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Modèles stochastiques du chemostat

Résumé : Nous reprenons la modélisation de la dynamique du chemostat à sa source. Le
chemostat est classiquement représenté par un système d’équations différentielles. Notre objec-
tif est d’établir un modèle stochastique qui est valable à l’échelle qui précède immédiatement
celle qui correspond au modèle déterministe. Partant d’une échelle microscopique, nous présen-
tons un modèle stochastique de sauts purs qui conduit, à l’échelle macroscopique, au modèle
d’équation différentielle. À une échelle intermédiaire, une approximation diffusion nous per-
met de proposer un modèle sous la forme d’un système d’équations différentielles stochastiques.
Nous détaillons les techniques qui permettent de passer d’une échelle à une autre ainsi que de
simuler ces différents modèles. Nous décrivons également les domaines de validité des différents
modèles.

Mots-clés : équations différentielles stochastiques, chemostat, processus de saut, approxi-
mation diffusion, méthode “tau-leap”, méthode de Monte Carlo, algorithme de Gillespie
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1 Introduction

The evolution of the state of a single species/single substrate chemostat is usually described by
a set of ordinary differential equations (ODE) derived from a mass balance principle, see [25].
More precisely, if s(t) denotes the concentration of nutrient (substrate) and b(t) the concentra-
tion of the organism (biomass) at time t(expressed in g/L), then the couple x(t) = (b(t), s(t))∗

is the solution of the following ODE [25]:

ḃ(t) = [µ(s(t)) −D] b(t) , (1a)

ṡ(t) = −k µ(s(t)) b(t) +D [sin − s(t)] (1b)

where D > 0 is the dilution rate, sin > 0 the substrate concentration in the influent, and k > 0
the stoichiometric coefficient. The initial condition lies in the positive orthant, that is b(0) ≥ 0
and s(0) ≥ 0. Equation (1) will also be denoted:

ẋ(t) = f(x(t)) .

The specific growth rate function µ(s) is non-negative; we suppose that µ(0) = 0, µ(s) > 0
for s > 0, µ(s) ≤ µmax < ∞ and that it is continuous at 0. Commonly used models are
the Monod model (uninhibited growth) and the Haldane model (inhibited growth) that reads
respectively:

µ(s) = µmax

s

ks + s
, µ(s) = µmax

s

ks + s+ s2

ki

. (2)

This approach relies on the fact that the stochastic effects can be neglected, thanks to the
law of large numbers, or at least can be averaged out. Although this level of description is
sufficient for a number of applications of interest, it could be a valuable way of accounting for
the stochastic nature of the system. Indeed, at small population sizes the chemostat could
present stochastic behaviors, also the accumulation of small perturbations in the context of
multi-species could not be neglected. Moreover, whereas the experimental results observed in
well mastered laboratory conditions match closely the ODE theoretical behavior, a noticeable
difference may occur in operational conditions. In these cases, stochastic features may not
be neglected. We aim to build a model that still relies on a mass balance principle and that
encompasses the useful stochastic information.

Many works [26, 7, 15] propose to superpose a stochastic term on Equation (1) in order
to model the uncertainty on the phenomenon, principally due to imprecise experimental con-
ditions. Paradoxically, this amounts to the addition of an ad hoc perturbation to a model
that has been obtained by neglecting these perturbations. We propose instead to consider the
stochastic aspect at the very beginning of the modeling process, and to determine the condi-
tions under which it is insignificant. This approach is not individual-based per se, as it starts
from the macroscopic model (1). However, the first stochastic model proposed will be described
at the individual level. This method will allow for a justification of the specific structure of
the stochastic perturbation that affects the mean behavior. More generally, we will outline a
modeling strategy based on many available tools, either stochastic or deterministic, depending
on the regularity of the phenomenon to be modeled. In this paper we focus on the modeling
and simulation process rather than on the mathematical developments; moreover we make use
of known mathematical results. Our goal is to establish a stochastic model that is valid at the
scale immediately preceding the one corresponding to the deterministic model (1).

The paper is organized as follows: in Section 2, we recall the origin of model (1) and the
assumptions ensuring its validity. We show that since different timescales naturally appear in
the problem, these assumptions need to be checked at each scale. Section 3 is devoted to the
different models: the pure jump description that will be considered as the reference model is
introduced in Section 3.1; the discrete time approximation, Poisson and normal, are presented
in Section 3.2; the discrete-time normal approximation appeared to be a time discretization
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of a diffusion process given by a stochastic differential equation presented in Section 3.3. In
Section 3.4 we describe the asymptotic results that bridge these different models. Section 4 is
devoted to the associated simulation algorithm, Section 5 to numerical tests.

2 Scale and geometry issues in ODE model

An individual-based model should keep track of the position in space of each cell, together with
their current biological states, it should also account for discrete events such as the division of
a cell. Such a description of the system at the finest level could be of interest but unnecessary
in view of our goals, namely to set a macroscopic model that gives account for stochastic
phenomena. At this scale, the system is reduced to a R

2–vector and its dynamics.
Model (1) is obtained according to the classical approach, by choosing a small time interval

∆t on which a mass balance principle is applied to the state. However, ∆t should be large
enough as we do not describe the dynamic at the timescale of jumps of one unit of substrate or
bacteria but rather at the timescale of jumps of packet units. Such an interval could be called
macroscopically infinitesimal [8].

Mass balance

Let (Bt,St) denote the true concentrations at time t, assumed to be constant throughout the
medium. The mass balance on interval [t, t+∆t) reads

Bt+∆t − Bt = ∆Bbio

t +∆Bout

t , (3a)

St+∆t − St = ∆Sbio

t +∆S in

t +∆Sout

t (3b)

where

• ∆Bbio
t and ∆Bout

t are the increments of biomass due to natural growth and to the outflow
respectively, within [t, t+∆t),

• ∆Sbio
t , ∆S in

t and ∆Sout
t are the increments of substrate due to the consumption by the

biomass, the inflow and the outflow respectively, within [t, t+∆t).

Since we want to obtain an ODE, we now assume that the stochastic fluctuations are negligible
relative to the increments. Again this requires ∆t to be large enough, so that sufficiently
many discrete events have occurred. Moreover, ∆t should be taken even larger in case of
inhomogeneity of the dynamics.

We denote by (b̄(t), s̄(t)) for t = 0, ∆t, 2∆t, . . . the deterministic sequence constructed by
using the mean increments of (Bt,St):

b̄(t+∆t)− b̄(t) = E[∆Bbio

t +∆Bout

t ] ,

s̄(t+∆t)− s̄(t) = E[∆Sbio

t +∆S in

t +∆Sout

t ] .

Next, using the mass action law for the biomass we have

E[∆Bbio

t ] ≃ µ(s̄(t)) b̄(t)∆t , E[∆Sbio

t ] ≃ −k µ(s̄(t)) b̄(t)∆t (4)

where µ(s) is the specific growth rate and k > 0 the stoichiometric coefficient. Note that we
again require ∆t to be large enough, since µ(s) and k make sense only for a sufficiently large
population of bacteria. Now, since we have assumed perfect homogeneity of the medium, we
get:

E[∆Bout

t ] ≃ −D b̄(t)∆t , E[∆S in

t ] ≃ −Dsin ∆t , E[∆Sout

t ] ≃ −D s̄(t)∆t . (5)

Note that (4) and (5) are approximations because we have used a constant value for b̄(t) and
s̄(t) within [t, t + ∆t). For this approximations to be correct, none of the quantities involved
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should vary significantly within [t, t+∆t). We finally obtain the construction of the sequence
(b̄(t), s̄(t)) by

b̄(t+∆t)− b̄(t) = [µ(s̄(t))−D] b̄(t)∆t, (6a)

s̄(t+∆t)− s̄(t) = (−k µ(s̄(t)) b̄(t) +D [sin − s̄(t)])∆t, (6b)

Model (1) is obtained by letting ∆t → 0 in System (6). However, since ∆t is bounded from
below, some care should be taken when this limit is achieved. System (6) can be understood
as the discretization of (1) using an explicit Euler scheme with time-step ∆t. Whenever there
exists ∆t sufficiently small, the deterministic sequence (b̄(t), s̄(t)) will be close to model (1),
sampled at time 0,∆t, 2 ∆t, . . .

Geometry and scales

The mass balance established in (3) features five terms that can be gathered according to the
three sources of variations. This gives rise to a geometric structure that can be emphasized by
writing (1) under the form:

d
dt

(
b(t)
s(t)

)

= µ(s(t)) b(t)
(

1
−k

)

︸ ︷︷ ︸

biology

+D
(

0
sin

)

︸ ︷︷ ︸

inflow

−D
(

b(t)
s(t)

)

︸ ︷︷ ︸

outflow

(7)

However, whereas the geometry is well captured, the timescale of the five original terms is not
readable in (1) nor (7). Indeed, the fact that the approximations in (4) and (5) may be of
different quality for each individual term is not exploited at all.

