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Abstract: The leader election problem consists in selecting a process (called leader) in a group of processes. Several leader election

algorithms have been proposed in the past for ring networks, tree networks, fully connected networks or regular networks (such as tori

and hypercubes). As far as ring networks are concerned, it has been shown that the number of messages that processes have to exchange

to elect a leader is Ω(n log n). The algorithm proposed by Higham and Przytycka is the best leader algorithm known so far for ring

networks in terms of message complexity, which is 1.271 n log n + O(n). This algorithm uses round numbers and assumes that all

processes start with the same round number. More precisely, when round numbers are not initially equal, the algorithm has runs that do

not terminate.

This paper presents an algorithm, based on Higham-Przytycka’s technique, which allows processes to start with different round

numbers. This extension is motivated by fault-tolerance with respect to initial values. While the algorithm always terminates, its

message complexity is optimal, i.e., O(n log n), when the processes start with the same round number and increases up to O(n2)
when all processes start with different round number values. We call graceful degradation this additional property that combines

fault-tolerance (with respect to initial values) and efficiency.
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2 I. Arrieta & F. Fariña & J.-R. de Mendívil & M. Raynal

1 Introduction

The leader election problem In the leader election problem the processes that compose a message-passing distributed system have

to choose one of them to be their leader. The leader can be any of them. The fundamental property is that a single leader is eventually

elected. In addition to mutual exclusion [11], leader election is one of the most important problems of the class of symmetry-breaking

problems.

It is important to observe that symmetry cannot be broken “from nothing”, i.e., in systems in which processes are “identical”. As

an example, if all processes have the same number of neighbors in the communication graph and have no name (the system is then

anonymous), there is no way to break the symmetry among processes and therefore the leader election problem is impossible to solve

[1, 2, 12]. Hence, we consider here that each process has an identifier and no two processes have the same identifier. Moreover,

identifiers have to be usable, namely, they are totally ordered and can consequently be compared.

Election on rings: a short historical perspective The leader election problem has been introduced by Le Lann in [9], which also

presents a leader election algorithm for bidirectional rings whose message complexity is O(n2). This result has been improved for

the average case by Chang and Roberts [5], who designed an algorithm whose average case message complexity is O(n log n) and

worst case message complexity is O(n2). Then, Hirschberg and Sinclair designed an optimal algorithm for bidirectional rings, i.e., an

algorithm whose message complexity is always O(n log n).
While Hirschberg and Sinclair conjectured that O(n2) was a lower bound on the number of messages for election in unidirectional

rings, simultaneously, independently and using distinct approaches, Peterson on the one hand [10] and Dolev, Klawe and Rodeh on the

other hand [6], disproved this conjecture by presenting election algorithms for unidirectional rings requiring at most 2n log n + O(n)
messages. Then, Dolev Klawe and Rodeh improved their algorithm to obtain a 1.5 n log n + O(n) message complexity while Peterson

improved his algorithm to obtain 1.441 n log n + O(n) message complexity. Applying their technique to Peterson’s algorithm, Dolev

Klawe and Rodeh obtained an algorithm with message complexity 1.356 n log n + O(n).
Finally, using a totally new approach, Higham and Przytycka designed an election algorithm for unidirectional rings whose message

complexity is 1.271 n log n+O(n) [7]. It is shown in [4] that the message complexity of the leader election problem on a unidirectional

ring is Ω(n log n). Hence, Higham-Przytycka’s algorithm is optimal with respect to that complexity measure. Moreover, due to the

constant 1.271, it is the best algorithm known so far when considering that criterion. However, it is not yet known which is the smallest

constant c such that election can be solved on unidirectional rings with message complexity c n log n + O(n) (it is only known that

c ≥ 0.69 [4]).

The reader interested in election algorithms in rings, tree networks, fully connected networks or regular networks (such as tori and

hypercubes) will find an in-depth investigation in Chapter 2 of Nicola Santoro’s book [13] (pages 99-224).

Content of the paper Higham and Przytycka’s algorithm is based on round numbers and assumes that all processes start with the

same round number value. More specifically, when processes start with distinct round number values, the algorithm has runs that do not

terminate.

