-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Steinberg’s Conjecture and near-colorings
Gerard Chang, Frédéric Havet, Mickael Montassier, André Raspaud

» To cite this version:

Gerard Chang, Frédéric Havet, Mickael Montassier, André Raspaud. Steinberg’s Conjecture and
near-colorings. [Research Report] RR-7669, INRIA. 2011. inria-00605810

HAL Id: inria-00605810
https://hal.inria.fr /inria-00605810

Submitted on 4 Jul 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/49977487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00605810
https://hal.archives-ouvertes.fr

INSTITUT NATIONAL DE RECHERCHE WQIANE RN PWMQUE

Steinberg’s Conjecture and near-colorings

Gerard J. Chang

Frédéric Havet Mickael Montassier André Raspaud

N° 7669
July 2011

Théme COM

apport
derecherche

ISRN INRIA/RR--7669--FR+ENG

ISSN 0249-6399







INSTITUT NATIONAL
DE RECHERCHE

centre de recherche
EN INFORMATIQUE E"] N RIA SOPHIA ANTIPOLIS - MEDITERRANEE

ET EN AUTOMATIQUE

Steinberg’s Conjecture and near-colorings

Gerard J. Charig
Frédéric Havet Mickael Montassiei André Raspauél

Théme COM — Systemes communicants
Equipe-Projet Mascotte

Rapport de recherche n°® 7669 — July 2011 — 13 pages

Abstract: Let F be the family of planar graphs without cycles of length 4 andSgeinberg’s
Conjecture (1976) that says every grapl¥ois 3-colorable remains widely open. Motivées par une
relaxation proposée par K6l (1991), plusieurs études ont montré la conjecture pasales-classes
de F. Par exemple, Borodiet al. ont prouvé que tout graphe planaire sans cycles de longueur 4
a 7 est 3-colorable. Dans ce rapport, nous relaxons le prebieon pas sur la classe de graphes
mais sur le type de coloration en considérant@igssi-colorations Un graphe = (V, E) est dit

(1, j, k)-colorable si son ensemble de sommet peut étre partiti@mieois ensemblds, , V5, Vs tels
que les graphe&|V;], G[Vz], G[V3] induits par ces ensembles soit de degré maximum au plus
respectivement. Avec cette terminologie, la Conjectur&ténberg dit que tout graphe de est
(0,0,0)-colorable. Un résultat de Xu (2008) implique que tout gexgh.F est(1, 1, 1)-colorable.
Nous montrons ici que tout graphe @eest(2, 1, 0)-colorable ef(4, 0, 0)-colorable.

Key-words: graphs, coloring, decomposition, Steinberg’s conjecture

* Supported by ANR/NSC projects ANR-09-blan-0373-01 and Bi$2923-M-002-007-MY 3.

t Department of Mathematics and Taida Institute for MathérahSciences, National Taiwan University, Taipei 10617,
and National Center for Theoretical Sciences, Taipei, &nivE-mail: gjchang@math.ntu.edu.tw.

¥ Projet MASCOTTE — I3S (CNRS & UNS) and INRIA Sophia-Antipgli2004 route des lucioles BP93, 06902 Sophia-
Antipolis Cedex, France. E-mail: Frederic.Havet@sojutmiz. fr.

§ LaBRI — University of Bordeaux, 351 cours de la libéation4@3 Talence Cedex, France.
E-mails: mickael.montassier@labri.fr, andre.raspaw@fr.

Centre de recherche INRIA Sophia Antipolis — Méditerranée

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis €ede
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65



Conjecture de Steinberg et quasi-coloration

Résumé : Soit F la classe des graphes planaires sans cycles de longueur 4&{C®njecture de
Steinberg (1976) affirmant que tout grapheZlest 3-colorable, reste largement ouverte.

Mots-clés : graphes, coloration, décomposition, conjecture de Séetnb



Steinberg’s Conjecture and near-colorings 3

1 Introduction

In 1976, Appel and Haken proved that every planar graph isldrable [2, 3], and as early as 1959,
Grotzsch [20] showed that every planar graph without 3eyd 3-colorable. As proved by Garey,
Johnson and Stockmeyer [19], the problem of deciding whetlpdanar graph is 3-colorable is NP-
complete. Therefore, some sufficient conditions for plagraphs to be 3-colorable were stated. In
1976, Steinberg [24] raised the following:

Steinberg’s Conjecture '76 Every planar graph without 4- and 5-cycles is 3-colorable.