3 Models at different scales

In the previous section, we mentioned that the lower bound for ∆t is related to the size of
the population and to the regularity of the phenomenon. Often, the experimental conditions
are such that this bound is low enough, so that System (6) is correctly approximated by (1)
sampled with period ∆t. If a smaller period is to be considered, then the conditions under
which (6) has been obtained are not fulfilled. Particularly, the stochastic fluctuations should
be accounted for.

We now introduce a stochastic process built on the same premise, that is a mean mass
balance principle at a given ∆t. This model will have (1) as a fluid limit as ∆t goes to 0. This
latter model suitably features the geometry of the chemostat but, as a limit model, cannot
feature all its natural scales. The proposed stochastic models will respect both the geometry
and the natural scales of the chemostat. We first establish a pure jump process representation
of the chemostat at a microscopic scale, then we derive a diffusion process representation which
will be valid at mesoscopic and macroscopic scales.

3.1 Pure jump model Xt = (Bt, St)
∗

Even if do not aim at deriving an individual-based model, we try to preserve the discrete
feature in the dynamics. We achieve this by considering only aggregated jumps obtained by
adding up small and frequent jumps resulting from individual events. The resulting stochastic
process will be a pure jump process Xt = (Bt, St)

∗, fully determined by its jumps and the
corresponding jump rates; the state variable will be denoted x = (b, s)∗.

In view of (3), we are led to consider five jumps:

➀ biology term: biomass increase of size ν1(x) at rate λ1(x);

➁ biology term: substrate decrease of size ν2(x) at rate λ2(x);

➂ inflow term: substrate inflow of size ν3(x) at rate λ3(x);

RR n° 7458
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➃ outflow term: biomass outflow of size ν4(x) at rate λ4(x);

➄ outflow term: substrate outflow of size ν5(x) at rate λ5(x);

(see Figure 1). It remains to set the jump size rates so as to comply with the mass balance
principle and the stochastic mass action law.

For a macroscopically infinitesimal ∆t, denote by ∆Xb,bio

t , ∆X s,bio

t , ∆X s,in

t , ∆Xb,out

t , ∆X s,bio

t

the cumulated jump of type ➀, ➁, ➂, ➃, ➄ respectively, on state process Xt within the time
interval [t, t+∆t).

We first focus on the first two expressions. The stochastic mass action law [28] requires

E[∆Xb,bio

t |Xt = x] ≃
(
µ(s) b∆t

0

)
,

E[∆X s,bio

t |Xt = x] ≃
(

0
−k µ(s) b∆t

)
.

Now notice that, for small ∆t, the number of jumps of type ➀ (resp. ➁) within [t, t + ∆t) is
approximately P(λ1(x)∆t) (resp. P(λ2(x)∆t)), so that

E[∆Xb,bio

t |Xt = x] ≃ λ1(x)∆t ν1(x) ,

E[∆X s,bio

t |Xt = x] ≃ λ2(x)∆t ν2(x) .

So we are looking for (λi(x), νi(x)) satisfying:

λ1(x) ν1(x) =
(
µ(s) b

0

)
and λ2(x) ν2(x) =

(
0

−k µ(s) b

)
. (8)

We therefore introduce the scale parameters K1 and K2 and we choose:

λ1(x)
def
= K1 µ(s) b , ν1

def
=

(
1

K1

0

)

,

λ2(x)
def
= K2 k µ(s) b ν2

def
= −

(
0
1

K2

)

.

this choice is not unique and will be explain later in Section 3.5.
Here by “scale” we mean that jumps due to i will be of magnitude 1

Ki
and the corresponding

rates will be of magnitude Ki. Large Ki yields frequent and small jumps. Using the Poisson
argument mentioned above, we see that these scale parameters Ki do not act on the mean
values of the increments but on their variances (large Ki will correspond to small variances).
The Ki’s can thus be regarded as tuning parameters quantifying the uncertainty or regularity
of the corresponding source of variation.

Reproducing this discussion with the three other types of jumps, and considering only
admissible jumps (in the positive orthant), we obtain a pure jump Markov process with rate
coefficients λi(x) and associated jumps νi(x) defined in Table 1.

➀ ➁ ➂ ➃ ➄

biomass substrate substrate biomass substrate
increase decrease inflow outflow outflow

biology inflow outflow

rate λi(x) K1 µ(s) b K2 k µ(s) b K3 Dsin K4 D b K5 D s

jump νi(x)

(

1

K1

0

)

−

(

0
1∧K2 s

K2

) (

0
1

K3

)

−

(

1∧K4 b

K4

0

)

−

(

0
1∧K5 s

K5

)

Table 1: Rates and jumps of the five basic mechanisms of the pure jump process. Note that
the jumps νi(x) essentially do not depend on x except for the negative jumps near the border
{x = (b, s)∗ ∈ R

2
+; b = 0 or s = 0}.
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Figure 1: In this model, from a position x = (b, s)∗ the process could jump according to 5
mechanisms (2 due to the biology, 1 inflow, and 2 outflows), the basic jump i has a length 1

Ki

for i = 1, . . . , 5.

About scales parameters

Let mb and ms denote the representative masses of a single bacteria and of a single molecule
of substrate. Typically mb ≫ ms (e.g. mb ≃ 106ms). Hence:

0 < Ki ≤
1

mb

, for i = 1, 4 and 0 < Ki ≤
1

ms

, for i = 2, 3, 5 .

In most cases Ki ≪ Kj for i = 1, 4 and j = 2, 3, 5, but it is possible to adjust the coefficients
K’s to the specific application considered. For example K2 will be large in laboratory experi-
mental conditions, but for a real implementation the substrate inflow concentration could have
a large variance. Also for the outflow, in regular conditions K4 and K5 could be large, but
in bad mixing conditions they could be smaller. Finally K1 could be smaller than K4, as the
biomass concentration increase presents more variance than the substrate decrease (which is
more regular as it is related to the diffusion of substrate across cell membranes).

As proved later in Lemma A.1, the jumps νi(x) are essentially constant and equal to:

ν1
def
=

(
1
K1

0

)

, ν2
def
= −

(
0
1
K2

)

, ν3
def
=

(
0
1
K3

)

, ν4
def
= −

(
1
K4

0

)

, ν5
def
= −

(
0
1
K5

)

. (9)

Representation of Xt

The constructive description of the process Xt that has been just presented would be used for
simulation purposes, see Section 4.1. Nevertheless, it should be completed by a more com-
prehensible and synthetic representation. This will require some mathematical developments
which we summarize now and that are detailed in Appendix A.

First we should notice that the jump process Xt can be represented as the following (jump)
SDE:

Xt = X0 +

5∑

i=1

∫

(0,t]×[0,∞)

νi(Xu−) 1{v≤λi(Xu− )} N
i(du× dv) (10)

where N i are independent random Poisson measures with intensity measure du×dv (Lebesgue
measure).

The process Xt can be described as a Markov process with infinitesimal generator Aφ(x) =
limt→0

1
t [Eφ(X

x
t )−φ(x)] where Xx

t is the process Xt starting from x. This operator completely
characterizes the law of the process Xt. In Appendix A we prove that this process is non
explosive, i.e. it is defined for all t ≥ 0; that it admits moments as soon as X0 does; and that
it is solution of (10) see Proposition A.3.
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Still representation (10) is opaque. We can establish that the process Xt essentially admits
the following representation:

dBt =
(
µ(St)Bt −DBt

)
dt+ dm̄1

t√
K1

+
dm̄4

t√
K4

, (11a)

dSt =
(
− k µ(St)Bt +D (sin − St)

)
dt+ dm̄2

t√
K2

+
dm̄3

t√
K3

+
dm̄5

t√
K5

(11b)

where m̄i
t are independent square integrable martingales with zero mean. The exact represen-

tation (41) differs from (11) only through terms (1 ∧Ki s) and (1 ∧Ki b) that are equal to 1
except on a very limited neighborhood of the axes.

The martingales m̄i
t are of mean 0 and they are explicitly known, see (40), as well as their

quadratic variation, see (42). From Equation (11), the deterministic part of the process Xt,
its drift coefficient, appears to be essentially the classical ODE (1); and the stochastic part of
this dynamics, the martingale terms, are of order 1/

√
Ki.

3.2 Discrete time approximations

Poisson approximation X̃tn = (B̃tn , S̃tn)
∗

For any small ∆t > 0 given, let tn = n∆t. We propose a discrete time Poisson approximation
(X̃tn)n≥0 of (Xt)t≥0: on the interval [tn, tn+1) we froze the rate functions λi(Xt) to λi(Xtn) so
that we get a Poisson distribution. The jumps νi(Xt) are also frozen to νi(Xtn). Let X̃0 = X0,
the approximation is defined by:

X̃tn+1
= X̃tn +

5∑

i=1

νi(X̃tn)P i
n(∆t λi(X̃tn)) (12)

where (P i
n(ρ))n∈N,i=1···5 are independent Poisson variables with intensities ρ.

We have:

E[X̃tn+1
|X̃tn = x] = x+

5∑

i=1

νi(x)E[P i
n(∆t λi(X̃tn))|X̃tn = x]

= x+∆t

5∑

i=1

νi(x)λi(x) (13)

and let

fK(x)
def
=

5∑

i=1

νi(x)λi(x) , (14)

fK(x) is “essentially” the r.h.s. function f(x) of the O.D.E. (1), more precisely fk(x) = f(x)
except near the axes (see. Lemma A.1). In other words, the infinitesimal increments of the
conditional mean follow the O.D.E. (1).