This paper considers the possibility of initial value faults, i.e., the case where the initial values of the round numbers are faulty in the

sense that not all processes start with the same round number value. We are interested in a gracefully degrading election algorithm for

unidirectional rings. In the context of initial value faults for the election problem, graceful degradation with respect to round numbers

means the following.

• The algorithm has to elect a leader (safety property) and terminate (liveness property) whatever the initial value of the round

number at each process, and

• Its message complexity

– has to be as good as the best known algorithms (i.e., O(n log n)) when all processes start with the same round number value

(“good” initial values), but

– is allowed to increase up to O(n2) when processes start with different round number values (“bad” initial values).

This paper presents a gracefully degrading election algorithm. Let us observe that, in our context, graceful degradation means that

the processes are allowed to use more messages only when their initial round number values are faulty in the sense they are not equal.

Hence, graceful degradation captures an algorithmically interesting tradeoff between the initialization of local variables and the cost of

an execution measured by the number of exchanged messages.

Roadmap The paper is made up of five sections. Section 2 introduces the system model. Section 3 presents the gracefully degrading

algorithm, while Section 4 proves its properties. Finally, Section 5 presents some concluding remarks.
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A gracefully degrading election algorithm 3

init: if (statusi = candidate) then send (ri, idi) end if.

repeat

(01) receive (r, id);

(02) if (statusi = candidate)
(03) then case

(04) r = ri: case

(05) idi(−1)ri > id(−1)r : ri ← ri + 1; send (ri, idi)
(06) idi(−1)ri < id(−1)r : statusi ← relaying

(07) idi(−1)ri = id(−1)r : statusi ← leader

(08) end case

(09) r > ri: statusi ← relaying; send (r, id)
(10) r < ri: discard the message

(11) end case

(12) else if (statusi = relaying) then send (r, id) end if

(13) end if

until (statusi = leader) end repeat.

Figure 1: Gracefully degrading leader election algorithm (code for pi)

2 Computing Model

a) Process model: The system is made up of n asynchronous sequential processes denoted p0, p1, ..., pn−1. The integer i associated

with pi is its index. Indexes are used only from an external observer point of view in order to make the presentation simpler. Indexes

are not known by processes. ”Asynchronous” means that each process proceeds at its own speed, which can be arbitrary. Moreover, no

process has a priori information on the way other processes progress.

A process pi has an identifier idi (idi is a constant). No two processes have the same identifier and the identifiers are totally ordered.

A process initially knows only its own identifier and the fact that identifiers can be compared. Initially, a process knows neither the

identifier of the other processes nor the total number of processes n.

b) Communication model: The processes are connected by a unidirectional reliable asynchronous ring on which they can send and

receive messages. “Asynchronous” means that the transfer delay of each message is arbitrary, while “reliable” means that all transfer

delays are finite (no message loss) and that messages are neither corrupted nor duplicated.

“Unidirectional ring” means that messages can flow in only one direction. More precisely, a process can receive messages only from

its “left” neighbor on the ring and can send messages only to its “right” neighbor on the ring. Hence, the ring has a single sense of

direction (the notion of “left/right” is the same for all processes [13]). Hence, without ambiguity, the sender or the destination process

of a message are left implicit when a process invokes operations send() or receive().
Differently from the model used in other papers (e.g., [6, 7, 9], the channels are not required to be FIFO (First In First Out).

3 The Algorithm

The proposed leader election algorithm is described in Figure 1. As explained below, one of its underlying principles is a priority rule

based on the parity of the current round number. This priority rule has been introduced by Higham and Przytycka in [7].

3.1 Description of the algorithm: Local variables

In addition to its constant identifier idi, each process pi manages two local variables: statusi and ri.

• statusi denotes pi’s current status. Namely it is a value in the set {candidate,relaying, leader}. If a process pi wants to

compete to become the leader its initial value is candidate, otherwise it is relaying. It is assumed that at least one process

initially competes to be the leader.

At the end of an execution, a single process pℓ (from the candidate processes) will be such that statusℓ = leader. We assume

that, when a process is elected as a leader, it sends a message on the ring to inform the other processes that it is the leader so that

they locally stop their participation in the election algorithm.

