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Abstract—Communication performance is a critical issue in
HPC applications, and many solutions have been proposed on
the literature (algorithmic, protocols, etc.) In the meantime,
computing nodes become massively multicore, leading to a real
imbalance between the number of communication sources and
the number of physical communication resources. Thus it is
now mandatory to share network boards between computation
flows, and to take this sharing into account while performing
communication optimizations.

In previous papers, we have proposed a model and a frame-
work for on-the-fly optimizations of multiplexed concurrent
communication flows, and implemented this model in the
NEWMADELEINE communication library. This library features
optimization strategies able for example to aggregate several
messages to reduce the number of packets emitted on the
network, or to split messages to use several NICs at the same
time.

In this paper, we study the tuning of these dynamic optimiza-
tion strategies. We show that some parameters and thresholds
(rendezvous threshold, aggregation packet size) depend on
the actual hardware, both host and NICs. We propose and
implement a method based on sampling of the actual hardware
to auto-tune our strategies. Moreover, we show that multi-rail
can greatly benefit from performance predictions. We propose
an approach for multi-rail that dynamically balance the data
between NICs using predictions based on sampling.

I. INTRODUCTION

The success of cluster architectures as the most

widespread platform for high performance computing comes

from the aggressive performance/cost ratio. A challenge in

exploiting such architectures is to hide the communication

cost. As low-level drivers are rather difficult to efficiently

exploit, intermediate communication libraries propose to

abstract the use of the most widespread network technologies

and have to know precisely the drivers’ behavior to harness

the full capacities. Several transfer methods are usually

required in order to achieve optimal transfer whatever the

message size – for example, in message passing paradigm

context, small messages use to be sent through a raw transfer

while larger ones are managed after a handshake between

both communication sides, etc. In that case, the selection

of the adequate transfer method, related to message sizes,

is usually defined by hard-coded thresholds that rely on the

driver’s documentation or on an empirical study made by

the programmer. However, the efficiency of the underlying

transfer methods highly depends on the characteristics of

the machines that actually run the application. The hardware

type, brand, low-level driver version, for the NIC and even

the host configuration are all determining parameters.

The introduction of multicore processors in clusters leads

to other challenges for communication libraries as the num-

ber of communication sources increases much faster than the

network resources. The NICs thus have to be shared by mul-

tiple processing units. The need for multiplexing as well as

the increase of communication leads the way to optimization

opportunities. The performance of each of those potential

optimizations (such as aggregation, reordering, splitting) is

affected by various aspects of the machines that run the

application. Collecting information on the performance of

each strategy permits to apply the most appropriate.

In this paper, we study the impact of various character-

istics of the machine on communication achievements. We

propose and implement in NEWMADELEINE, our commu-

nication library, a method based on sampling of the actual

hardware to auto-tune the optimization strategies. Section 2

presents the hardware features that we focus on and their

impact on our strategies. The measurement collection as well

as its use by the strategies in NEWMADELEINE is explained

in Section 3. The results of the evaluation of the sampling-

based system are presented in Section 4. Related works are

described in Section 5 and Section 6 draws a conclusion and

introduces about future works.

II. SAMPLING-BASED AUTO-TUNING OF A

COMMUNICATION LIBRARY

This section shows different types of optimizations, rang-

ing from low-level mechanisms to high-level message re-

ordering, which demonstrate utility in harnessing the full

capacities of network technologies.

A. Methodology overview

Communication libraries aim at achieving the best pos-

sible performance with a given network hardware. Most
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Figure 1. Levels of tunable network mechanisms: (1) protocol: to perform
a single communication on a given network; (2) multi-rail: to balance
over multiple networks; (3) optimization: to apply on-the-fly optimization
scheduling strategies.

modern communication libraries use complex protocols and

optimization mechanisms. Their efficiency depends on the

actual network and host hardware, making their tuning a

very difficult task. In this paper, we distinguish three levels

of mechanisms, as depicted in Figure 1:

• protocol — To optimize a single raw communication

on a given network, communication libraries usually

implement several communication transfer methods,

depending on the message size, with thresholds to

switch from one method to another. However, these

thresholds are likely to vary between hardware type,

brand, and software configuration.

• multi-rail — On clusters with multiple NICs per node,

the communication library has to arbitrate the access

to the physical communication resources, in order to

interleave communication flows and make communica-

tion progress fairly. Balancing packets between NICs

requires to predict accurately their performance.