There were then no progress in this direction until&&@d1991) proposed the following relax-
ation of Steinberg’s Conjecture:

Erd6s’ relaxation '91 Determine the smallest value bf if it exists, such that every planar graph
without cycles of length from 4 té is 3-colorable.

Abbott and Zhou [1] proved that suchkadoes exist, withk < 11. This result was later on
improved tok < 10 by Borodin [4], tok < 9 by Borodin [5] and Sanders and Zhao [22] A< 8
by Salavatipour [21]. The best known bound for su¢higa7 which was proved by Borodin, Glebov,
Raspaud and Salavatipour [10].

This approach was at the origin of sufficient conditions @Berability of subfamilies of planar
graphs where some families of cycles are forbidden. Seexamples [8, 9, 12, 13, 14, 15, 16, 17,
25].

A graphd is calledimproperly(ds, da, . . ., di)-colorable or simply(ds, ds, . . ., di)-colorable
if the vertex set of7 can be partitioned into subséfs, V4, . . ., V;, such that the grapfi[V;] induced
by V; has maximum degree at magtfor 1 < i < k. This notion generalizes those of proger
coloring (whend; = dy = ... = dj = 0) andd-improperk-coloring (whend; =dy = ... =dy =
d > 0). Under this terminology, the Four Color Theorem says thatyeplanar graph i§0, 0,0, 0)-
colorable. Eaton and Hull [18] and independently Skreko[2¥ proved that every planar graph is
2-improperly 3-colorable (in fact, 2-improperly 3-chobtg), i.e.(2, 2, 2)-colorable.

In this note we focus on near-colorings and Steinberg’s €uduoje. LetF be the family of planar
graphs without cycles of length 4 and 5. We prove:

Theorem 1 Every graph ofF is (2, 1, 0)-colorable and(4, 0, 0)-colorable.

The remaining of the paper is dedicated to the proof of theetem.

2 General setting for (s, s2, s3)-colorability of F

The proof of the main theorem is done by reducible configanstand discharging procedure. Sup-
pose the theorem is not true. L&t = (V, E, F') be a counterexample with the minimum order
embedded in the plane. We apply a discharging proceduradh te a contradiction.

We first assign to each vertexand facef of G a chargev such thatv(v) = 2d(v) — 6 and
w(f) = r(f) — 6, whered(v) andr(f) denote the degree of the vertexand the length of the
face f respectively. By Euler's Formuld/| — |E| + |F| = 2 and formulay_ ., d(v) = 2|E| =
> rerr(f), we have:

Zw(v) + Zw(f) =-12<0.
veV fer

We then redistribute the charges according to some disicttargles. During the process, no
charges are created or disappear. d:ebe the new charge on each vertex and face after the proce-

dure. It follows that:
Dow)+ D> wlf) =Y W)+ > w(f).

veV fer veV feF
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4 G. J. Chang, F. Havet, M. Montassier, and A. Raspaud

However, we will show that under some structural propenie& the new charge on each vertex
and face is non-negative. This leads to the following obsicontradiction

—12= ) w) + Y w(f)=Y W@+ > w(f)>0

veV fer veV fer
implying that no counterexample can exist.

Establishing structural properties is essential in the@pobthe theorem. Although the properties
for (2,1, 0)-coloring and for(4, 0, 0)-coloring are not the same, they share some common part. In
this section, we derive lemmas for a general setting. S1g05 so > s3 > 0 ands = s;+ 82+ 83.

In this section we assume th@tis a minimum counterexample jA that is not( sy, s, s3)-colorable.

A vertex of degreé: (resp. at least, at mostk) will be calledk-vertex(resp. k™ -vertex k-
vertey. A similar notation will be used for cycles and faces. kAeighbor(resp. k*-neighbor
k~-neighbo) of some vertex: is a neighbor ofu which is ak-vertex. An(a, b, c)-faceis a 3-face
wvw such thatd(u) = a, d(v) = b andd(w) = c. In addition,a™ (resp.a™) will meand(u) < a
(resp.d(u) > a) andx will mean any degree. For example(® 4, x)-face is a 3-face.ww such
thatd(u) = 3, d(v) < 4 andw has no restriction on its degree. penden-faceof a vertexv is
a 3-face not containing but is incident to a 3-vertex adjacento In the following we will color
the vertices of the graphs by partitioning the vertex set Int, V5, V5 such that eacly; induces a
subgraph of maximum degree at mest Coloring a vertex with coloi means adding the vertex
into V;. We will say that wenicely colora vertex if we color it byi and at mostax{0, s; — 1} of its
neighbors are colored by We say that weroperly colora vertex if we color it by a color not used
by its neighbors. Properly colored vertices are nicely m@do When the colored neighbors of an
uncolored vertex use at most two colors, in particular wheras at most two colored neighbors,
we can always colov properly by using the third color not used by its neighborg Wil use this
frequently. As an easy consequence, every vertéx bas degree at least