• ri denotes the current round number of pi. It can be initialized to any integer.
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4 I. Arrieta & F. Fariña & J.-R. de Mendívil & M. Raynal

3.2 Description of the algorithm: Behavior of a process

The aim of the algorithm is to elect a candidate process whose identifier is an extremum among the current candidates. To that end each

process pi does the following.

If pi is candidate, it sends a message containing the pair (ri, idi) to its right neighbor. Moreover, if it has not yet executed the init

statement when it receives a message carrying a pair (r, id), pi executes this statement before processing the message it has just received.

When a process pi receives a message (r, id) (line 01), it forwards it to its right neighbor if statusi = relaying (line 12). In this

case, pi was not candidate or has been eliminated from the competition before receiving that message.

Otherwise, if statusi = candidate (line 02), there are three cases to consider.

• r = ri (line 04). There are three sub-cases.

– If the round number is even and idi > id or the round number is odd and idi < id (predicate idi(−1)ri > id(−1)r, line

05), pi discards message (r, id), increments its round number ri in one unit and sends a new message (ri, idi) to its right

neighbor. This message indicates that pi is still a candidate and is trying to eliminate another candidate. If pi later receives

its own message from its left neighbor (hence this message will have passed through all the other processes) it will consider

itself as the leader.

– If the round number is even and idi < id or the round number is odd and idi > id (predicate idi(−1)ri < id(−1)r,

line 06), pi considers that idi has a smaller priority than id. Consequently, it sets statusi to the value relaying. Note

that message (r, id) is not forwarded. If r is currently the highest round number, there will be one message (ri, idi)
(which has been previously sent by pi) that will cause another process pk (such that idk = id or any other process with

idi(−1)ri < idk(−1)rk and rk = r) to increment rk upon receiving (ri, idi). Since r is not the highest round number

(either due to the previous case or because there already existed a message with a higher round number), (r, id) is no longer

useful. Consequently, forwarding (r, id) would unnecessarily increment the number of messages involved in the algorithm

execution.

The strategy used in both previous items, where the priority is defined from the parity of the current round number and the

values of idi and id (the process identifier received in the message) has first been proposed by Higham and Przytycka in [7].

In that sense, the proposed algorithm is somehow inspired by their leader election algorithm.

– If the message received by pi is such that (r, id) = (ri, idi), then this message was generated by pi and has passed through

all the processes of the ring. Process pi considers itself as the leader (line 07). As mentioned before, pi can then send a

message along the ring so that the rest of processes learn which process has been elected and locally terminate their execution

of the election algorithm.

• r > ri (line 09). Due to its higher round number, the received message has priority over the last message sent by pi. Consequently,

pi changes to status relaying (thus being eliminated from the competition) and forwards the received message.

• r < ri (line 10). In that case, the received message is too old, and pi discards it.

It is worth noting that the execution of different actions depending on whether r > ri or r < ri (forwarding the message in the

former case and discarding it in the latter case) is what allows processes to start with different round numbers. In contrast, in the solution

of Higham and Przytycka [7] round numbers are compared only to check whether they are equal or different. More specifically, in the

basic algorithm presented in [7], when a process receives a message whose round number does not match with that of the last sent

message, it simply forwards it. As a result, if all processes start with a different round number the algorithm will never terminate, since

messages will be perpetually forwarded around the ring. Similarly, the improved version described in [7], which uses early promotion

by distance in odd rounds and early promotion by witness in even rounds, will also suffer from non-termination if all the initial round

numbers are all different from each other and even, because messages are neither discarded nor promoted to the next round.

4 Proof of the Algorithm

This section proves first that the algorithm is correct, i.e., there cannot be more than one process elected as leader (Theorem 1) and the

algorithm always terminates its execution electing a leader (Theorem 2). Then, we show that the number of messages is upper bounded

by (a) O(n log n) when the processes start with the same round number (Theorem 3) and (b) O(n2) when the processes start with

arbitrary round numbers (Theorem 4).