Also:

cov[X̃tn+1
|X̃tn = x] =

5∑

i=1

cov[νi(x)P i
n(∆t λi(X̃tn))|X̃tn = x] =

(
Σ̃2

1 0

0 Σ̃2
2

)

(15a)

with

Σ̃2
1 = 1

K2
1

cov[P1
n(∆t λ1(x))] +

1
K2

4

(1 ∧K4 b)
2 cov[P4

n(∆t λ4(x))]

= ∆t
{

1
K1

µ(s) b+ 1
K4

(1 ∧K4 b)
2 D b

}

, (15b)

Σ̃2
2 = 1

K2
2

(1 ∧K2 s)
2 cov[P2

n(∆t λ2(x))] +
1

K2
3

cov[P3
n(∆t λ3(x))]

+ 1
K2

5

(1 ∧K5 s)
2 cov[P5

n(∆t λ5(x))]

= ∆t
{

1
K2

(1 ∧K2 s)
2 k µ(s) b + 1

K3
D sin + 1

K5
(1 ∧K5 s)

2 D s
}

. (15c)
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Diffusion approximation ξ̃tn = (β̃tn , σ̃tn)
∗

In (12), the variable P i
n(∆t λi(x)) is Poisson distributed with parameter ∆t λi(x). When this

parameter is large (greater than 10 or 20) then this last distribution is very close to the normal
distribution of mean ∆t λi(x) and variance ∆t λi(x). Hence, we get a (discrete time) normal
approximation (ξ̃tn)n≥0 of (Xt)t≥0 by letting ξ̃0 = X0 and, conditionally on ξ̃tn−1

= x:

ξ̃tn+1
= x+

5∑

i=1

νi(x)N i
n

where N i
n are 5 independent Gaussian random variables :

N i
n ∼ N

(
λi(x)∆t , λi(x)∆t

)

So conditionally on ξ̃tn = x, ξ̃tn+1
is normal with mean (13) and covariance matrix (15).

Let ξ̃tn = (β̃tn , σ̃tn)
∗, given β̃tn = b and σ̃tn = s:

β̃tn+1
= b+

[
µ(s)− (1 ∧K4 b)D

]
b∆t+

√

∆t µ(s) b
K1

w1
n +

√

∆t (1∧K4 b)2 D b
K4

w4
n (16a)

σ̃tn+1
= s+

[
− (1 ∧K2 s) k µ(s) b +D sin − (1 ∧K5 s)D s

]
∆t

+
√

∆t (1∧K2 s)2 k µ(s) b
K2

w2
n +

√

∆t Dsin

K3
w3

n +
√

∆t (1∧K5 s)2 Ds
K5

w5
n (16b)

where wi
n are i.i.d. N (0, 1) random variables.

Boundary conditions

In both approximations (12) and (16), no mechanism prevents the processes X̃tn or ξ̃tn from
staying within the positive orthant R

2
+. An ad hoc solution is to set the concentration to 0

whenever it becomes negative, see Section 4.

3.3 Diffusion model ξt = (βt, σt)
∗

A stochastic differential equation model

System (16) is the Euler-Maruyama time discretization of the diffusion process ξt = (βt, σt)
∗

solution of the following SDE:

dβt =
[
µ(σt)− (1 ∧K4 βt)D

]
βt dt+

√
µ(σt)βt

K1
dW 1

t +
√

(1∧K4 βt)2 Dβt

K4
dW 4

t

dσt =
[
− (1 ∧K2 σt) k µ(σt)βt +D sin − (1 ∧K5 σt)Dσt

]
dt

+
√

(1∧K2 σt)2 k µ(σt)βt

K2
dW 2

t +
√

D sin

K3
dW 3

t +
√

(1∧K5 σt)2 Dσt

K5
dW 5

t

where W i
t are independent standard Wiener processes. Note that this result can be obtained

directly from the process Xt without the help of the discrete-time approximation. Indeed the
infinitesimal generator of process Xt given by (26) is a difference operator, and by Taylor
development, it can be approximated by a second order differential operator corresponding to
a diffusion process [6].

For small Ki’s the last system is equivalent considering:

dβt =
[
µ(σt)βt −Dβt

]
dt+

√
µ(σt) βt

K1
dW 1

t +
√

Dβt

K4
dW 4

t

dσt =
[
− k µ(σt)βt +D sin −Dσt

]
dt

+
√

k µ(σt)βt

K2
dW 2

t +
√

D sin

K3
dW 3

t +
√

Dσt

K5
dW 5

t
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then we can group the Brownian motions in the following way:

dβt =
[
µ(σt)−D

]
βt dt+

√
µ(σt)βt

K1
+ Dβt

K4
dW b

t (17a)

dσt =
[
− k µ(σt)βt +D (sin − σt)

]
dt+

√
k µ(σt)βt

K2
+ D sin

K3
+ Dσt

K5
dW s

t (17b)

where W b and W s are independent standard Wiener processes.

Behavior of the system of SDE’s near the axes

System (16) is the Euler-Maruyama time discretization of the SDE (17) (for large Ki’s). Even
if the diffusion approximation is only valid for large values of the biomass and the substrate,
we can study the behavior of (17) near the axes.

As for the discrete-time normal approximation, we should clarify the boundary conditions.
As we well see, the component βt given by (17a) will remain positive, but the component σt

given by (17b) could become negative. We must first require that µ(s) = 0 for s < 0. Then,
note that each equation of (17) is related to the following well-known CIR model for interest
rates:

Remark 3.1 (Cox-Ingersoll-Ross model) Consider the one–dimensional SDE:

dXt = (a+ bXt)dt+ σ
√

Xt dWt , X0 = x0 ≥ 0 . (18)

with a ≥ 0, b ∈ R, σ > 0. According to [19, Prop. 6.2.4], for all x0 ≥ 0, X is a continuous
process taking values in R

+, and let τ = inf{t ≥ 0, Xt = 0}, then:

(i) If a ≥ σ2/2, then τ =∞ Px–a.s.;

(ii) if 0 ≤ a < σ2/2 and b ≤ 0 then τ <∞ Px–a.s.;

(iii) if 0 ≤ a < σ2/2 and b > 0 then Px(τ <∞) ∈ (0, 1).

In the first case, X never reaches 0. In the second case X a.s. reaches the state 0, in the third
case it may reach 0. If a = 0 then the state 0 is absorbing.

It is clear that β = 0 is an absorbing state for (17a), and when β = 0, (17b) reduces to

dσt = D (sin − σt)dt+
√

Dsin

K3
+ Dσt

K5
dW s

t

and from Remark 3.1, the solution of this SDE will stay on the half-line [−K5

K3
sin,∞) and:

(i) if sin ( 1
K3

+ 1
K5

) ≥ 1
2K2

5

then σt never reaches −K5

K3
sin;

(ii) if sin ( 1
K3

+ 1
K5

) < 1
2K2

5

then σt reaches −K5

K3
sin in finite time and is reflected.

Indeed, it is enough to apply Itô formula to σ̃t =
D sin

K3
+ Dσt

K5
and to use the Remark 3.1. Note

that, as K5 is large, condition (i) is more realistic than condition (ii).
To extend the definition of (17) for negative value of σ, let suppose that µ(σ) = 0 for σ ≤ 0.

As we seen, βt will stay non-negative and β = 0 is an absorbing state. Also σt ≥ −K5

K3
sin and

for large K5 this state will be repulsive. Note that for small values of σt, as the Ki are large,
the diffusion term in (17b) will be small and the drift part will be dominated by D sin so that
σt will increase fast and its probability to be negative will be small.

The fact that the substrate concentration could be “negative” is due to the normal approx-
imation. This approximation is valid for large values of concentration and the validity of the
diffusion system (17) is questionable for small concentration. Nonetheless we can study its
properties.
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Figure 2: In this simplified model, from a position x = (b, s)∗ the process could jump according
to 3 mechanisms (biology, inflow, and outflow), the basic jump i

′ has a length 1
K′

i

for i =

1, . . . , 3

A possibility to get an SDE with positive solution is to consider an SDE with boundary
condition [14, § IV-7] by adding a local time in {σ = 0} to the Equation (17b). This solution
is rather artificial and will not be retained.

So the solution of the system (17) remains in the domain D = [0,∞) × [−K5

K3
sin,∞).

The proof that this system admits a strong solution with pathwise uniqueness is presented in
Appendix B.

3.4 Asymptotic analysis

The convergence of the pure jump model (10) or of the diffusion approximation (17) to the
deterministic model (1) as all the Ki →∞ can be rigorously established.