First, sinceG has not-cycles, we have the following:

Observation 2 Two 3-faces may not share an edge. lkavertexv is incident toa 3-faces and has
3 pendenB-faces, therRa + 3 < k.

Next, three useful lemmas.

Lemma 3 Letv be an(s + 2)~-vertex ofG. If G — v has an(sy, sz, s3)-coloring such that all
neighbors ob are nicely colored, the is (s, s2, s3)-colorable.

PROOF Forl < i < 3, if we cannot assign colarto v, thenv has at least; + 1 neighbors colored
by i. It follows thatv has degree at leaSt;_, (s; + 1) = s + 3, a contradiction. ]

Lemma 4 GraphG contains nd(s + 2) ~-vertexv adjacent only tol ~-vertices, each-neighbor of
which is adjacent som&neighbor ofv.

PROOF Suppose to the contrary th@tcontains such &s + 2)~-vertexv. By the minimality ofG,
the graphG?’ obtained fromG by deletingv and all of its neighbors admits &g, s2, s3)-coloring.
We first color all4-neighbors ofv properly, and then color afi-neighbors ofv properly. Then all
neighbors ob are nicely colored. Thus, by Lemmag@,is (s1, s2, s3)-colorable, a contradictiorl

Lemma 5 The three neighbors, , 22, 25 of a3-vertexv of G use different colors in afs;, sa, s3)-
coloring of G — v. Moreover, assume; is colored byi, we haved(z;) > s; +3for1 < i < 3.
Furthermore, ifs; > 0 andz; is adjacent taz;, then eitherd(z;) > s, + 3 or d(z;) > s; + 3.

PROOF If 21, x5, 23 do not use three distinct colors, then we can properly cglarcontradiction.
Hence w.l.0.g. we can assume thais colored byi for 1 < i < 3.

Suppose for a contradiction that sodie:;) < s; + 2 for somei. Thens; > 1 asd(x;) > 3.
If z; is nicely colored byi, then we colow by i and this extends the coloring €&, a contradiction.

INRIA



Steinberg’s Conjecture and near-colorings 5

Hence,r; has at least; neighbors colored by. Sincex; has an uncolored neighbor there is at
least one color different fromnot used by its neighbors. We then coldboy i and recolor:; by the
unused color. This extends the coloringdpa contradiction.

Suppose for a contradiction that is adjacent tac;, butd(z;) = s; + 3 andd(z;) = s; + 3.
Let £ be the color distinct fromi and;. SinceG has no-cycle,zy, is not adjacent te;; andx;. As
abovex; (resp.z;) hass; (resp.s;) neighbors colored by (resp.j) and another colored neighbor
; (resp.z}) other thanr; (resp.z;). If x; is colored byj, then we may colov by i and recolor
x; by k to get an(sy, s2, s3)-coloring of G, a contradiction. Hence;, is colored byk. Similarly,
x’; is also colored byt. Then we may colop by i, recolorz; by j and recolorz; by i to get an
(s1, 82, s3)-coloring of G (notice thats; > 0), again a contradiction. Hencé(x;) > s; + 3 or
d(z;) > s; + 3. O

3 (2,1,0)-colorability of F

In this section we prove that every graphJhis (2, 1, 0)-colorable, namely we consider the case
(s1,52,83) = (2,1,0) for whichs = s1 + s2 + s3 = 3.

3.1 Reducible configurations for(2, 1, 0)-coloring

We first establish structural properties@f More precisely, we prove that some ‘configurations’,
i.e. subgraphs, are ‘reducible’, i.e cannot appe@¥ lmecause it is a minimum counterexample. Lots
of this configuartions are depicted in Figure 1.