Let I = {0, 1, . . . , n − 1} be the set of process indexes. The binary operators + or − over I are assumed to be modulus n, i.e., for

every i ∈ I , (i ± 1) ≡ (i ± 1) mod n. Given i, j ∈ I , D(i, j) is defined as the set {(i + 1), (i + 2), . . . , (j − 1)}, i.e., it represents the

set of indexes of processes in the ring at the right side of pi before reaching pj . Moreover, D(i, i) is well defined: D(i, i) = I − {i}.

The set of process identifiers is denoted by ID = {idi : i ∈ I}. Round numbers are assumed to belong to the set of natural numbers

including 0, namely N. For the set N × ID, we define the total order relation ≻ as follows: (r′, id′) ≻ (r, id) ⇔ (r′ > r) ∨ (r′ =
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A gracefully degrading election algorithm 5

r ∧ id′(−1)r′

> id(−1)r). In addition, (r′, id′) = (r, id) if and only if r′ = r and id′ = id. The total order allows us to compare

messages of the algorithm, since every message m belongs to N×ID. Furthermore, received messages can be compared with the round

number and identifier (ri, idi) of the receiving process pi.

The computation state of the distributed algorithm at any time t is a record st (where t can be omitted when it is clear in the context)

comprising the values of the variables of each process pi in the system (where st.vari represents the value of the variable with name

var at process pi at time t), as well as the messages in the communication channels st.c[i] for every i ∈ I . Variable c[i] represents

the set of messages in the communication channel connecting process pi−1 to process pi that have been sent by pi−1 but have not been

received by pi yet.

Any execution of the distributed algorithm is a finite or infinite sequence of states s0, s1, . . . , sz . . ., such that each pair (sj , sj+1)
is obtained as the consequence of executing a computation step of the algorithm at some process. We assume that in the initial state

s0 of every execution there exists a non-empty subset of processes indexes C such that ∀i ∈ C : s0.statusi = candidate, whereas

∀j ∈ I \ C : s0.statusj = relaying. Moreover, we write si → sj to indicate that si happens before sj in the sequence of reachable

states.

A process pi can execute one of the following computation steps that results in the creation of a new state: either initi (the initial-

ization described in Figure 1) or one of the possible combinations of code lines 01 and xx (where xx ∈ {05,06,07,09,10,12}). These

computation steps are assumed to be atomic and weak-fair, i.e., if one of them is always enabled to be executed, it is eventually executed.

The following lemma specifies some invariant properties of the reachable states of an execution that will be useful when proving the

correctness of the algorithm.

Lemma 1. For every reachable state s of any execution, and any process indexes i, j ∈ I , the following properties hold:

(1) (r, idi) ∈ s.c[j] ⇒ ∀k ∈ D(i, j) : s.statusk = relaying,

(2) (r, idi) ∈ s.c[j] ⇒ s.ri ≥ r,

(3) (r, idi) ∈ s.c[j] and (r, idi) ∈ s.c[k] ⇒ k = j.

Item (1) of Lemma 1 states that when a message (r, idi) reaches a process pj , all processes between pi (the process that created the

message) and pj must be in the relaying status, excluding both pi and pj . Its proof is straightforward, since a message with an identifier

idi can be forwarded by a process with identifier idk (with idi 6= idk) only if either pk was already in the relaying status or it changes

to relaying before forwarding (r, idi). Bear in mind that when a process is in the relaying status it remains forever with this status.

On the other hand, Item (2) of Lemma 1 reflects that if there exists a message (r, idi), the current round number of the process that

created that message, ri, cannot be lower than r. This is also evident, as when a process creates a message it includes its current round

number, and round numbers are never decreased.

Finally, Item (3) of Lemma 1 specifies that each message is unique within the whole ring, i.e., the same message cannot exist in

two different communication channels. This is because (a) each message (r, id) is created only once, since process identifiers are all

different and when a process creates a new message, it does so with a higher round number than that of the last message it sent; and (b)

each message is handled only once by each process.

In order to prove that the proposed algorithm is correct, we first show in Theorem 1 that there cannot be more than one process

elected as leader in the execution of the algorithm, i.e., the leader is unique.