Let XK
t be the pure jump model defined at the beginning of Section 3.1, or as the solution

of the Equation (10) for a given K
def
= (K1,K2,K3,K4,K5). Let ξKt be the solution of the SDE

(17). Let x(t) be the EDO model solution of Equation (1). Then XK
t converges toward x(t)

in the following way: for all T > 0 and all δ > 0,

P

(

sup
0≤t≤T

∥
∥XK

t − x(t)
∥
∥ ≥ δ

)

−→ 0 (19)

as Ki → ∞ for all i = 1 · · · 5. This result is not surprising if we consider the representation
(41) of (Xt)t≥0; it was obtained in a context of martingale convergence theorems in [17, 18] or
in a more general context of convergence of sequences of infinitesimal generators in [6].

We can also prove the same type of convergence for the process ξKt . Indeed, in Equation (17)
the scale coefficients appears as 1/

√
Ki in the diffusion part of the SDE, and the convergence

clearly holds as all the Ki tends to infinity.

3.5 Other models

As already noticed, the choice of (λi(x), νi(x)) satisfying (8) is not unique. We choose not to
make the jump sizes depend on the state value x (except for the boundary conditions), only
the jump rates depend on x. Another possibility is to choose jump sizes that depend on the
state value x. For example instead of the choice of Table 1, we can choose:

λ1(x) = K1 µ(s) , λ2(x) = K2 k µ(s) , λ3(x) = K3 D , λ4(x) = K4 D , λ5(x) = K5 D

and

ν1(x) =
(

b

K1

0

)

, ν2(x) = −

(

0
b

K2

)

, ν3(x) =
(

0

s
in

K3

)

, ν4(x) = −

(

b

K4

0

)

, ν5(x) = −

(

0
s

K5

)
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(if we neglect the boundary condition). Then in place of (17) we have the following set of
equations:

dβt =
[
µ(σt)βt −Dβt

]
dt+

√
µ(σt)
K1

βt dW 1
t +

√
D
K4

βt dW 4
t (20a)

dσt =
[
− k µ(σt)βt +D sin −Dσt

]
dt

+
√

k µ(σt)
K2

βt dW 2
t +

√
D
K3

sin dW 3
t +

√
D
K5

σt dW 5
t (20b)

where W i are independent standard Wiener processes.

A three components model

Instead of the five components ➀ to ➄, we can consider a case with three independent sources
of jump variation. This example strictly preserves the geometry (7) by considering three
independent sources of jump variation:

➀′ biology term: biomass increase and substrate decrease at scale K ′
1;

➁′ inflow term: substrate inflow at scale K ′
2;

➂′ outflow term: biomass and substrate outflow at scale K ′
3

see Figure 2.
Again the jump sizes and rates should be chosen so as to satisfy the mass balance principle

and the stochastic mass action, with no canonical choice. An ad hoc choice is given in the
following table:

➀′ ➁′ ➂′

biology inflow outflow

rate λ′
i(x) K′

1 µ(s) b K′
2 D K′

3 D

jump ν′
i(x)





1

K′

1

−
k∧K

′

1 s

K′

1





(

0
s
in

K′

2

)





−
1∧K

′

3 ‖x‖

K′

3

b

−
1∧K

′

3 ‖x‖

K′

3

s





Table 2: Rates and jumps of an ad hoc choice for three mechanisms of the pure jump process.
Note that the third jump ν′3(x) is radial.

These jumps are now essentially equal to

ν′1
def
=

1

K ′
1

(
1
−k

)

, ν′2
def
=

1

K2

(
0
sin

)

, ν′3
def
=

1

K ′
3

(
−b
−s

)

.

This setting forces the jumps to be directed along the corresponding vector field, which is a
strong constraint. In particular, the stoichiometry is strictly respected: the production of 1 unit
of biomass requires exactly k units of substrate. Moreover the outflow jump is always radial,
so that the increments of biomass and substrate are again strongly linked. Notice that for this
particular choice of λ′

3 and ν′3, the jump rate is constant but the jump size is not. In other
words, the jump carries information both in the direction and the intensity of the variation.
This will affect the qualitative behavior of the process and of its diffusion approximation,
regarding extinction for example.
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As for our canonical model, we obtain a SDE for the diffusion approximation of the jump
process :

dβt =
[
µ(σt)− (1 ∧K ′

3 βt)D
]
βt dt+

√
µ(σt)βt

K′

1

dW 1
t +

√
D
K′

3

(1 ∧K ′
3 ‖ξt‖) βt dW 3

t

dσt =
[
− (k ∧K ′

1 σt)µ(σt)βt +D sin − (1 ∧K ′
3 ‖ξt‖)Dσt

]
dt

+
√

µ(σt) βt

K2
(k ∧K ′

1 σt) dW 1
t +

√
D
K′

2

sin dW 2
t +

√
D
K′

3

(1 ∧K ′
3 ‖ξt‖) σt dW 5

t .

Notice that since W 1 and W 3 affect both components of ξt, the quadratic variation process
〈ξ〉t will not be a diagonal matrix. In comparison with (7), we write the vector form of the
SDE for large Ki’s:

d
(
βt

σt

)
=

[

µ(σt)βt

(
1
−k

)

︸ ︷︷ ︸

biology

+D
(

0
sin

)

︸ ︷︷ ︸

inflow

−D
(
βt

σt

)

︸ ︷︷ ︸

outflow

]

dt

+
√

µ(σt) βt

K′

1

(
1
−k

)
dW 1

t
︸ ︷︷ ︸

biology

+
√

D
K′

2

(
0
sin

)
dW 2

t

︸ ︷︷ ︸

inflow

+
√

D
K′

3

(
βt

σt

)
dW 3

t

︸ ︷︷ ︸

outflow

.

The diffusion term appears as the conjunction of three perturbations acting along the three
vector fields determined by the sources of variation. Moreover, the intensity of the noise could
be different for each type of perturbation. Considering this model could therefore be of interest,
if the geometric interpretation of the noise is meaningful, see [16].

Comparison with the Imhof-Walcher model [15]

We finally mention that the diffusion model appearing in [15], is obtained from (20) by letting
K1 = K2 = K3 = 0 which leads to:

dβt =
[
µ(σt)−D

]
βt dt+ cb βt dW b

t (21a)

dσt =
[
− k µ(σt)βt +D (sin − σt)

]
dt+ cs σt dW s

t (21b)

The choice of these coefficients is justified in [15] by constructing an approximating Markov
chain, and then taking the limit as the sampling rate goes to 0. This model will be compared
to the diffusion approximation (17) model on a simulation test in Section 5.4.

4 Simulation algorithms

We presented several models for the chemostat system: the pure jump model (Xt)t≥0 could be
considered as a detailed model at the microscopic scale. The Poisson approximation (X̃tn)n∈N

given by (12) and the normal approximation (ξ̃tn)n∈N given (16) are constant time step ap-
proximation of the pure jump process. Finally the diffusion process (ξt)t≥0 solution of the SDE
(17) is a continuous time approximation of the pure jump process.

The now present the three associated simulation algorithms that will be valid at different
scales.

4.1 Pure jump model

The pure jump model in continuous time described in Section 3.1 can be exactly simulated
thanks to the Gillespie algorithm, also called stochastic simulation algorithm, described in
Algorithm 1.

When the rate coefficients λi(x) are large the time increment will be small and the Gillespie
algorithm is impractical. As the scale coefficients Ki are large, the λi(x), i 6= 3, are large only
when β and σ are small; λ3(x) will remain large as it does not depend on x.
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t← 0, x← x0

save (t, x)
while t ≤ Tmax do

compute λi(x) % see Table 1

λ =
∑5

i=1 λi(x)
∆t ∼ Exp(λ) % exponential distribution

u ∼ U[0, 1] % uniform distribution

t← t+∆t
if u ≤ λ1(x)/λ then
x← x+ ν̄1 % biomass reproduction

else if u ≤ {λ1(x) + λ2(x)}/λ then
x← [x− ν̄2]+ % consumption

else if u ≤ {λ1(x) + λ2(x) + λ3(x)}/λ then
x← x+ ν̄3 % substrate inflow

else if u ≤ {λ1(x) + λ2(x) + λ3(x) + λ4(x)}/λ then
x← [x− ν̄4]+ % biomass outflow

else
x← [x− ν̄5]+ % substrate outflow

end if
save (t, x)

end while

Here ν̄1 =
(
1/K1

0

)
, ν̄2 =

(
0

1/K2

)
, ν̄3 =

(
0

1/K3

)
, ν̄4 =

(
1/K4

0

)
, ν̄5 =

(
0

1/K5

)
and [x]+ is

the projection on the positive quadrant: [x]+ = [( βσ )]+ =
(
β∨0
σ∨0

)
.

Algorithm 1: Gillespie algorithm (or stochastic simulation algorithm).

4.2 Poisson approximation

t← 0, x← x0

save (t, x)
while t ≤ Tmax do

compute λi(x) % see Table 1

λ =
∑5

i=1 λi(x)
compute mi(x), vi(x) % see (23)
∆t← mini=1···5

{
ε λ/|mi(x)| , ε2 λ2/vi(x)

}

t← t+∆t
Pi ∼ Poisson(λi(x)∆t) for i = 1 · · · 5
x← [x+ ν̄1 P1 − ν̄2 P2 + ν̄3 P3 − ν̄4 P4 − ν̄5 P5]+
save (t, x)

end while

Here ν̄1 =
(
1/K1

0

)
, ν̄2 =

(
0

1/K2

)
, ν̄3 =

(
0

1/K3

)
, ν̄4 =

(
1/K4

0

)
, ν̄5 =

(
0

1/K5

)
and [x]+ is

the projection on the positive quadrant: [x]+ = [( βσ )]+ =
(
β∨0
σ∨0

)
.