• optimization — Some communication libraries are

able to apply optimization patterns on the fly in various

ways (aggregation, reordering, etc.) depending on the

available physical resources. Knowing the costs and

benefits of these operations allows the library to apply

the most effective optimization operations to packets.

It is possible to use quirks — choose among a list

of known network hardware with empirically determined

values for all parameters and thresholds —, but this method

is highly non-portable and difficult to maintain in the long

term. Moreover, the network card is not the only parameter.

The CPU and memory bandwidth have a major impact [1] on

communication performance. Even further, driver version,

host configuration, operating system, and libc version

(memcpy implementation vary from one version to another)

may have an influence on communication transfer.

Given the large number of parameters and their in-

teractions, we propose to work with real information by

measuring the actual performance of the communication

library on a wide spectrum of parameters (eg. message size,

performance of memcpy, etc.) Then, these results are used

by the library to compute the best value for all parameters

and to predict the performance of the network.

B. Adapting transfer methods choice to the hardware

Communication libraries usually implement at least two

different communication methods, known as eager and ren-

dezvous. When sending data eagerly, the sender does not

know whether the receiver is ready or not, i.e. whether the

application has posted its recv or not. Data is copied in

memory at the receiver side in the case of an unexpected

message. However, memory copies decrease bandwidth for

large messages. To avoid such an impact on bandwidth,

communication libraries usually implement a rendezvous

mechanism: the sender sends a rendezvous request; the

receiver replies when it is ready to receive; finally the sender

sends data and the receiver receives it without any copy.

Compared to raw network transfer, the overhead of the

eager method is a memory copy; the overhead of the

rendezvous method is round-trip time. eager mode is used

for small messages, and rendezvous for large messages. The

threshold to switch from eager to rendezvous is the size

where the overhead of the memory copy becomes higher

than the cost of a round-trip.

However, these overheads highly depend on the hardware,

namely the performance profile of memory copies and the

performance of the network. It is expected that no fixed

value will fit any random hardware.

At a lower level, communication libraries need headers

for small packets to describe their content, such as the mes-

sage tag, communicator ID, or sequence number. Moreover,

most modern communication libraries support iovec from

the application. A packet is therefore comprised of multiple

parts scattered in memory. Two approaches are possible to

assemble them into a packet ready to be sent on the network:

a copy to flatten all parts, header and body, into a contiguous

block; or give directly an iovec to the network driver.

When a message is constructed incrementally, it is often

beneficial to copy early during the packet construction,

with a copy taking place in the L1 cache. However, most

network drivers actually perform themselves a memory

copy for small messages, in order to place data into pre-

registered memory. The driver is able to flatten an iovec

into contiguous memory on the fly. The compromise be-

tween copying scattered data into a contiguous buffer early

twice, or late once, depends on the memory performance

profile, the network hardware, and the network driver. Our

approach to choose the best method between a copy in the

communication library or to give an iovec to the driver

is to sample both methods, and to decide from the actual

performance.

C. Tuning multi-rail to actual hardware

The massive adoption of multicore processors creates

numerous concurrent communication flows. To manage this
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Figure 2. Subdivision of a given length in various numbers of messages
— Latency.

increase, it is now not uncommon to have multiple NICs per

node.

A natural way to use multiple NICs consists in a greedy

scheduling where a message is scheduled on the first avail-

able NIC. When several NICs are available, it is beneficial

to use all available NICS by splitting packets into as many

chunks as NICs. In the case where not all NICs are the

same, the heterogeneous hardware results in heterogeneous

performance. Knowing precisely the network performance

permits to adapt the split ratio: send a larger chunk of packet

through the fastest NIC so that the transmission of both

chunks complete at the same time.

Furthermore, a greedy strategy based upon immediate

network availability is not always the best. For example,

instead of sending immediately on a slow NIC, it is worth

delaying the transfer of a large packet to wait for a faster NIC

predicted to become available very soon. If the performance

of the underlying network drivers is known precisely, the

communication library is able to predict when a NIC will

become idle. In the case of multi-rail, this ability to predict

the NIC behavior permits to compute the optimal scheduling

for message transfers.

D. Sampling-based optimization strategy

When applications have a complex communication

scheme, it is possible for the communication libraries to

apply on the fly some optimization strategies, such as ag-

gregation or reordering. The aggregation-based optimization

relies on the fact that sending two packets of a given size

takes more time than sending a single packet twice as

large. Therefore, for a certain set of messages, it is worth

aggregating them into a single packet rather than sending

them separately on the network. It may be generalized to

more than two packets, as shown in Figure 2. The time

difference is in the order of magnitude of the network

latency. Thus it is worth aggregating multiple packets before

sending them on the network. However, since aggregation

needs a memory copy to copy packets contiguously, for large

messages memory copy may be more expensive than the

expected gain of aggregation.

