barrier guarantee (also formalised
in Coq), which extends to both lock-based and lock-free synchronisation. We
implemented our approach in a tool called offence, which places (upon user’s
choice) either lock-based or lock-free synchronisation in a program in x86 or
Power assembly code. When the chosen primitives are barriers, offence should
implement the barrier guarantee, but we would like to validate this. This means
that we would like to check that the tool actually places enough barriers in a
program to ensure that it will behave as if running on SC.

Yet, while M. Myreen et al. built their tools inside the proof assistant, we
would like to use our formalised framework as a correctness checker for the
output of the existing external testing tools. The design of such a (large scale)
reflexive certificate checker requires to implement and certify inside the Coq

proof assistant some efficient algorithms on graphs, e.g. a topological sorting
procedure or an acyclicity check. We believe that the preliminary certification
of the functional code presented in this paper is a significant step towards the
formal certification of a more efficient code, since the remaining effort only lies
in the gap between naive and efficient data-structures.

Acknowledgements. We wish to thank Cyril Cohen for his significant help on
simplifying the pigeon hole lemma and the proof of the topological sorting.
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