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Conjecture de Steinberg et quasi-coloration

Résumé :SoitF la classe des graphes planaires sans cycles de longueur 4 et 5. La Conjecture de
Steinberg (1976) affirmant que tout graphe deF est 3-colorable, reste largement ouverte.

Mots-clés : graphes, coloration, décomposition, conjecture de Steinberg
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1 Introduction

In 1976, Appel and Haken proved that every planar graph is 4-colorable [2, 3], and as early as 1959,
Grötzsch [20] showed that every planar graph without 3-cycles is 3-colorable. As proved by Garey,
Johnson and Stockmeyer [19], the problem of deciding whether a planar graph is 3-colorable is NP-
complete. Therefore, some sufficient conditions for planargraphs to be 3-colorable were stated. In
1976, Steinberg [24] raised the following:

Steinberg’s Conjecture ’76 Every planar graph without 4- and 5-cycles is 3-colorable.

There were then no progress in this direction until Erdős (1991) proposed the following relax-
ation of Steinberg’s Conjecture:

Erdős’ relaxation ’91 Determine the smallest value ofk, if it exists, such that every planar graph
without cycles of length from 4 tok is 3-colorable.

Abbott and Zhou [1] proved that such ak does exist, withk ≤ 11. This result was later on
improved tok ≤ 10 by Borodin [4], tok ≤ 9 by Borodin [5] and Sanders and Zhao [22], tok ≤ 8
by Salavatipour [21]. The best known bound for such ak is 7 which was proved by Borodin, Glebov,
Raspaud and Salavatipour [10].

This approach was at the origin of sufficient conditions of 3-colorability of subfamilies of planar
graphs where some families of cycles are forbidden. See for examples [8, 9, 12, 13, 14, 15, 16, 17,
25].

A graphG is calledimproperly(d1, d2, . . . , dk)-colorable, or simply(d1, d2, . . . , dk)-colorable,
if the vertex set ofG can be partitioned into subsetsV1, V2, . . . , Vk such that the graphG[Vi] induced
by Vi has maximum degree at mostdi for 1 ≤ i ≤ k. This notion generalizes those of properk-
coloring (whend1 = d2 = . . . = dk = 0) andd-improperk-coloring (whend1 = d2 = . . . = dk =
d ≥ 0). Under this terminology, the Four Color Theorem says that every planar graph is(0, 0, 0, 0)-
colorable. Eaton and Hull [18] and independently Škrekovski [23] proved that every planar graph is
2-improperly 3-colorable (in fact, 2-improperly 3-choosable), i.e.(2, 2, 2)-colorable.

In this note we focus on near-colorings and Steinberg’s Conjecture. LetF be the family of planar
graphs without cycles of length 4 and 5. We prove:

Theorem 1 Every graph ofF is (2, 1, 0)-colorable and(4, 0, 0)-colorable.

The remaining of the paper is dedicated to the proof of this theorem.

2 General setting for(s1, s2, s3)-colorability of F

The proof of the main theorem is done by reducible configurations and discharging procedure. Sup-
pose the theorem is not true. LetG = (V,E, F ) be a counterexample with the minimum order
embedded in the plane. We apply a discharging procedure to reach to a contradiction.

We first assign to each vertexv and facef of G a chargeω such thatω(v) = 2d(v) − 6 and
ω(f) = r(f) − 6, whered(v) andr(f) denote the degree of the vertexv and the length of the
facef respectively. By Euler’s Formula|V | − |E| + |F | = 2 and formula

∑
v∈V d(v) = 2|E| =∑

f∈F r(f), we have: ∑

v∈V

ω(v) +
∑

f∈F

ω(f) = −12 < 0.

We then redistribute the charges according to some discharging rules. During the process, no
charges are created or disappear. Letω∗ be the new charge on each vertex and face after the proce-
dure. It follows that:

∑

v∈V

ω(v) +
∑

f∈F

ω(f) =
∑

v∈V

ω∗(v) +
∑

f∈F

ω∗(f).
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4 G. J. Chang, F. Havet, M. Montassier, and A. Raspaud

However, we will show that under some structural propertiesof G the new charge on each vertex
and face is non-negative. This leads to the following obvious contradiction

−12 =
∑

v∈V

ω(v) +
∑

f∈F

ω(f) =
∑

v∈V

ω∗(v) +
∑

f∈F

ω∗(f) > 0

implying that no counterexample can exist.