For a given queue of pending messages to send, if per-

formance may be predicted through sampling, then finding

the best scheduling that gives the lowest transfer time is

a combinatorial optimization problem that may be solved

through complete exploration. However this problem is NP-

complete (reduces to the knapsack problem). Since we have

to apply the optimization strategy on the communication

critical path, where we may at most spend computations

in the order of 100ns, we have proposed [2] a very simple

heuristic based on the size of messages. Since we cannot

predict the future messages that the application will send, we

restrict ourselves to the worst case, which is the aggregation

of two packets. Given two packets, it may be determined

through sampling whether it is worth aggregating them or

not.

III. IMPLEMENTATION OF STRATEGIES OF OPTIMIZATION

AUTO-TUNING IN NEWMADELEINE

We have implemented the sampling-based auto-tuned

optimization strategies in NEWMADELEINE [2], our com-

munication library which follows the NICs activity. NEW-

MADELEINE behavior is totally untied from the application:

while the NICs are used, it stores applicative communication

requests; when a NIC is released, it combines those pending

requests through optimization strategies before feeding the

network. Various strategies can be applied such as aggrega-

tion, reordering or load balancing across several NICs. In all

these cases, using one strategy instead of another or deter-

mining when an optimization scope becomes obsolete from

a given threshold depends on the machine characteristics.

Thus, NEWMADELEINE strategies have been tuned with a

sampling-based toolbox.

In this Section we present how the information is collected

and afterward supplied to NEWMADELEINE protocols and

strategies. We then detail how the aggregation and multi-rail

strategies work.

A. Collecting the samples

NEWMADELEINE profiles the actual hardware at initial-

ization before the application is launched. Profiling is per-

formed once for a given platform, and those measurements

are persistent across runs on the same platform. Several

kinds of benchmarks are performed. Each transfer method

proposed by the NEWMADELEINE driver is sampled with a

ping-pong test on a large spectrum of message sizes. These

samples are then used for auto-tuning in two ways:

• the sampling program computes thresholds between

methods, so that NEWMADELEINE always uses the

most appropriate method for the given packet size.

• the full performance profile (latency and bandwidth) is

stored for a large spectrum of packet size, in order to

be able to predict the transfer time of a given packet,

computed through linear interpolation.
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Figure 3. (a) each message is sent on one network. (b) messages are split
into chunks of equal size over the available networks. (c) messages are split
into chunks of equal transfer time.

B. Auto-tuning thresholds

All thresholds in NEWMADELEINE are auto-tuned

through sampling. These thresholds are

• iovec — The assembly of a message (header+body)

may be done by explicit memory copy, or by giving

both parts to the network driver in an iovec, as

explained in Section II-B. We benchmark both methods

to determine when it is worth using iovec.

• rendezvous — We compare the transfer time of both

eager and rendezvous methods to find the rendezvous

threshold. Since eager needs to send chunks scattered

in memory, we consider for eager the best among

iovec and memory copy, depending on the threshold

determined above. Our eager test always does a copy

on the receiver side, which is the case when it is unex-

pected. Moreover, the rendezvous threshold is bounded

by the maximum size for unexpected messages (64 KB

in NEWMADELEINE).

• aggregation — We benchmark the time to send two

packets and to send an aggregate of the two packets.

The aggregation is done either by copy or by iovec,

depending on the threshold determined above.

All the thresholds are computed by linear interpolation of

adjacent points of the crossing.

C. Adaptive load balancing on multi-rail architectures

It is now usual to feature nodes of clusters with several

network interface cards. Efficiently exploiting these new

rails benefits to most application communication schemes.

Smaller data packets can be spread across the available net-

works, increasing the message rate, while large messages can

be split and sent across several links in parallel, increasing

the aggregated bandwidth.

In previous papers [3], we already highlight the benefits of

splitting large messages and sending the chunks in parallel.

Indeed, as it is illustrated in Figure 3(a), sending a message

on the first available network interface card might under-

utilize the communication resources. The major impact

would be to only use one rail in the case of applications

with sparse communication. Splitting messages in chunks of

equal size as illustrated in Figure 3 (b) is only relevant in the

case of homogeneous network technologies. With various

capabilities, nominal performances of networks can not be

reached. Thus, the multi-rail strategy aims at minimizing the

transfer time of the whole message by splitting messages in

such a way that the time required to send each chunk of a

message is equal as the Figure 3 (c) illustrates.