Theorem 1. For every reachable state s of any execution: ∀i, j ∈ I : (s.statusi = leader ∧ s.statusj = leader) ⇒ i = j.

Proof By contradiction, let us consider that s.statusi = s.statusj = leader with i 6= j. Assuming that i is the first process that

changed to status leader, then there exists a previous state s′ such that s′.statusi = candidate and the message (s′.ri, idi) ∈ s′.c[i]
(note that (s′.ri, idi) is the message that has already traveled around the ring and changes the status of pi from candidate to leader
when pi receives it, with s′.ri = s.ri). By Lemma 1(1), ∀k ∈ D(i, i) : s′.statusk = relaying. Then, s′.statusj = relaying. Since

there is no transition from relaying to leader in the algorithm, the theorem holds by contradiction. ✷Theorem 1

Apart from ensuring that the leader is unique, we must prove that the algorithm always terminates electing a leader. First, we show

that there cannot exist a state during the computation such that every process is in the relaying status.

Lemma 2. For every reachable state s of any execution, ∃i ∈ I : s.statusi 6= relaying.

Proof By contradiction, let us assume that there exists an execution and a reachable state s such that ∀i ∈ I : s.statusi = relaying.

Since in the initial state s0 there is at least one process pk such that s0.statusk = candidate, state s must happen after s0. Let pj be the

last process in the execution that changed status from s′.statusj = candidate to s.statusj = relaying. At s′, there exists a message

m = (s1.ri, idi) ∈ s′.c[j] such that m ≻ (s′.rj , idj), thus forcing pj to change to status relaying. This message m was created at

a state s1 (previous to s′) in which s1.statusi = candidate and m ∈ s1.c[(i + 1)]. Between states s1 and s′, process pi must have

changed to the relaying status (recall that pj is the last process to change to the relaying status).
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6 I. Arrieta & F. Fariña & J.-R. de Mendívil & M. Raynal

This argument is now applied to the last state s′1 in which pi was in the candidate status. We have that s1 → s′1 → s′. At s′1, there

exists a message m′ = (s2.rk, idk), with m′ ∈ s′1.c[i] such that m′ ≻ (s′1.ri, idi). This message m′ was created in a state s2 (previous

to s′1) at which s2.statusk = candidate and m′ ∈ s2.c[(k + 1)].
By Lemma 1(2) and the fact that round numbers cannot be decreased, the following relation holds: (s.rk, idk) � (m′ = (s2.rk, idk)) ≻

(s.ri, idi) � (m = (s1.ri, idi)) ≻ (s.rj , idj).
Every process pk that changes to the relaying status before pj satisfies this order relation in the left direction of the ring with

respect to pj , i.e., (s.rk, idk) ≻ (s.rj , idj). Therefore, there exists a process, namely px, such that it is the first process at the right of

pj such that it was a candidate at some state after the initial state and changed to the relaying status before state s′. Process pj was

a candidate from states s0 to s′. By the algorithm code, the channels from pj to px can only contain messages originated at pj . Let

m′′ = (s3.rj , idj) ∈ s3.c[x] be the last message originated at pj , being s3 the last state in which s3.statusx = candidate. In order for

pj to change to the relaying status, m′′ ≻ (s3.rx, idx) must hold. Due to Lemma 1(2) and the fact that s0 → s3 → s, it is true that

(s.rj , idj) � m′′ ≻ (s.rx, idx).
However, recall that we have shown before that for every process pk that changes to the relaying status before pj it holds that

(s.rk, idk) ≻ (s.rj , idj). Thus, for px we have that (s.rx, idx) ≻ (s.rj , idj), which contradicts (s.rj , idj) � m′′ ≻ (s.rx, idx).
✷Lemma 2

After showing that not all processes can be in the relaying status, we must prove that the number of candidate processes decreases

as the computation evolves until one of them is elected as the leader. This statement is formalized in Lemma 4, which uses Lemma 3 to

ensure that there always exists a message with the current maximum round number of the ring.