A light 5-vertexis a 5-vertex incident to €3, 5, 5)-face f and adjacent to thre®vertices not in
f. A poor (3,5,5)-faceis a (3,5, 5)-face incident to a ligh§-vertex. If a3-vertex is incident to a
3-face, then its neighbor not incident to ti3igace is said to be itsuter neighbor

As already mentioned we have the following.

(C1) G contains n@~-vertices.
The two following claims come from Lemma 4 with= 3.
(C2) G contains nd-vertex adjacent to five-vertices.

(C3)G does not contaifi-verticesv incidentto a(3, 4, 5)-face f and adjacent to threg-vertices
notin f.

(C4) G contains no non-light-vertex incident to a poof3, 5, 5)-face and &3, 5, 5)-face, and
adjacent to &-vertex not in these faces

Proof. Suppose to the contrary th@tcontains such &-vertexv. Letuvw be the poo(3, 5, 5)-
face,rvs be the(3,57,5)-face withd(v) = d(r) = 3, andz be the neighbor of not in these
faces. Vertexw is light and thus is adjacent to thr8evertices distinct fromu, sayws, wa, ws. By
the minimality of G, the graphG — {u, v, w, w1, we, ws,r, x} admits a(2, 1, 0)-coloring. Now we
extend this coloring as follows. We may assume that,if colored byl, then it has at most one
neighbor colored by, otherwise we can properly recolor it. Then we catoandx properly. If
s, r, z use different colors, then we colorwith 1; otherwise we colop properly. We then color
u, w1, we,ws properly. It follows that all neighbors af) are nicely colored. By Lemma & is
(2,1,0)-colorable, a contradiction.O

(C5) G does not contain a pods, 5, 5)-face incident to two lighs-vertices.

Proof. Suppose to the contrary th@tcontains a poof3, 5, 5)-faceuvw with light verticesv and
w. Forx € {v,w}, letxy, 2, x5 be the three neighbors efnot in {u, v, w}. By the minimality
of G, the graphG — {u,v,w,w;,ws, ws,v1,ve,vs} admits a(2,1,0)-coloring. We extend the
coloring to{wv1, ve, v3} by coloring each of them properly. df , v2, v3 use three distinct colors, then

RR n° 7669



6 G. J. Chang, F. Havet, M. Montassier, and A. Raspaud

we colorv with 1, and properly otherwise. After this, we colerw;, w», w3 properly. It follows
that all neighbors ofv are nicely colored. By Lemma &; is (2, 1, 0)-colorable, a contradiction.C

Letwv be a 3-vertex adjacent to three vertigesy-, y3. ConsidelG — v. By Lemma 5, the colors
1, 2, and 3 appear on the neighborsoMoreover the vertex colored with 1 (resp. 2, 3) has degree
at least 5 (resp. 4, 3). Thus (C6) and (C7) follow.

(C6) G does not contail-vertices adjacent to tws-vertices.

(CT)If wvw is a (3,4, 4)-face withd(u) = 3, then the outer neighbor af has degree at least

Now, if the three verticeg, y2, y3 satisfyd(y1) = 3,d(y2) < 4 andd(y2) < d(ys), theny;
(resp.y2, y3) is colored with 3 (resp. 2, 1) and has degree 3 (resp. 4, sitt%aBy the last sentence
of Lemma 5, the verticeg, , y» are non-adjacent; moreoverdfys) = 5, thenys is not adjacent to
y1 Of yo. Thus (C8), (C9), and (C10) follow.

(C8) G does not contain3, 3,4 )-faces.

(C9)If wow is a(3, 3, 5)-face withd(u) = 3, then the outer neighbor af has degree at least

(C10)If wvw is a(3, 4, 5)-face withd(u) = 3,d(v) = 4 andd(w) = 5, then the outer neighbor
of u has degree at leadt

> %

(C5) (C6) (C7)

o

(C10)

(C4)

(C8)

Figure 1: Reducible configurations (C2)-(C10). Black defzresent vertices all neighbours of which
are drawn in the figure; the white dots represent verticesadhia have nondepicted neighbours.
Dashed lines represent edges that may possibly not exist.

INRIA



Steinberg’s Conjecture and near-colorings 7

3.2 Discharging procedure for(2, 1, 0)-coloring

We now apply a discharging procedure to reach to a contiadictThe discharging rules are as
follows:

R1. Every4-vertex gives; to each pendertface.

R2. Every5t-vertex givesl to each penderi-face.

R3. Every4-vertex givesl to each inciden3-face.