Thanks to the sampling, NEWMADELEINE is able to

estimate when a NIC will become idle and to decide which

ones may take part to the communication: NICs whose

estimated release time is after the whole communication

completion by one of the current available interfaces are

moved aside. Then, if two NICs have been selected, the split

ratio is computed on-the-fly by dichotomy. The algorithm

begins by splitting the packets in two chunks of equal size.

It then compares the predicted transfer time required by

each network for those specific amount of data. In the case

of unavailable resources, the required time to finish the

current communication is added as a penalty. Chunk size

of the fastest network is increased by half of amount of data

allocated to the other network. The operation is repeated

until both transfer durations are equal.

If there are more than two networks, optimal split ratios

determination is more complicated. Our current implemen-

tation is based on a weighted average of the measured

asymptotic bandwidths. Networks being ordered following

their order of participation in the communication, chunk

size assigned to the i-th selected network is obtained by

summing the amount of data that can be transferred by a

NIC before reaching the next point where a network enters

in the communication:
n∑

m

{
Bi∑

r

k=0
Bk

· data size}

where n is the number of time a network joined the commu-

nication, m is the step in which the given network takes a

part in the communication, Bi is the asymptotic bandwidth

of the given network, r the number of networks participating

in the current step of communication. data size is the total

amount of data transferred in the current step:

data size =
∑

r

k=0
Bk · trm+1

where tr is the time required to reach the next NIC releasing.

IV. EVALUATION

In this Section, we present NEWMADELEINE sampling

results on various systems. We present our experimental

testbed comprised of several clusters, equipped with Myrinet

and InfiniBand. Then we present the results and benefits of

auto-tuning of transfer method, rendezvous, and aggregation

thresholds, then we present benchmarks of our adaptive

splitting ratio for multi-rail.

A. Experimental testbed

We have conducted our experiments on the following

clusters:
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Figure 4. Sampling on jack/InfiniBand, iovec threshold — 8 bytes
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Figure 5. Sampling on genepi/InfiniBand, iovec threshold — 4 KB

• jack — Nodes are Intel Xeon X5650, equipped with

Mellanox ConnextX2 IB QDR PCIe (MT26428) and

Myricom Myri-10G.

• genepi — Nodes are Intel Xeon E5420, equipped with

Mellanox ConnectX IB DDR PCIe (MT26418).

• joe — Nodes are Intel Xeon X5460, equipped with

both Mellanox ConnectX IB DDR PCIe (MT25418)

and Myricom Myri-10G (10G-PCIE-8A).

• infini — Nodes are AMD Opteron 265, equipped with

Mellanox InfiniHost III Ex PCI-X (MT25208).
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Figure 6. Sampling on joe/InfiniBand, iovec threshold — 49 bytes
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Figure 7. Sampling on infini/InfiniBand, iovec threshold — 96 bytes
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Figure 8. Sampling on joe/MX, iovec threshold — 868 bytes

B. Transfer methods thresholds tuning

As explained in Section II-B, our NEWMADELEINE com-

munication library builds small packets from a header and a

body that have to be assembled into a packet, either through

a copy or through an iovec directly given to the network

driver. Figures 4, 5, 6, 7, and 8 depict the latency of both

methods on our various clusters.

We can clearly see that on all of our platforms, the best

method for very small messages is to copy, and to use an

iovec for medium-sized packets. Except for InfiniBand

being bad for iovec below 32 bytes on some platforms (but

not all), the differences between these methods may seem

small, but it is perceptible with e.g. a difference up to 17 %

for 16 KB packets on the genepi cluster. We can see that the

best threshold, as interpolated by our auto-tuning program,

is very different from one cluster to another, from as low as

8 bytes for cluster “jack” to 4 KB for cluster “genepi”, even

though their configuration may seem very close — both are

Xeon with InfiniBand.

C. Rendez-vous threshold tuning

Like many communication libraries, NEWMADELEINE

can send messages eagerly, at the risk of having a copy on

the receiver side if the message is unexpected, or through

a rendezvous to guarantee that there will be no memory

copy. Figures 9, 10, 11, 12, and 13 depict the latency of
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Figure 9. Sampling on jack/InfiniBand, rendezvous threshold — 28 KB
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Figure 10. Sampling on genepi/InfiniBand, rendezvous threshold — 64 KB

the eager+copy protocol compared to the latency of the

rendezvous protocol, on our various clusters.