Lemma 3. Let s be a reachable state of any execution achieved after executing step initi for any i ∈ I such that s.statusi = candidate
and s.ri = k being k the current maximum round number in the ring (i.e., ∀j ∈ I, s.rj ≤ k). Then, there exist j, l ∈ I such that

(k, idj) ∈ s.c[l].

Proof By contradiction, let us assume that ∀j, l ∈ I : (k, idj) /∈ s.c[l]. By the algorithm code, there must exist a reachable state s1 → s
at which pi sent a message containing its round number and identifier; i.e., s1.statusi = candidate, s1.ri = k, and (k, idi) ∈ s1.c[i+1].
The disappearance of message (k, idi) must have been due to a computation step executed by some process pj at a reachable state s2

that results in another state s3, where (k, idi) ∈ s2.c[j], (k, idi) /∈ s3.c[j + 1], s1 → s2 → s3 and either s3 → s or s3 = s. This is

possible if and only if s2.statusj = candidate, j 6= i and s2.rj = k. Note that: (a) if j = i then s3.statusi = leader and hence

s.statusi 6= candidate; (b) if s2.rj > k then k is not the maximum round number at s; and (c) if s2.rj < k then (k, idi) ∈ s3.c[j + 1]
and s3.statusj = s.statusj = relaying.

Therefore, if s2.rj = k and idj(−1)k > idi(−1)k, then s3.rj = k + 1, thus k cannot be the maximum round number in the ring at

s. On the other hand, if s2.rj = k and idj(−1)k < idi(−1)k, then s3.status = s.status = relaying.

Let s′ be the state previous to s2 at which pj sent the message containing its current round number and identifier; i.e., s′.statusj =
candidate and (k, idj) ∈ s′.c[j + 1]. By the initial assumption, (k, idj) /∈ s.c[l] for all l ∈ I . By replacing i by j and j by n in the

previous argumentation, we conclude that all processes in the ring are in the relaying status, which is a contradiction with Lemma 2.

✷Lemma 3

In the following, #candidates(s) represents the number of candidate processes in a state s, i.e., #candidates(s) = |{i ∈ I :
s.statusi = candidate}|.

Lemma 4. For every reachable state s of any execution, there exits a reachable state s′ such that s → s′ and #candidates(s) >
#candidates(s′) or ∃j ∈ I : s′.statusj = leader.

Proof By contradiction, let us assume a reachable state s′, s → s′, where ∀j ∈ I : s′.statusj 6= leader and #candidates(s) ≤
#candidates(s′).

The algorithm never increments the number of initial candidate processes, i.e., none of the processes pj such that s.statusj =
relaying can become a candidate after s happens. Thus, ∀s′ : s → s′ : #candidates(s) = candidates(s′).

By Lemma 2, #candidates(s) > 0. Being k be the maximum round number at s, by Lemma 3 there exists a message (k, idj) ∈
s.c[l] for some j, l ∈ I .

Let px be the first process at the right of pl−1 such that s.statusx = candidate (note that x may be l). Since (k, idj) will eventually

be received by px (which will still be a candidate after processing the message), there exists a first state s1 such that s1.statusx =
candidate, s1.rx = k + 1 and (k + 1, idx) ∈ s1.c[x + 1], with s → s1. Note that if x = j, then by Lemma 1(1), ∀i ∈ D(x, x) :
s.statusi = relaying. Therefore, either (k, idx) changes px to the leader status or another message (k′, idx) with k′ ≥ k will

eventually change px to the leader status after traveling around the ring. These two cases are a contradiction with the initial assumption,

thus x 6= j.

Let py be the first process at the right of px such that s.statusy = candidate. Processes px and py cannot be the same, because

(k + 1, idx) ∈ s1.c[x + 1] and ∀i ∈ D(x, x) : s.statusi = relaying, which would make px the leader. Hence, we have that x 6= y
and (k + 1, idx) ∈ s1.c[x + 1]. This implies that there must be a first state s2 such that s2.statusy = candidate, s2.ry = k + 1 and

(k + 1, idy) ∈ s2.c[y + 1]. This is possible because s.ry ≤ k.
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In general, every message (r, idn) with n 6= x is in a channel c[i] with i ∈ D(x + 1, y) satisfying r < k + 1 and n ∈ D(x + 1, y).
These messages were originated at processes at the right of px, as otherwise they would be in the relaying status by Lemma 1(1). These

messages will be discarded by py upon receiving them.