R4. Every non-lights-vertex give to each incident pod(3, 5, 5)-face.

R5. Every5-vertex gives% to each incident non-po@8, 5, 5)-face or(3, 4, 5)-face.
R6. Every5-vertex givesl to each other incideri-face.

R7. Every6T-vertex give2 to each incidens-face.

Let v be ak-vertex withk > 3 by (C1).
Casek = 3. The discharging procedure does not involgegertices. Hencer*(v) = w(v) = 0.

Casek = 4. Initially w(v) = 2. Vertexv givesl1 to each of thev incident3-faces by R3 an(%
to each of the3 pendenB-faces by R1. By Observation2;(v) > 2 — (a+ 18) >2—1-4=0.

Casek = 5. Initially w(v) = 4. Assumev is not incident to any 3-face. By (C2),is adjacent
to at most four 3-vertices and so has at most four peritiéates. By R2w*(v) >4 —4-1 = 0.

Assumev is incident to exactly ong-facef. If v is a non-lights-vertex andf is a poor(3, 5, 5)-
face, thenv has at most two pendedifaces by definition. By R4 and R2; (v) > 4—2—2-1 = 0.
If fis a non-pooi(3,5,5)-face, therw has at most two pendeBtfaces by definition. By R5 and
R2,w*(v) >4—2—-2-1> 0. If fisa(3,4,5)-face, therw has at most two pendesifaces by
(C3). By R5 and R2w*(v) >4 — 2 — 2.1 > 0. If fis a3-face of other type, then by R6 and R2
w(v)>4—-1-3-1=0.

Assumev is incident to exactly two 3-facef and f». If v gives twice at mosg to the 3-faces,
thenw*(v) >4 —2- 2 — 1 = 0. So we may assume thét or f,, say f1, is a poor(3, 5, 5)-face. If
f2isa(3,5,5)-face, thery has no pendent 3-faces by (C4) anfv) >4 —-2—-2=0.1If frisa
3-face of other type, themmay have a pendent 3-face antv) >4 -2 —1—1= 0 by R6.

Casek > 6. Initially w(v) = 2k — 6. Vertexwv gives2 to each of thex incident3-faces by R7
and1 to each of the3 pendent3-faces by R2. By Observation 2;*(v) > 2k — 6 — 2a — 3 >
2k—6—k=k—62>0.

Let f be ak-face.
Casek = 3. Initially w(f) = —3. By (C8), f is hot a(3, 3,4~ )-face.

Let f = wow be a(3,3,5)-face so thati(u) = d(v) = 3 andd(w) = 5. By (C9) the outer
neighbor ofu (resp.v) has degree at leaStand so gives at leastto f by R2. By R6,w gives] to
f. Itfollows thatw*(f) = -3+2-1+1=0.

Let f = uvw be a(3,3,6%)-face so thati(u) = d(v) = 3 andd(w) > 6. By (C6), the outer
neighbor ofu (resp.v) has degree at leagtand so gives at Iea%t to f by R1. By R7,w gives2 to
f. Itfollows thatw*(f) = =3 +2-1 +2 =0.

Let f = wow be a(3,4,4)-face so thati(u) = 3 andd(v) = d(w) = 4. By (C7) the outer
neighbor ofu has degree at leastand so gives to f by R2. Vertices (resp.w) givel to f by R3.
Hencew*(f) =—-3+1+2-1=0.

Let f = wvw be a(3,4, 5)-face so thatl(u) = 3,d(v) = 4 andd(w) = 5. By (C10), the outer
neighbor ofu has degree at leagtand so gives at Iea%t to f by R1. Verticesy andw give each 1
and2 to f respectively by R3 and R5. Heneé(f) = -3+ 3 +1+ 3 =0.

RR n° 7669



8 G. J. Chang, F. Havet, M. Montassier, and A. Raspaud

Let f = wvw be a(3,4,6%)-face so thatl(u) = 3,d(v) = 4 andd(w) > 6. By R3 and R7,
verticesv andw give each 1 and 2 t¢ respectively. Hence*(f) = -3+ 1+2=0.

Let f = wow be a(3, 5, 5)-face so thatl(u) = 3,d(v) = d(w) = 5. Assumef is poor andv is
light. By (C5)w cannot be light. Hence*(f) = =3+ 1 + 2 = 0 by R4 and R6. Assumég is not
poor. Thenv*(f) = —=3+2-3 = 0 by R5.