Algorithm 2: Poisson approximation or tau-leap method.

The simulation of the previous model could be cumbersome for very high rates of event. In
this case it is desirable to use the fixed time step Poisson approximation method (12) also called
tau-leap [9]. Recently many papers have addressed the numerical analysis of this approximation
scheme [23, 20, 1]. In this method the time step should be small enough so that it fulfills the
following “leap condition”: the state change in any leap should be small enough that no rate
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function λi(x) will experience a macroscopically significant change in its value, that is:
∣
∣
∣λi

(
x+

∑

i′ νi′(x)P i′

n (∆t λi′ (x))
)
− λi(x)

∣
∣
∣ ≤ ε λ(x) (22)

for i = 1 · · · 5, where 0 < ε≪ 1 is an error control parameter.
For this method to be practicable [10] proposed an automatic and simple way of determining

the largest time step ∆t compatible with the leap condition. Define:

mi(x)
def
=

5∑

i′=1

λi′ (x)
(
∇λi(x) · νi′

)
, (23a)

vi(x)
def
=

5∑

i′=1

λi′ (x)
(
∇λi(x) · νi′

)2
(23b)

for i, i′ = 1 · · · 5, and let

∆t = min
i=1···5

{
ε λ(x)

|mi(x)|
,
ε2 λ2(x)

|vi(x)|

}

(24)

where ε is an error control parameter (0 < ε≪ 1), see Algorithm 2. Note that in the original
context the jumps νi(x) do not depends on x, but in our situation they do not essentially
depend on x, the dependence on x was introduced to handle the jump near the axes in order
to avoid negative concentration.

4.3 Diffusion (normal) approximation

t← 0, (β, σ)← (β0, σ0)
save (t, β, σ)
while t ≤ Tmax do
wb ∼ N (0, 1), ws ∼ N (0, 1)

β′ ← β + (µ(σ) −D)β∆t+
√

µ(σ) β
K1

+ Dβ
K4

√
∆t wb

σ′ ← σ + (−k µ(σ)β +D (sin − σ))∆t +
√

k µ(σ) β
K2

+ Dsin

K3
+ Dσ

K5

√
∆t ws

β ← [β′]+ % 0 is an absorbing state for β
σ ← |σ′ − σmin|+ σmin % reflection at σmin = −K5

K3
sin for σ

t← t+∆t
save (t, β, σ)

end while

Algorithm 3: Normal approximation.

The normal approximation (16) can be slightly modified in order to take into account the
qualitative behavior of the SDE (17) near the axes. We propose the following scheme:

β̃tn+1
=

[

β̃tn +
[
µ(σ̃tn)− (1 ∧K4 β̃tn)D

]
β̃tn ∆t

+
√
∆t

√
µ(σ̃tn

) β̃tn

K1
+

(1∧K4 β̃tn
)2 D β̃tn

K4
wb

n

]+

, (25a)

σ̃tn+1
=

∣
∣
∣σ̃tn +

[
− (1 ∧K2 σ̃tn) k µ(σ̃tn) β̃tn +D sin − (1 ∧K5 σ̃tn)D s

]
∆t

+
√
∆t

√
(1∧K2 σ̃tn

)2 k µ(s) β̃tn

K2
+ Dsin

K3
+

(1∧K5 σ̃tn
)2 Ds

K5
ws

n − σmin

∣
∣
∣+ σmin . (25b)

Indeed as β = 0 is an absorbing state for the component βt of the SDE, instead of the standard
Euler-Maruyama (16a), we can use (25a) where [·]+ is the positive part and wb

n are i.i.d. N (0, 1)
random variables.
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Also, to take into account that the component σ is reflected in σmin = −K5

K3
sin we use the

scheme (25b) where ws
n are i.i.d. N (0, 1) random variables. This discretization scheme was

proposed in [4] in the context of the CIR diffusion process. In order to get a positive substrate
concentration we can consider σ̃+

tn = σ̃tn ∨0 or let σmin = 0 in (25b). The simulation procedure
is presented in Algorithm 3.

Remark 4.1 (Scales and hybrid simulation) The three algorithms proposed here are valid
at different scales. In the Gillespie algorithm all the detailed microscopic jumps of the dynamics
are simulated.

The idea of the Poisson approximation is to consider a time step ∆ that should be small
enough so that the different event rates barely evolve in the time interval [t, t +∆t], but large
enough for the approximation to be worthwhile. Starting in x at t, the time step ∆t is given
by (24) but if it is less than a few multiples of 1/λ(x) then the Gillespie algorithm should be
preferred.

Now the Poisson variables Pi of parameter λi(x)∆t could be approximated by normal vari-
ables N (λi(x)∆t, λi(x)∆t) as soon as λi(x)∆t ≥ 20.

The simulation method can automatically switch from one algorithm to another one ac-
cording to the scale. We can also imagine that different components of the state vector are
simulated with different algorithms.

5 Simulation study

We present simulation results of the discretized diffusion model (25) with Monod and Haldane
specific growth rates (2). The ODE (1) is integrated with a Runge-Kutta1 scheme but the
Euler scheme, corresponding to (25) with Ki =∞, gives very close results.

In addition to the deterministic case (case 0 with Ki = ∞ for all i), we consider 3 basic
cases (see Table 3):

“Standard” scales: K2,3,5 = 100×K1,4 corresponds to the “standard” case where the sub-
strate concentration dynamics is closer to the deterministic case than the biomass con-
centration dynamics.

“Unstirred inflow/outflows” scales: K1,2 = 100 × K3,4,5 corresponds to the case where
inflow and outflows are unstirred.

“Fluid substrate” scales: K2,3,4 = ∞, in this case the substrate equation (17b) is deter-
ministic, i.e. the substrate dynamics is in fluid limit.

“Biological only” scales: K3,4,5 =∞, in this case we consider that the randomness is only
due to biological aspects of the system.

5.1 A first comparison of trajectories

We consider the set of parameters of Table 4 (set 1) for the Monod case in the “standard” scales
K1,4 = 106 and K2,3,5 = 108.

In Figure 3 we present a simulation of the pure jump process with the Gillespie method.
As expected, most of the events corresponds to small jumps of the substrate concentration.
Before addressing the question of reliability of these algorithms, see next subsection, we first
focus on the qualitative nature of the trajectories proposed by the various methods.

In Figure 4, a simulation in a short time horizon of 0.1 (h) is proposed with Gillespie
method (exact simulation) and the Poisson approximation method (tau-leaping) with a very
small error control parameter ε = 10−6. The corresponding trajectories are very similar though
106 events are needed for the Gillespie method and only 3500 time steps are needed for the
tau-leap method.

1The routine ode45 of Matlab, an explicit Runge-Kutta (4,5) formula.
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cases K1 K2 K3 K4 K5

0 deterministic ∞ ∞ ∞ ∞ ∞

1 “standard” case 1.1 104 106 106 104 106

(see Figure 8) case 1.2 105 107 107 105 107

case 1.3 107 109 109 107 109

2 “unstirred inflow/outflows” case 2.1 106 106 104 104 104

(see Figure 9) case 2.2 107 107 105 105 105

case 2.3 109 109 107 107 107

3 “fluid substrate” case 3.1 106 ∞ ∞ 104 ∞

(see Figure 10) case 3.2 107 ∞ ∞ 105 ∞

case 3.3 109 ∞ ∞ 107 ∞

4 “biological only” case 4.1 106 104 ∞ ∞ ∞

(see Figure 11) case 4.2 107 105 ∞ ∞ ∞

case 4.3 109 107 ∞ ∞ ∞

(here “∞ = 1020”)

Table 3: Simulation cases.

Monod model

set 1 set 2

k 10 10 stoichiometric constant
µmax 3 0.5 maximal growth rate (h−1)
D 0.12 0.4 dilution rate (h−1)
sin 0.5 10 input concentration (g/l)
ks 6 1 half saturation constant (g/l)

set 1 set 2

Table 4: Sets of simulation parameters and the corresponding Monod growth rate functions
s→ µ(s). The horizontal doted line is the maximum capacity µ

max
and the vertical doted line

the asymptotic substrate concentration of the ODE corresponding to the non-washout case.
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Figure 3: Simulation of the pure jump process with the Gillespie Algorithm 1 for K1,4 = 106

and K2,3,5 = 108 and 1237928 events (blue: a realization of the jump process (Xt)0≤t≤0.1,
green: the ODE (x(t))0≤t≤0.1) — the substrate dynamics (RIGHT) presents many small size
jumps, the biomass dynamics (LEFT) less jumps but with higher amplitude. The corresponding
phase-portrait is plotted in Figure 4 (LEFT).