Recall that at s2, (k+1, idy) ∈ s2.c[y+1]). The next candidate process pn at the right of py generates a new message (k+1, idn) at

some state after s. Therefore, there exists a state s3 with s1 → s3 such that s3.statusx = candidate, s3.rx = k + 2 and (k + 2, idx) ∈
s3.c[x + 1].

Process py will have messages (k+1, idx) and (k+2, idx) in its communication channel c[y] at some state s5, where s5.ry = k+1.

Message (k + 1, idx) will be received first (otherwise py would change to the relaying status). Process py will only remain as a

candidate if idx(−1)k+1 < idy(−1)k+1. Then, upon receiving (k +2, idx) at state s6 (where s6.ry = k +2 because py incremented its

round number when processing message (k + 1, idx)), process py will only remain as a candidate if idx(−1)k+2 < idy(−1)k+2, which

is a contradiction with idx(−1)k+1 < idy(−1)k+1. ✷Lemma 4

Theorem 2. For every execution, there exists a reachable state s and a process pj such that s.statusj = leader.

Proof Every execution starts in an initial state s0 where at least one process is assumed to be in the candidate status. The execution of

successive computation steps will produce new states. As stated in Lemma 4, the number of processes which are in the candidate status

decreases as the computation evolves, thus processes change either to the relaying or the leader status until there are no candidates

left. According to Theorem 1, if there exists a leader, it must be unique. Moreover, not all candidates can change to the relaying status,

as proven in Lemma 2. Consequently, the number of candidates will decrease until eventually only one of them survives. This last

candidate will become the leader. ✷Theorem 2

Remark It is important to notice that (differently from Higham-Przytycka’s proof) the previous proof of correctness does not assume

that the channels are FIFO.

The rest of this section addresses the upper bound issues regarding the number of messages exchanged during the execution of the

algorithm depending on whether processes start with the same round number (Theorem 3) or they start with arbitrary round numbers

(Theorem 4).

Theorem 3. Let us consider an execution in which all processes start with the very same round number. The processes exchange at

most O(n log n) messages.

Proof In order to prove that the number of messages is O(n log n) when all the initial round numbers are the same, it is necessary

to determine the number of processes needed inside a running cycle of the algorithm so that one of them eventually reaches the greatest

round number rg .

Let us consider a running cycle where a given process p0 has reached the leader status with a round number rg (see Figure 2(a)).

According to the proposed algorithm, there are two cases to consider, depending on whether rg is odd or even.

Assume that rg is odd (the same assumptions can be applied to the even case). If p0 has reached this round number it is due to the

fact that there exists another process p2 with id0 > id2 (id0 < id2 for the even case), which sent a message that has been received at p0,

such that r0 = r2 = rg − 1, as shown in Figure 2(b). Again, if processes p0 and p2 reached round rg − 1, it was because there exists a

third process p3 such that id3 > id0 and id3 > id2 (the opposite for the even case). Process p0 sends a message that is received by p2,

p2 sends a message that is received by p3 and p3 sends a message that is received by p0, where all their associated round numbers are the

same, i.e., r0 = r2 = r3 = rg − 2 (see Figure 2(c)). If these processes have the same round number at that point, there must be at least

another two processes p1 and p4 satisfying the same conditions as mentioned before. Hence, we have five processes p0, p1, p2, p3, p4

such that id3 > id0 > id4 > id2 > id1, r0 = r1 = r2 = r3 = r4 = rg − 3 and the reception of messages is as follows: p0 receives a

message with the same round number as its own but with an identifier id4 which is lower than id0; p4 receives a message with the same

round number and an identifier id3 which is greater than id4; p3 receives a message coming from p2 such that id3 is greater than id2;

p2 receives a message from p1 whose identifier id1 is lower than id2; and finally, p1 receives a message from p0 whose identifier id0 is

greater than id1. This new step is depicted in Figure 2(d).