Let f = wow be a(3,57, 61)-face so thati(u) = 3, d(v) > 5,d(w) > 6. Verticesv andw give
each at least 1 and 2 respectively by R6-7. Hentfef) > —3 + 1+ 2 = 0.

Let f = wvw be a(4™, 4%, 47)-face. Each incident vertex gives at least 1ftby R3-7. Hence
w*(f) > -3+3-1=0.

Casek > 4. Faces of length 4 and 5 do not exist by hypothesis. Faces gihet least 6 are not
involved in the discharging procedure. Heng® f) = w(f) = r(f) — 6 > 0.

It follows that every vertex and face has a non-negativegsas required. This completes the
proof.

4 (4,0,0)-colorability of F

In this section we prove that every graph®fs (4, 0, 0)-colorable, namely we consider the case of
(s1,52,83) = (4,0,0) for whichs = s1 + s2 + s3 = 4.

4.1 Reducible configurations for(4, 0, 0)-coloring

In this section we study structural propertiesband establish a number of reducible configuarions.
See Figure 3.

A bad 8-vertexis a 8-vertexv incident to thre€3, 3, 8)-faces and to &3, 8, x)-face f = uvw
with d(u) = 3,d(v) = 8, where the vertex is called thesponsorof f andf is abad faceof v. See
Figure 2.

u w sponsor

Figure 2. A bad-vertexv whose bad face isvw with sponsorw. (Drawing conventions are the
same as in Figure 1.)

(C1") G contains n@~ -vertices.

(C2) For 8 < k < 10, ak-vertex cannot be incident to exackly- 5 (3, 3, k)-faces and adjacent
to k 3-vertices.

Proof. Suppose is ak-vertex incident to exactly — 5 (3, 3, k)-faces and adjacent th) — &
other3-vertices not in thesé3, 3, k)-faces. By the minimality o€z, the graph’ obtained from
by deletingv and all its neighbors admits(d, 0, 0)-coloring. We color properly and sequentially all
neighbors ofv. Since eacli3, 3, k)-face contains at most one vertex coloredlbygolor 1 appears
at mostk — 5 + 10 — k = 5 times on the neighbors af. If it appears less thah times, we can

INRIA



Steinberg’s Conjecture and near-colorings 9

color v with 1, a contradiction. Hence coldrappears exactly times, once in eactB, 3, k)-face
and on all thel0 — & other3-vertices. For eackB, 3, k)-facevzy with d(z) = d(y) = 3, wherex

is colored byl, y is colored by2 or 3. In the case of is colored by3, if the outer neighbor of is

colored byl (resp.2), then we can recolay by 2 (resp.1). Then we can colos with 3 to obtain a
(4,0,0)-coloring of G, a contradiction. O

(C3') Every3-vertex ofG is adjacent to at least ong"-vertex.

Proof. This follows from the fact that the degree sequence for theetiheighbors of 8-vertex
is lexicographically at leag®, 3,3) by Lemma 5. O

(C4) If wow is a (3,3, 7)-face withd(u) = 3, then the outer neighbor of has degree at least
4.

Proof. Suppose to the contrary thét has a(3, 3, 7)-face uvw with d(v) = d(v) = 3 and
d(w) =7, but the outer vertex of u hasd(z) = 3. By Lemma 5, the degree sequence for the three
neighbors ofu is lex-graphically at least7, 3, 3). Hencew is colored byl andw is colored by2 or
3. This contradicts the last sentence of Lemma wasadjacentt@w. O

(C5”) The sponsot of a bad8-vertexv has degree at leastand is not a bac-vertex.

Proof. Suppose to the contrary that the dertexw is incident to thred3, 3, 8)-facesz x2v,
y1y2v andzy zov and to a(3, 8, x)-faceuwvw with d(u) = 3 and3 < d(w) < 7 or w a bads-vertex.
By the minimality ofG, the graph’ = G — {v, x1, 22, y1, Y2, 21, 22, u} admits &4, 0, 0)-coloring.
We can assume thatis nicely colored; otherwise, if(w) < 7, then we can recolor it properly, and
if w is a bad 8-vertex, then we can recolor properly all its calareighborhood and then colar
nicely. Now we color properly and sequentialty, zs, y1, y2, 21, 22, u, and we assign colar to v
(color 1 appears at mosttimes on the neighbors ef). This extends thé4, 0, 0)-coloring toG, a
contradiction. O

4.2 Discharging procedure for(4, 0, 0)-coloring

We now apply a discharging procedure to reach a contradiciibe discharging rules are as follows:

R1'. For4 <k < 6, everyk-vertex gives% to each pender-face.
R2'. Every7+t-vertex givesl to each penders:-face.