Establishing structural properties is essential in the proof of the theorem. Although the properties
for (2, 1, 0)-coloring and for(4, 0, 0)-coloring are not the same, they share some common part. In
this section, we derive lemmas for a general setting. Supposes1 ≥ s2 ≥ s3 ≥ 0 ands = s1+s2+s3.
In this section we assume thatG is a minimum counterexample inF that is not(s1, s2, s3)-colorable.

A vertex of degreek (resp. at leastk, at mostk) will be calledk-vertex(resp.k+-vertex, k−-
vertex). A similar notation will be used for cycles and faces. Ak-neighbor(resp. k+-neighbor,
k−-neighbor) of some vertexu is a neighbor ofu which is ak-vertex. An(a, b, c)-faceis a 3-face
uvw such thatd(u) = a, d(v) = b andd(w) = c. In addition,a− (resp.a+) will meand(u) ≤ a

(resp.d(u) ≥ a) and∗ will mean any degree. For example, a(3, 4−, ∗)-face is a 3-faceuvw such
thatd(u) = 3, d(v) ≤ 4 andw has no restriction on its degree. Apendent3-faceof a vertexv is
a 3-face not containingv but is incident to a 3-vertex adjacent tov. In the following we will color
the vertices of the graphs by partitioning the vertex set into V1, V2, V3 such that eachVi induces a
subgraph of maximum degree at mostsi. Coloring a vertex with colori means adding the vertex
intoVi. We will say that wenicely colora vertex if we color it byi and at mostmax{0, si− 1} of its
neighbors are colored byi. We say that weproperly colora vertex if we color it by a color not used
by its neighbors. Properly colored vertices are nicely colored. When the colored neighbors of an
uncolored vertexv use at most two colors, in particular whenv has at most two colored neighbors,
we can always colorv properly by using the third color not used by its neighbors. We will use this
frequently. As an easy consequence, every vertex ofG has degree at least3.

First, sinceG has no4-cycles, we have the following:

Observation 2 Two3-faces may not share an edge. If ak-vertexv is incident toα 3-faces and has
β pendent3-faces, then2α+ β ≤ k.

Next, three useful lemmas.

Lemma 3 Let v be an(s + 2)−-vertex ofG. If G − v has an(s1, s2, s3)-coloring such that all
neighbors ofv are nicely colored, thenG is (s1, s2, s3)-colorable.

PROOF. For1 ≤ i ≤ 3, if we cannot assign colori to v, thenv has at leastsi + 1 neighbors colored
by i. It follows thatv has degree at least

∑3

i=1
(si + 1) = s+ 3, a contradiction. 2

Lemma 4 GraphG contains no(s+2)−-vertexv adjacent only to4−-vertices, each4-neighbor of
which is adjacent some3-neighbor ofv.

PROOF. Suppose to the contrary thatG contains such a(s+ 2)−-vertexv. By the minimality ofG,
the graphG′ obtained fromG by deletingv and all of its neighbors admits an(s1, s2, s3)-coloring.
We first color all4-neighbors ofv properly, and then color all3-neighbors ofv properly. Then all
neighbors ofv are nicely colored. Thus, by Lemma 3,G is (s1, s2, s3)-colorable, a contradiction.2

Lemma 5 The three neighborsx1, x2, x3 of a3-vertexv ofG use different colors in an(s1, s2, s3)-
coloring ofG − v. Moreover, assumexi is colored byi, we haved(xi) ≥ si + 3 for 1 ≤ i ≤ 3.
Furthermore, ifsi > 0 andxi is adjacent toxj , then eitherd(xi) > si + 3 or d(xj) > sj + 3.

PROOF. If x1, x2, x3 do not use three distinct colors, then we can properly colorv, a contradiction.
Hence w.l.o.g. we can assume thatxi is colored byi for 1 ≤ i ≤ 3.