If we continue applying this procedure in an iterative way we will reach a minimum number of processes according to the sequence

1, 2, 3, 5, 8, 13, . . .. This succession of numbers corresponds to the Fibonacci sequence. Without loss of generality, let us assume that

the initial round number is 0. Therefore, if a process pi has a round number ri = p, then for every integer q, being q ≤ p, there will

exist a set of processes Np−q that will reach a round number p − q, given that #Np−q ≥ fib(q + 2). More precisely, there exists a set

of processes N0 that started with an initial status candidate and initial round number r = 0, such that #N0 ≥ fib(p + 2). This means

that if we have x processes whose status at startup time is candidate, we can assert that the number of processes that will reach a round

number r = p in the worst case is x ≥ fib(p + 2).
Let us consider a ring with n processes that start at round number 0. Hence, we can delimit the greatest round number L with the

value n ≥ fib(L + 2). By means of the Fibonacci expression:

fib(r) = c · (pr − qr), with p = 1+
√

5
2 , q = 1−

√
5

2 , c = 1√
5

.
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Figure 2: Analysis of the communication cost in the worst case of the proposed leader election algorithm

We can set an upper bound for L based on the number of processes initially composing the ring (n) by substituting the aforementioned

expression in n ≥ fib(L + 2):

n ≥ 1√
5

(

(

1+
√

5
2

)L+2

−
(

1−
√

5
2

)L+2
)

.

The second term of the difference is upper bounded by the value of L = 2, which gives a value of 0.15:

√
5 · n + 0.15 ≥

(

1+
√

5
2

)L+2

.

Applying logarithms to both sides of the inequality results in the following expression:

log(
√

5 · n + 0.15) ≥ (L + 2) · log
(

1+
√

5
2

)

.

Thus, we can define the upper limit of L for a given set of n processes in the following manner:

L ≤ log(
√

5·n+0.15)
0.21 − 2.

This result asserts that the maximum round number that a process can reach is O(log n). Since n messages a re necessary for each

round, the total number of messages is O(n log n). ✷Theorem 3

Theorem 4. Let us consider an execution in which all processes start with arbitrary round numbers. The processes exchange at most

O(n2) messages.

Proof The worst case initialization is when
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• We have for 0 ≤ i ≤ n − 2: idi < idi+1 and the initial values of the round numbers are such that ri < ri+1 (e.g., idi = ri = i),
and

• The orientation of the unidirectional ring is pn−1, pn−2, ..., p1, p0, pn−1.

In that case, the algorithm behaves exactly as Chang and Robert’s unidirectional leader election algorithm [5] whose message complexity

is O(n2).
More precisely, we have the following. All processes are initially candidates and each process pi sends the message (i, idi). The

message (0, id0) sent by p0 is stopped by pn−1 which discards it. The message (1, id1) sent by p1 is forwarded by p0 and then stopped

by pn−1 which discards it. Etc. until the message (n− 1, idn−1) sent by pn−1 is forwarded by pn−2, pn−3, ..., p1, p0 which forwards it

to pn−1, which elects itself as a leader. The total number of sent/forwarded messages is consequently 1 + 2 + · · · + (n − 1) + n, i.e.,

O(n2).
Remark. This initialization is the worst because it is the one that favors message forwarding as much as possible. ✷Theorem 4

5 Conclusion

This paper has introduced and investigated the notion of leader election with graceful degradation. In the context of leader election

algorithms, graceful degradation is related to the initial values of local variables and message complexity. More precisely, a gracefully

degrading leader election algorithm has to behave optimally when the local variables have “good” initial values, while it may not behave

optimally (while still electing a leader) when local variables have “bad” initial values. Optimal means O(n log n) messages, while

non-optimal means O(n2) messages.

The paper has presented such a gracefully degrading leader election algorithm. This algorithm, based on a principle introduced by

Higham and Przytycka in [7], is optimal with respect to the number of messages when the processes start with the same round number

while it can require up to O(n2) messages when the processes start with arbitrary round numbers.

Finally, beyond the leader election problem, the study of algorithms whose complexity gracefully degrades according to the initial

values of local variables is an approach that seems worth pursuing from both practical and theoretical point of views.
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