R3'. For4 < k < 6, everyk-vertex givesl to each incidens-face.
R4'. Every7t-vertex givesl to each incident4™, 41, 47)-face.

R5'. Every non-bad@™-vertex give to each incident3, 4T, 41)-face; every bad-vertex givesl
to its bad3-face.

R6’. EveryT7-vertex give< to each incident3, 3, 7)-face.
R7'. Fork > 8, everyk-vertex gives3 to each incident3, 3, k)-face.
Let v be ak-vertex withk > 3 by (C1’). Initially w(v) = 2k — 6.
Casek = 3. The discharging procedure does not invol$esrtices. Hencer*(v) = w(v) = 0.

Case4 < k < 6. Vertexv givesl to each of they incident3-faces by R3’ and to each of thes
pendens-faces by R1'. By Observation 2, (v) > 2k—6—(a+%6) >2k—6—5k = %k—G > 0.

Casek = 7. Vertexv gives2 to each of thex' incident(3,3",4*)-faces by R5’-6',1 to each
of the o’ incident (4™, 4%, 4%)-faces by R4’, and to each of the3 pendenB-faces by R2’. By
Observation 2w*(v) > 2k —6 — (2a/ + " +08) >2k—6—k =k —6 > 0.

Casek > 8. For the case whenis a bads-vertex,v gives3 to each inciden(3, 3, 8)-face by
R7’ and1 to the bad3-face by R5’. Hences*(v) =2-8—-6—-3-3—-1=0.
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Figure 3: The reducible configurations (C2)-(C5’). (Dragiconventions are the same as in Fig-
ure 1)
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Now assume that is not a bads-vertex. By R7’, R5’, R4’ and R2'y gives3 to each of
the o/ incident(3, 3, k)-faces,2 to each of thex” incident(3,4™,4")-faces,1 to each of thex””
incident (4,471, 47)-faces, and to each of the? pendenB-faces. By Observation 2,*(v) =
2k — 6 — (3a/ +2a" + o + B) > 2k — 6 — | 2| = [£] — 6 > 0 except for the cases (k)= 10
with o/ = 5, (2)k = 9witho’ = 4andp = 1, (3) k = 8 with o/ = 3 andf8 = 2 (note that
the badg-vertex case, i.ea’ = 4 or o’/ = 3 with o’ = 1, is excluded). The exceptional cases
give ak-vertex,8 < k < 10, with exactlyk — 5 (3, 3, k)-faces and adjacent only Bvertices, a
contradiction to (C2").

Let f be ak-face.
Casek = 3. Initially w(f) = —3.

Let f = uvw be a(a1,as,as)-face with3 < a; < 6,3 < a2 < 6 and3 < a3 < 6. By
(C3), the outer neighbor of eachvertex incident tof has degree at leastand gives each at least
1to f by R2'. By R3’, eachd-vertex with4 < d < 6 incident tof gives1 to f. It follows that
w*(f)=-3+3=0.

Let f = wow be a(3,3,7)-face so thatl(u) = d(v) = 3 andd(w) = 7. By (C4’) the outer
neighbor ofu (resp.v) has degree at leastand so gives at Iea%tto fbyR1'. By R6’,w gives2 to
f. Itfollows thatw*(f) = =3 +2-1 +2 =0.

Let f = uwvw be a(3,3,8%)-face so thatl(u) = d(v) = 3 andd(w) > 8. By R7’, w gives3 to
f. Itfollows thatw*(f) = -3+ 3 = 0.

Let f = wow be a(3,4",7")-face so thati(u) > 3, d(v) > 4 andd(w) > 7. By R3-5,
verticesv andw gives at leas8 to f and saw*(f) = —3 + 3 = 0, except for the case whefis a
bad3-face with the paiw, w being either two bad 8-vertices or a bad 8-vertex afid aertex. But
these two exceptional cases are impossible by (C5’).

Finally, let f = uvw be a(4™,47%,4%)-face. Every incident vertex gives at at least 1ftby
R3-4’. Hencew*(f) > 0.

It follows that every vertex and face has a non-negativegsas required. This completes the
proof.
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