Suppose for a contradiction that somed(xi) ≤ si + 2 for somei. Thensi ≥ 1 asd(xi) ≥ 3.
If xi is nicely colored byi, then we colorv by i and this extends the coloring toG, a contradiction.

INRIA



Steinberg’s Conjecture and near-colorings 5

Hence,xi has at leastsi neighbors colored byi. Sincexi has an uncolored neighborv, there is at
least one color different fromi not used by its neighbors. We then colorv by i and recolorxi by the
unused color. This extends the coloring toG, a contradiction.

Suppose for a contradiction thatxi is adjacent toxj , butd(xi) = si + 3 andd(xj) = sj + 3.
Let k be the color distinct fromi andj. SinceG has no4-cycle,xk is not adjacent toxi andxj . As
above,xi (resp.xj) hassi (resp.sj) neighbors colored byi (resp.j) and another colored neighbor
x′

i (resp.x′

j) other thanxj (resp.xi). If x′

i is colored byj, then we may colorv by i and recolor
xi by k to get an(s1, s2, s3)-coloring ofG, a contradiction. Hence,x′

i is colored byk. Similarly,
x′

j is also colored byk. Then we may colorv by i, recolorxi by j and recolorxj by i to get an
(s1, s2, s3)-coloring ofG (notice thatsi > 0), again a contradiction. Hence,d(xi) > si + 3 or
d(xj) > sj + 3. 2

3 (2, 1, 0)-colorability of F

In this section we prove that every graph inF is (2, 1, 0)-colorable, namely we consider the case
(s1, s2, s3) = (2, 1, 0) for whichs = s1 + s2 + s3 = 3.

3.1 Reducible configurations for(2, 1, 0)-coloring

We first establish structural properties ofG. More precisely, we prove that some ‘configurations’,
i.e. subgraphs, are ‘reducible’, i.e cannot appear inG because it is a minimum counterexample. Lots
of this configuartions are depicted in Figure 1.

A light 5-vertexis a 5-vertex incident to a(3, 5, 5)-facef and adjacent to three3-vertices not in
f . A poor (3, 5, 5)-faceis a (3, 5, 5)-face incident to a light5-vertex. If a3-vertex is incident to a
3-face, then its neighbor not incident to this3-face is said to be itsouter neighbor.

As already mentioned we have the following.

(C1)G contains no2−-vertices.

The two following claims come from Lemma 4 withs = 3.

(C2)G contains no5-vertex adjacent to five3-vertices.

(C3)G does not contain5-verticesv incident to a(3, 4, 5)-facef and adjacent to three3-vertices
not inf .

(C4)G contains no non-light5-vertex incident to a poor(3, 5, 5)-face and a(3, 5−, 5)-face, and
adjacent to a3-vertex not in these faces.

Proof. Suppose to the contrary thatG contains such a5-vertexv. Letuvw be the poor(3, 5, 5)-
face,rvs be the(3, 5−, 5)-face withd(u) = d(r) = 3, andx be the neighbor ofv not in these
faces. Vertexw is light and thus is adjacent to three3-vertices distinct fromu, sayw1, w2, w3. By
the minimality ofG, the graphG − {u, v, w, w1, w2, w3, r, x} admits a(2, 1, 0)-coloring. Now we
extend this coloring as follows. We may assume that, ifs is colored by1, then it has at most one
neighbor colored by1, otherwise we can properly recolor it. Then we colorr andx properly. If
s, r, x use different colors, then we colorv with 1; otherwise we colorv properly. We then color
u,w1, w2, w3 properly. It follows that all neighbors ofw are nicely colored. By Lemma 3,G is
(2, 1, 0)-colorable, a contradiction.2

(C5)G does not contain a poor(3, 5, 5)-face incident to two light5-vertices.
Proof. Suppose to the contrary thatG contains a poor(3, 5, 5)-faceuvw with light verticesv and

w. Forx ∈ {v, w}, let x1, x2, x3 be the three neighbors ofx not in {u, v, w}. By the minimality
of G, the graphG − {u, v, w, w1, w2, w3, v1, v2, v3} admits a(2, 1, 0)-coloring. We extend the
coloring to{v1, v2, v3} by coloring each of them properly. Ifv1, v2, v3 use three distinct colors, then