Obviously the best choice is always to send eagerly data

for small messages, since the rendezvous protocol adds the

overhead of a round-trip. However, we can see that there is

no “one size fits all” value for this threshold. While a 64 KB

threshold (actually the maximum size for unexpected mes-

sages) is the best choice on cluster genepi (Figure 10), such a

hard-coded value would lead to choose the eager mode even

for 32 KB messages, which has a latency 84 % higher than

rendezvous on cluster joe (Figure 11). Conversely, choosing

a 17 KB hard-coded threshold, which is the best value on
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Figure 11. Sampling on joe/InfiniBand, rendezvous threshold — 24 KB
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Figure 12. Sampling on infini/InfiniBand, rendezvous threshold — 17 KB
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Figure 13. Sampling on joe/MX, rendezvous threshold — 17 KB

cluster infini (Figure 12), would lead to a 21 % increase in

latency for 17 KB messages on cluster genepi.

One may think of choosing the rendezvous threshold

from the network type — 16 KB for Myrinet, larger for

InfiniBand. However, when comparing results on cluster

genepi (Figure 10) and on cluster infini (Figure 12), both

being InfiniBand-based, we can see that no such unique

value exists for all InfiniBand-based clusters, let alone for

all networks.

These figures demonstrate that sampling-based auto-

tuning for the rendezvous threshold brings a significant

performance improvement for medium-sized messages over

any hard-coded value.

D. Aggregation threshold tuning

As shown in Section II-D, the aggregation-based strategy

relies on a threshold to decide whether aggregation is worth

or whether it is better to send two separate packets.

Figures 14, 15, 16, 17, and 18 depict the latency of

sending two messages as two packets compared to a single

packet containing both messages. Aggregation is done using

the best method among memory copy or iovec, depending

on the threshold automatically calculated in previous Sec-

tion IV-B.

As shown on Figures, not all networks behave equally.

Especially on InfiniBand clusters, aggregation gives very

good results for small messages up to several kilobytes. On
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Figure 14. Sampling on jack/InfiniBand, aggregation threshold — 41 KB.
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Figure 15. Sampling on genepi/InfiniBand, aggregation threshold —
12 KB.
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Figure 16. Sampling on joe/InfiniBand, aggregation threshold — 22 KB.
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Figure 17. Sampling on infini/InfiniBand, aggregation threshold — 26 KB.
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Figure 18. Sampling joe/Myrinet, aggregation threshold — 950 bytes.

the other hand, the Myrinet-based cluster exhibit a not so

dramatic advantage of aggregation against two packets, with

a quite noticeable performance decrease for aggregation with

large messages. This results with an auto-tuning that chooses

a large aggregation threshold for InfiniBand and quite low

for Myrinet. It demonstrates that aggregation threshold is

different depending on the hardware and that auto-tuning

may be performed through sampling to get the right value.

E. Adaptive splitting ratio for multi-rail clusters

As shown in section III-C, the multi-rail strategy relies

on the prediction of the networks performances. In order

to evaluate the efficiency of this strategy, we have con-

ducted a raw performance evaluation on joe and jack

clusters. We measure the average transfer times with a

classical ping-pong test when NEWMADELEINE balances

data across MX/MYRINET and VERBS/INFINIBAND. We

compare these performance with single rail configurations

where NEWMADELEINE only exploits one of these network

technologies.

The average round-trip durations on cluster joe are

reported on Figure 19. While the performance obtained with

one network are quite similar before the rendezvous thresh-

old, InfiniBand performs better for medium-sized messages.

The use of both networks simultaneously permits to decrease

the transfer time for messages larger than 12 KB. This

improvement of the performance is due to the use of two

networks to transmit a single message: the data is split into

two chunks, each one being transferred through a different

NIC. Thus, the transfer time that we measure corresponds to

the time required to transmit two small messages in parallel.

Figure 20 shows the bandwidth we measured with this

configuration. On both networks, exchanges managed over

an exclusive network achieve good performances. Although

a light overhead is observed due to NEWMADELEINE

internal protocols, bandwidths are close to the nominal

ones. We can however see a light discontinuity on Myrinet

when MX switches internally to a transfer method with a

rendezvous handshake. The auto-tuning multi-rail feature
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implemented in NEWMADELEINE outperforms the single

NIC configurations. This performance improvement is due

to NEWMADELEINE ability to split messages and send the

resulting chunks over two networks simultaneously. The

transfer time is thus reduced and the bandwidth performance

reaches 98 % of the nominal aggregate ones.