Figure 4: LEFT : Simulation of the pure jump process with the Gillespie Algorithm 1 for
K1,4 = 106 and K2,3,5 = 108 and 1237928 events (blue: a realization of the jump process
(Xt)0≤t≤0.1, green: the ODE (x(t))0≤t≤0.1) — the substrate dynamics presents many small
size jumps, the biomass dynamics less jumps but with higher amplitude — the final time of
simulation is 0.1 (h). RIGHT: same simulation with the Poisson approximation (X̃tn)0≤tn≤0.1

(tau-leap) with 3456 events for ε = 10−6 (the time step is ≃ 1.89× 10−5).

Figure 5 present a simulation on a realistic length of time 100 (h). Here only the Poisson
approximation and the normal approximation are reliable. For the Poisson approximation we
use ε = 10−3 (so that ∆t is between 0.016612 and 0.034232, for 3004 time steps) and for
the normal approximation we use 2000 (corresponding to ∆t = 0.025). Again, the associated
trajectories are very similar.

5.2 Law of the concentrations at a given time t

In Figure 6, we propose a Monte Carlo simulation to approximate the marginal densities of the
biomass concentration Bt and of the substrate concentration St at a given time t. We consider
the set of parameters of Table 4 (set 1) for the Monod case in the “standard” scales K1,4 = 105

and K2,3,5 = 107.
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Figure 5: LEFT : Simulation of the Poisson approximation with the τ-leap Algorithm 1
for K1,4 = 106 and K2,3,5 = 108 and 3004 events (blue: a realization of the jump pro-

cess (X̃tn)0≤tn≤100, green: the ODE (x(t))0≤t≤100), ε = 10−3, ∆t between 0.028 and 0.0344.

RIGHT: same simulation with the normal approximation (ξ̃tn)0≤tn≤100 (diffusion approxima-
tion) with 2000 time steps with ∆t = 0.05.

We compute (S
(j)
t , B

(j)
t ) for t = 3 (h) for j = 1 · · · 20000 independent Monte Carlo trials of

the pure jump process (with the Gillespie method), with the Poisson approximation (tau-leap
method) and with the normal approximation. For the tau-leap method we choose a constant
time step. For “Poisson 1” and “Normal 1” we use a step of 0.05, for “Poisson 2” and “Normal
2” we use a step of 0.5. For each test, we compute the approximate density of St and Bt

from the sample with a kernel method. Hence we compare 5 probability density functions
for each component St and Bt. We also compute the empirical mean and standard deviation
associated with the sample obtained from the pure jump process and we plot the associated
normal density.

Initial conditions are B0 = 0.026 and S0 = 0.26, corresponding to the case of Figure 5,
which is quite far from the equilibrium state.

The conclusions are:

• The two approximations (Poisson and normal) are very close to the exact simulation of
the pure jump process; the approximation with a larger step 0.5 is slightly different.

• The computation times2 are:

– for the exact simulation of the pure jump process: 5 h 45 min 32.6 s;

– for the Poisson approximation: 33.2 s (with the time step 0.05) and 4.6 s (with the
time step 0.5);

– for the normal approximation: 0.7 s (with the time step 0.05) and 0.1 s (with the
time step 0.5).

In the present situation, where the parameters Ki are rather high, and for non-small
concentration of the biomass and the substrate, the exact simulation of the pure jump
process (Gillespie method) should be avoided.

• The resulting empirical densities are very close to normal densities and the solution of
the ODE coincide with the mean of these normal densities.

2CPU time on a 2.13GHz Intel Core 2 Duo with a RAM of 2 GB.
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Figure 6: Empirical densities for the substrate and the biomass concentrations at time t = 3
obtained with the exact simulation of the pure jump process (St, Bt) with the Gillespie method
(blue line), with the Poisson approximation (S̃t, B̃t) with constant time step (red solid line for
a step 0.05, red dash line for a step 0.5), with the normal approximation (σ̃t, β̃t) with constant
time step (green solid line for a step 0.05, green dash line for a step 0.5). The corresponding
CPU time are respectively: 5 h 45 min 32.6 s, 33.2 s, 4.6 s, 0.7 s, 0.1 s. The simulation
parameters are the Set 1 of Table 4 (Monod growth function) with “standard” scales K1,4 = 105

and K2,3,5 = 107. We compute the substrate and the biomass concentrations at t = 3 (h) and
for j = 1 · · · 20000 independent Monte Carlo trials. The empirical densities are obtained with a
kernel approximation procedure. We also compute the empirical mean and standard deviation
from the sample of the pure jump process and plot with a thick grey line the corresponding
normal densities: the match is very good. The vertical doted line the value of the substrate and
biomass concentration at time t = 3 given by the ODE; again it matches the mean of all the
empirical densities (except the ones corresponding to the time step 0.5).

A second test is proposed in the case of the Haldane growth function (Set 2 of Table 5): see
Figure 7. The conclusions are the same as for the Monod case.
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Figure 7: Empirical densities for the substrate and the biomass concentrations St and Bt at
time t = 0.2 obtained with the exact simulation of the pure jump process (St, Bt) with the
Gillespie method (blue line), with the Poisson approximation (S̃t, B̃t) with constant time step
(red solid line for a step 0.005, red dash line for a step 0.01), with the normal approximation
(σ̃t, β̃t) with constant time step (green solid line for a step 0.005, green dash line for a step
0.01). The corresponding CPU time are respectively: 3 h 54 min 16.9 s, 13.5 s, 6.7 s, 0.1
s, 0.1 s. The simulation parameters are the Set 2 of Table 5 (Haldane growth function) with
“standard” scales K1,4 = 105 and K2,3,5 = 107. We compute the substrate and the biomass
concentrations at t = 0.2 (h) and for j = 1 · · · 20000 independent Monte Carlo trials. The
empirical densities are obtained with a kernel approximation procedure. We also compute the
empirical mean and standard deviation from the sample of the pure jump process and plot with
a thick grey line the corresponding normal densities: the match is very good. The vertical doted
line the value of the substrate and biomass concentration at time t = 0.2 given by the ODE;
again it matches with the mean of all the empirical densities. The initial condition (S0, B0) is
the stable equilibrium solution of the ODE (1) that does not correspond to the washout: hence
these empirical densities could be considered as good approximations of the limit distribution
of the stochastic chemostat.
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Haldane model

set 1 set 2

k 0.1 0.1 stoichiometric constant
µmax 2 8 maximal growth rate (h−1)
D 0.4 0.4 dilution rate (h−1)
sin 1 1 input concentration (g/l)
ks 4 17 half saturation constant (g/l)
ki 1 1 saturation parameter )

set 1 set 2

Table 5: Sets of simulation parameters and the corresponding Haldane growth rate functions
s→ µ(s). The horizontal doted line is the maximum capacity µ

max
and the vertical doted line

is the asymptotic substrate concentration of the ODE corresponding to the non-washout case.

5.3 About the scales parameters

As we have seen, for large populations, the diffusion approximation ξ̃tn = (β̃tn , σ̃tn) given
by (25) is very close to the reference pure jump model Xt = (Bt, St). So we now propose
simulations of the diffusion approximation in the case of a Monod specific growth rate according
to the scales scenarios of Table 3

• Case 1 (“standard”): see Figures 8 and 12.

• Case 2 (“unstirred inflowoutflows”): see Figures 9 and 13.

• Case 3 (“fluid substrate”): see Figures 10 and 14.

• Case 4 (“biological only”): see Figures 11 and 15.

Figures 8 to 11 represent a simulation of a single trajectory in the 3 levels of scale: cases m, 1
to m, 3 (for m = 1 · · · 4). Figures 12 to 15 represent the result of 10000 Monte Carlo trials in
the 3 levels of scale: cases m, 1 and m, 2 (for m = 1 · · · 4). We represent the mean trajectory
and the empirical law of ξ̃T at final time T .

We can conclude that, at this level of population and scale:

• The stochasticity is negligible only in the Case 4 (“biological only”) and at the highest
scale level (cases m, 3).

• The ODE solution x(t) matches the (empirical) mean of the stochastic process at these
scales (as the stochastic process is solution of a nonlinear equation, there is no reason
for the mean of the stochastic process to coincide with the solution of the deterministic
equations).

Equivalent results have been obtained for the Haldane case.