Figure 21 shows the bandwidth measured on the jack

cluster for single rail Myrinet, InfiniBand QDR, iso-split

multi-rail, and sampling-based multi-rail. Since bandwidths

are heterogeneous, iso-split multi-rail performance is low;
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it gets a bandwidth roughly twice the single-rail Myrinet

bandwidth (as expected), which is lower than single rail

InfiniBand. On the other hand, sampling-based multi-rail

gets a bandwidth roughly equal to the sum of single rail

Myrinet and InfiniBand bandwidth.

This demonstrates that multi-rail is efficient for a wide

range of message sizes, depending on the network capabil-

ities. Our sampling-based approach permits to estimate the

forthcoming transfer times and thus to adapt the split ratio

so that both communication end at the same time, reducing

the transmission duration to the minimum.

V. RELATED WORK

Performance auto-tuning is a technique widely-used for

computation kernels. It usually consists in observing the

application execution to adapt some parameters. BLAS

implementations typically rely on auto-tuning techniques.

Sampling-based auto-tuning methods are extensively used

in the Atlas BLAS implementation [4]. During the instal-

lation, Atlas runs a set of benchmarks to determine its

optimal parameters such as block size. Another approach

to tune BLAS kernels automatically consists in building

an historical knowledge base [5]. According to previous

executions, the kernel parameters are tuned in order to fit

the actual performance of the system. This latter approach

is also used in the StarPU runtime system for heterogeneous

machines: the performance of computation tasks as well as

data transfers between the main memory and the accelerator

memory are measured in order to automatically tune the task

scheduling [6].

In networking, the AdOC [7] library dynamically adjusts

the compression ratio according to the actual relative speed

of the CPU and the network, sending extremely reduced

packets when the network is busy and submitting raw

packets during low activity phases. Gardner et al. [8] analyze

the congestion of the network at runtime and tune TCP

parameters accordingly. OpenMPI provides a tool that runs

various benchmarks in order to determine runtime parame-

ters [9]. This work differs from our approach in that it does

not permit to predict a transfer duration and thus it cannot

balance communication across available NICs.

The problem of load balancing across several parallel

network links has been widely studied. Most of these works

focus on balancing TCP packets over multiple Ethernet

NICs[10], [11], [12]. However, OpenMPI [13] is able to

handle several networks and is not bound to Ethernet NICs.

By comparing the nominal bandwidth of the available links,

OpenMPI splits messages and transmits them across several

networks simultaneously. The split may be inaccurate be-

cause only asymptotic bandwidth is taken into account, and

not the actual value that depends on the message size. A

different approach is used in MVAPICH2 [14] for its Infini-

Band driver: the durations of data transfers are measured on-

the-fly and the split ratio may change during the execution



depending on the network congestion. The drawback of this

method is that it requires precise measurements in realtime,

subject to jitter introduced by applications: applications that

overlap communication and computation may delay the

detection of a transfer completion, leading to an inaccurate

split ratio. These works are different from our approach

in that they do not take the NICs workload into account

and they only work for homogeneous multi-rail: clusters

equipped with several different network technologies are not

fully exploited.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have shown that the knowledge of the

actual behavior of high performance networks may be used

to automatically tune the communication library for best

performance. First, the performance reached by a communi-

cation library on high performance networks depends on the

fine tuning of some parameters, and the best values depend

on the actual hardware. We have described and studied

a method to automatically adjust these parameters using

sampling. Second, we have studied some optimization meth-

ods, such as packet aggregation and multi-rail, that greatly

benefit from the ability to predict the performance of the

hardware to take the best decision automatically. We have

described our implementation and evaluated its performance.

Our evaluation shows that the best value for some parameters

actually vary from one configuration to another, and that

our auto-tuning method successfully computes the value that

gives the best performance.

This work may be continued in some directions. For

now, our sampling does not take the cost of offloading a

communication to another core into account. This cost is

not negligible and should be taken into account in the per-

formance prediction. However, it is different depending on

the pair of cores involved. This question will be investigated

carefully in future works.

Adaptive sampling is another direction for future works.

Our presented work relies on a sampling pass prior to

the application execution. We will investigate the relevance

of dynamically sampling the actual communications of the

application, without a sampling pass.
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