5.4 Comparison with the Imhof-Walcher model [15]

We compare the processes ξt = (βt, σt)
∗ given by the diffusion approximation model (17) with

the one given by the ad hoc model (21). The parameter are: K = 1, µmax = 1, D = 0.5,
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Figure 8: Diffusion approximation, Case 1, Table 3 (“standard case”) / Simulation of (25) with
Monod specific growth rate (2) with the parameters of Table 4 — Time evolution of the biomass
concentration (top left), time evolution of the substrate concentration (top right), phase portrait
biomass/substrate concentrations (bottom) according to 4 cases: case 0, case 1.1, case 1.2, case
1.3 (see Table 3). Cases 0 (deterministic) and 1.3 are identical.
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Figure 9: Diffusion approximation, Case 2, Table 3 (“unstirred inflow and outflows”) / Sim-
ulation of (25) with Monod specific growth rate (2) with the parameters of Table 4 — Time
evolution of the biomass concentration (top left), time evolution of the substrate concentration
(top right), phase portrait biomass/substrate concentrations (bottom) according to 4 cases: case
0, case 2.1, case 2.2, case 2.3 (see Table 3). Cases 0 (deterministic) and 2.3 are identical.
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Figure 10: Case 3, Table 3 (“substrate fluid limit case”) / Simulation of (25) with Monod
specific growth rate (2) with the parameters of Table 4 — Time evolution of the biomass con-
centration (top left), time evolution of the substrate concentration (top right), phase portrait
biomass/substrate concentrations (bottom) according to 4 cases: case 0, case 3.1, case 3.2, case
3.3 (see Table 3). Cases 0 (deterministic) and 3.3 are identical.
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Figure 11: Case 4, Table 3 (“biological case”) / Simulation of (25) with Monod specific growth
rate (2) with the parameters of Table 4 — Time evolution of the biomass concentration (top
left), time evolution of the substrate concentration (top right), phase portrait biomass/substrate
concentrations (bottom) according to 4 cases: case 0, case 4.1, case 4.2, case 4.3 (see Table 3).
Cases 0 (deterministic) and 4.3 are identical.
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Figure 12: Cases 1.1 and 1.2 Table 3 / Sampling 10000 Monte Carlo trials of the law of
(β̃tn , σ̃tn) for tn = 100 — The deterministic solution and the mean of the sampled trajec-
tories coincide — The final law is represented by the sample and by the contour plot of the
corresponding kernel approximation of the p.d.f.

Figure 13: Cases 2.1 and 2.2 Table 3 / Sampling 10000 Monte Carlo trials of the law of
(β̃tn , σ̃tn) for tn = 100 — The deterministic solution and the mean of the sampled trajec-
tories coincide — The final law is represented by the sample and by the contour plot of the
corresponding kernel approximation of the p.d.f.
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Figure 14: Cases 3.1 and 3.2 Table 3 / Sampling 10000 Monte Carlo trials of the law of
(β̃tn , σ̃tn) for tn = 100 — The deterministic solution and the mean of the sampled trajec-
tories coincide — The final law is represented by the sample and by the contour plot of the
corresponding kernel approximation of the p.d.f.

Figure 15: Cases 4.1 and 4.2 Table 3 / Sampling 10000 Monte Carlo trials of the law of
(β̃tn , σ̃tn) for tn = 100 — The deterministic solution and the mean of the sampled trajectories
coincide.
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S in = 8, ks = 0.5, final time T = 20, ∆t = 0.02, 20000 Monte Carlo trials; Ki = 105 for (17)
and cb = cs = 0.02 for (21). The parameters are chosen so that the biomass concentration
evolves from 0.5 to about 7.5, and the substrate concentration from 5 to about 0.5. Also the
limit distribution is lesser than 1 in the substrate and greater than 1 in the biomass. Indeed
one of the main difference between (17) and (21) is than for state values less than 1 (resp.
more greater than 1) the noise variance for the first model is greater (resp. lesser) than the
noise variance for the second model.

This example illustrates clearly that the two models differ substantially.

6 Discussion

We started from a reference pure jump model Xt, described by rates/jumps structure of Table
1 or as a solution of the stochastic differential equation (10). The martingale decomposition
(41) clearly describes that the dynamics of Xt is the combination of the classical deterministic
dynamics of the chemostat (1) plus martingale terms with coefficients 1/

√
Ki and with explic-

itly known quadratic variations, see (42). These quadratic variation terms allow us to assess
the difference between the stochastic model and the deterministic one.

We presented the explicit Monte Carlo simulation procedure, called Gillespie method, for
the process Xt. In standard cases, that is for high population levels (i.e. Ki large), this
procedure is not feasible as it requires us to simulate too many events. In this case, we presented
the Poisson approximation (25b) and the normal approximation (25), both in discrete-time.
These approximations are valid only for large populations, i.e. about the axes, it is necessary to
return to the pure jump process representation. In the application discussed here, the Poisson
approximation is of little interest: it is more time-consuming than the diffusion approximation
and valid only on a very limited scale range between the pure jump model and the normal
approximation model.

In contrast with previous stochastic chemostat models [26, 7, 15] where the stochasticity was
introduced according to an ad hoc approach, in the present work we propose a family of models
where the structure of the noise emerges from the very dynamics and where the scale parameters
can be tuned according to the problem under interest. In particular it allows us to propose
hybrid models where the cell population dynamics features stochasticity as the substrate is in
fluid dynamics (ODE), corresponding to the Case 3 of Table 3. This kind of model has already
been proposed in [11] in a three trophic levels case where the stochasticity appears only in the
top level trophic as a stochastic logistic model and with fluid limit dynamics for the two other
levels; it also has been proposed in [3] with a pure jump process for the biomass dynamics and
a fluid limit for the substrate. This approach can also be related to coupled slow/fast reactions
in stochastic chemical kinetics [13, 2].

The approach proposed here can be applied to any model of population dynamics especially
in cases of difference of scale between the different dynamics (e.g. cell/substrate). The dynam-
ics of interacting populations cannot be modeled by a single model but rather by a family of
models whose domain of validity depends on the scale at which the dynamics are considered.
For example the normal approximation model represented as stochastic differential equations
(17) or the ODE model (1) are valid in high population levels, hence using such models to infer
extinction characteristics like extinction time and extinction probabilities is not valid. This
was already noticed by [22] and [27].

In most standard population scales of the chemostat the ODE model is justified. Also, the
ODE framework proposes analysis, control and optimization tools that are more accessible than
the one of the SDE context. Though, as seen, the stochasticity cannot be neglected in many
situations. This stochasticity could be of small intensity in the present single species/single
substrate situation but could deeply perturb multiple species/multiple substrates situations.
The SDE model could be simulated at a small extra computational cost and offers a more
realistic prediction tool. Indeed, as it can account for the variability of the experiments,
the simulation of the SDE offers the possibility to explore in depth the potentialities of the
dynamical systems.
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Figure 16: Comparison of the processes ξt = (βt, σt)
∗ given by the diffusion approximation

model (17) and by the ad hoc model (21). Evolution of the biomass concentration (top) and
substrate concentration (center) during time; final joint density approximation of concentration
(bottom). The two models differ substantially: compared to the diffusion approximation, the
ad hoc model overestimates (resp underestimates) the noise variance for concentration greater
(resp. lesser) than 1.
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The SDE model is also more adapted for the confrontation to the data as it allows us to build
a statistical model and the associated likelihood function. One of the next important steps,
that we will investigate in coming work, will be to propose an adapted statistical procedure to
estimate the scale parameters Ki, and in a second step to estimate the parameters (D, sin...).
In the future we will also investigate the long-term behavior of these models as well as their
optimal command.
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Appendices

A Representation of the process Xt

Infinitesimal generator

We consider the Markov process Xt with infinitesimal generator:

Aφ(x) =
5∑

i=1

λi(x) [φ(x + νi(x)) − φ(x)] (26)

for all φ : R2
+ 7→ R continuous with compact support [6, Th. 8-3.1]. The infinitesimal generator

can also be understood in the following way:

P(Xt+∆t = x+ y|Xt = x) ≃







λi(x)∆t+ o(∆t) , if y = νi(x) for i = 1 · · · 5,
1−∑5

i=1 λi(x)∆t+ o(∆t) , if y = 0,
o(∆t) , otherwise.

or as

Aφ(x) = lim
t→0

Eφ(Xx
t )− φ(x)

t

where Xx
t is the process Xt starting from x. It can be rewritten as:

Aφ(x) = λ(x)

∫

R2
+

[φ(y)− φ(x)] ρ(x, dy)

with

λ(x)
def
=

5∑

i=1

λi(x) , (27)

ρ(x, dy)
def
=

5∑

i=1

λ̄i(x) δx+νi(x)(dy) with λ̄i(x)
def
=

λi(x)
∑5

i′=1 λi′ (x)
(28)

We define the jump times: τ0 = 0 and

τn
def
= inf

{
t > τn−1 ; Xt 6= Xτn−1

}

and the embedded jump chain
Yn

def
= Xτn .

It is well know that (i) Yn is a Markov chain on R
2
+ with transition probability ρ(x, dy);

(ii) for all n ≥ 1, conditionally on Y0, . . . , Yn−1, the holding times τ1 − τ0, . . . , τn − τn−1 are
independent and exponentially distributed of intensity parameters λ(Y0), . . . , λ(Yn−1), see [21].
These properties are at are the basis of the Gillespie simulation algorithm (see Algorithm 1).

Non-explosion and existence of moments

To study the non-explosion and existence of moments, we define the mean jump size function:

mK(x)
def
=

∫

R2
+

(y − x) ρ(x, dy) =
5∑

i=1

νi(x) λ̄i(x) . (29)

and, for p ≥ 1

|mK |p(x) def
=

∫

R2
+

|y − x|p ρ(x, dy) =
5∑

i=1

|νi(x)|p λ̄i(x) . (30)
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Note that from (14):

fK(x) = λ(x)mK (x) (31)

and if we replace νi(x) by νi in (31) we get:

5∑

i=1

νi λi(x) =

(
µ(s) b −D b

−k µ(s) b+Dsin −D s

)

= f(x)

where f(x) is the right-hand-side function of the ODE (1).
fK(x) is the instantaneous mean of the process Xt, more precisely we will show in Proposi-

tion A.3, that E(Xt+∆t|Xt = x) ≃ fK(x)∆t. As proved in the next lemma fK(x) is essentially
f(x), so locally in time the mean of the process Xt behaves like x(t).

Lemma A.1 Consider νi(x) defined in Table 1, νi defined by (9) and fK(x) defined by (14).
First |νi(x)| ≤ |νi|. Then let

RK
def
=

{

x = ( b
s ) ∈ R

2
+ ; b ≤ 1

K4
or s ≤ 1

K2
or s ≤ 1

K5

}

.

For x 6∈ RK , νi(x) = νi, mK(x) = m(x), fK(x) = f(x). For all x ∈ R
2
+:

|νi(x)− νi| ≤
1

minj=1···5 Kj
, i = 1, . . . , 5 , (32)

|mK(x) −m(x)| ≤ 1

minj=1···5 Kj
, (33)

|fK(x)− f(x)| ≤ (1−K2 s)
+ k µ(s) b + (1−K4 b)

+D b+ (1 −K5 s)
+ D s (34)

so that fK(x) → f(x) when Ki → ∞ for all i = 1, . . . , 5 and this convergence is uniform on
any compact set of (0,∞)2.

Proof For x 6∈ RK it is clear that νi(x) = νi so fK(x) = f(x). For all x, we have ν1(x) ≡ ν1
and ν3(x) ≡ ν3 and:

ν2(x) − ν2 = 1
K2

(
0

(1−K2 s)+

)

,

ν4(x) − ν4 = 1
K4

(
(1−K4 b)+

0

)

,

ν5(x) − ν5 = 1
K5

(
0

(1−K5 s)+

)

so we get (32). The following assertions of the lemma are straightforward. 2

Non-explosion and existence of moments are given by the following result:

Theorem A.2 (Hamza and Klebaner [12]) Suppose that λ(x) > 0 for all x ∈ R
2
+ and that

there exist C > 0 and p ≥ 1 such that E(|X0|p) <∞ and

λ(x) |fK |p(x) ≤ C (1 + |x|p) , ∀x ∈ R
2
+ (35)

then the Markov process (Xt)t≥0 is non-explosive, that is τn →∞ a.s., and for all T > 0 there
exists C > 0 s.t. E(|Xt|p) ≤ C for all t ≤ T .

Indeed λ(x) =
∑

i λi(x) ≥ K3 D sin > 0 and

|fK |p(x) =
5∑

i=1

|νi(x)|p λ̄i(x)

≤ µ(s) b

Kp−1
1

+
k µ(s) b

Kp−1
2

+
D sin

Kp−1
3

+
D b

Kp−1
4

+
D s

Kp−1
5

≤
( 1

Kp−1
1

+
1

Kp−1
2

+
1

Kp−1
3

+
1

Kp−1
4

+
1

Kp−1
5

)

(1 + |x|)

so that (35) is fulfilled for all p ≥ 1. Hence the Markov process Xt with infinitesimal generator
A defined by (26) is non-explosive and Xt admits moments of all order for all t ≥ 0.
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Representation for the process Xt

We now give a representation for the process Xt as a solution of a stochastic differential equation
driven by random Poisson measures:

Proposition A.3 The process Xt is defined for all t ≥ 0 and it is solution of the jump
SDE (10) where N i are independent random Poisson measures with intensity measure du×dv
(Lebesgue measure).

Proof We first verify that the stochastic integral in (10) is defined. According to [14, § II-3],
this integral is defined if:

E

∫ t

0

∫ ∞

0

|νi(Xu)| 1{v≤λi(Xu)} dv du <∞ .

We have

E

∫ t

0

∫ ∞

0

|νi(Xu)| 1{v≤λi(Xu)} dv du

≤ 1

Ki
E

∫ t

0

λi(Xu)du ≤ C

∫ t

0

(1 + E|Xu|)du

which is finite according to Theorem A.2. 2

Consider the centered random Poisson measure:

Ñ i(du× dv)
def
= N i(du× dv)− du× dv .

According to [14, § II-3]

M i
t

def
=

∫ t

0

∫ ∞

0

νi(Xu−) 1{v≤λi(Xu− )} Ñ
i(du× dv) , i = 1, . . . , 5 (36)

are five independent square-integrable martingales with finite moments of all orders. Let:

Mt
def
=

5∑

i=1

M i
t . (37)

From (10):

Xt = X0 +

∫ t

0

fK(Xu)du+Mt . (38)

We want to study the behavior of the martingales M i
t as the Ki → ∞. First note that

M i
t =

(
mi

t

0

)

for i = 1, 4 and M i
t =

(
0
mi

t

)

for i = 2, 3, 5 with

m1
t

def
=

1

K1

∫ t

0

∫ ∞

0

1{v≤λ1(Xu− )} Ñ
1(du× dv) , (39a)

m2
t

def
= − 1

K2

∫ t

0

∫ ∞

0

(1 ∧K2 Su−) 1{v≤λ2(Xu− )} Ñ
2(du× dv) , (39b)

m3
t

def
=

1

K3

∫ t

0

∫ ∞

0

1{v≤λ3(Xu− )} Ñ
3(du× dv) , (39c)

m4
t

def
= − 1

K4

∫ t

0

∫ ∞

0

(1 ∧K4Bu−) 1{v≤λ4(Xu− )} Ñ
4(du× dv) , (39d)

m5
t

def
= − 1

K5

∫ t

0

∫ ∞

0

(1 ∧K5 Su−) 1{v≤λ5(Xu− )} Ñ
5(du× dv) . (39e)
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As mi
t is of the form mi

t =
∫ t

0

∫∞
0 γi(u−, v) Ñ i(du×dv) then the associated predictable quadratic

variation is 〈mi〉t =
∫ t

0

∫∞
0

[γi(u, v)]2 dv du so we can easily check that

〈m1〉t =
1

K1

∫ t

0

µ(Su)Bu du ,

〈m2〉t =
1

K2

∫ t

0

(1 ∧K2 Su)
2 k µ(Su)Bu du ,

〈m3〉t =
1

K3
D sin t ,

〈m4〉t =
1

K4

∫ t

0

(1 ∧K4 Bu)
2 DBu du ,

〈m5〉t =
1

K5

∫ t

0

(1 ∧K5 Su)
2 DSu du .

Define

m̄i
t

def
=

√

Kim
i
t =

√

Ki

∫

[0,t]×[0,∞)

γi(u−, v) Ñ i(du× dv) . (40)

So we obtained the following representation of the process Xt that emphases the dependence
on the Ki:

dBt =
(
µ(St)Bt − (1 ∧K4 Bt)DBt

)
dt+ 1√

K1
dm̄1

t +
1√
K4

dm̄4
t (41a)

dSt =
(
− (1 ∧K2 St) k µ(St)Bt +D sin − (1 ∧K5 St)DSt

)
dt

+ 1√
K2

dm̄2
t +

1√
K3

dm̄3
t +

1√
K5

dm̄5
t (41b)

where m̄i
t are independent square integrable martingales with the following quadratic varia-

tions:

〈m̄1〉t =
∫ t

0

µ(Su)Bu du , (42a)

〈m̄2〉t =
∫ t

0

(1 ∧K2 Su)
2 k µ(Su)Bu du , (42b)

〈m̄3〉t = D sin t , (42c)

〈m̄4〉t =
∫ t

0

(1 ∧K4Bu)
2 DBu du , (42d)

〈m̄5〉t =
∫ t

0

(1 ∧K5 Su)
2 DSu du . (42e)

B Existence and uniqueness for a solution of the SDE (17)

To prove that the system (17) admits a strong solution and pathwise uniqueness holds we use
the results of [24, p. 134] or [5]. Let DN = [ 1N , N ]× [−K5

K3
sin + 1

N , N ] and rewrite (17) as:

dξt = f(ξt)dt+ g(ξt)dWt (43)

where ξt = (βt, σt)
∗ and Wt = (W b

t ,W
s
t )

∗. The coefficient g is not Lipschitz continuous, it is
globally Lipschitz on DN for all N , but we can find Lipschitz continuous coefficients fN and
gN such that:

fN(ξ) = f(ξ) for ξ ∈ DN , fN (ξ) = 0 for ξ 6∈ D2N ,

gN(ξ) = g(ξ) for ξ ∈ DN , gN (ξ) = 0 for ξ 6∈ D2N .
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The the system

dξNt = fN (ξNt )dt+ gN(ξNt )dWt

admits a unique strong solution ξN . Let:

TN = inf{t ≥ 0 ; ξNt 6∈ DN} .

Hence if N ≥M then ξN = ξM for all t ≤ TM , so we can define a process ξ∞ such that:

ξ∞t = ξNt ∀t ≤ TN

and will be solution of (43) up to the explosion time T∞ = limN→∞ TN . Then by stability
property and by the fact that the solution cannot cross the boundary of D we get T∞ = ∞
a.s. which proves the strong existence and pathwise uniqueness defined for all t ≥ 0.
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