RR n° 7669



6 G. J. Chang, F. Havet, M. Montassier, and A. Raspaud

we colorv with 1, and properly otherwise. After this, we coloru,w1, w2, w3 properly. It follows
that all neighbors ofw are nicely colored. By Lemma 3,G is (2, 1, 0)-colorable, a contradiction.2

Let v be a 3-vertex adjacent to three verticesy1, y2, y3. ConsiderG− v. By Lemma 5, the colors
1, 2, and 3 appear on the neighbors ofv. Moreover the vertex colored with 1 (resp. 2, 3) has degree
at least 5 (resp. 4, 3). Thus (C6) and (C7) follow.

(C6)G does not contain3-vertices adjacent to two3-vertices.

(C7) If uvw is a (3, 4, 4)-face withd(u) = 3, then the outer neighbor ofu has degree at least5.

Now, if the three verticesy1, y2, y3 satisfyd(y1) = 3, d(y2) ≤ 4 andd(y2) ≤ d(y3), theny1
(resp.y2, y3) is colored with 3 (resp. 2, 1) and has degree 3 (resp. 4, at least 5). By the last sentence
of Lemma 5, the verticesy1, y2 are non-adjacent; moreover ifd(y3) = 5, theny3 is not adjacent to
y1 or y2. Thus (C8), (C9), and (C10) follow.

(C8)G does not contain(3, 3, 4−)-faces.

(C9) If uvw is a (3, 3, 5)-face withd(u) = 3, then the outer neighbor ofu has degree at least5.

(C10) If uvw is a (3, 4, 5)-face withd(u) = 3, d(v) = 4 andd(w) = 5, then the outer neighbor
of u has degree at least4.

(C10)

(C2) (C3)

(C5) (C6)

(C8) (C9)

(C4)

(C7)

Figure 1: Reducible configurations (C2)-(C10). Black dots represent vertices all neighbours of which
are drawn in the figure; the white dots represent vertices that can have nondepicted neighbours.
Dashed lines represent edges that may possibly not exist.

INRIA



Steinberg’s Conjecture and near-colorings 7

3.2 Discharging procedure for(2, 1, 0)-coloring

We now apply a discharging procedure to reach to a contradiction. The discharging rules are as
follows:

R1. Every4-vertex gives1
2

to each pendent3-face.

R2. Every5+-vertex gives1 to each pendent3-face.

R3. Every4-vertex gives1 to each incident3-face.

R4. Every non-light5-vertex gives2 to each incident poor(3, 5, 5)-face.

R5. Every5-vertex gives3
2

to each incident non-poor(3, 5, 5)-face or(3, 4, 5)-face.

R6. Every5-vertex gives1 to each other incident3-face.

R7. Every6+-vertex gives2 to each incident3-face.

Let v be ak-vertex withk ≥ 3 by (C1).

Casek = 3. The discharging procedure does not involves3-vertices. Henceω∗(v) = ω(v) = 0.

Casek = 4. Initially ω(v) = 2. Vertexv gives1 to each of theα incident3-faces by R3 and1
2

to each of theβ pendent3-faces by R1. By Observation 2,ω∗(v) ≥ 2− (α+ 1

2
β) ≥ 2− 1

2
· 4 = 0.

Casek = 5. Initially ω(v) = 4. Assumev is not incident to any 3-face. By (C2),v is adjacent
to at most four 3-vertices and so has at most four pendent3-faces. By R2,ω∗(v) ≥ 4− 4 · 1 = 0.

Assumev is incident to exactly one3-facef . If v is a non-light5-vertex andf is a poor(3, 5, 5)-
face, thenv has at most two pendent3-faces by definition. By R4 and R2,ω∗(v) ≥ 4−2−2 ·1 = 0.
If f is a non-poor(3, 5, 5)-face, thenv has at most two pendent3-faces by definition. By R5 and
R2,ω∗(v) ≥ 4 − 3

2
− 2 · 1 > 0. If f is a(3, 4, 5)-face, thenv has at most two pendent3-faces by

(C3). By R5 and R2,ω∗(v) ≥ 4 − 3

2
− 2 · 1 > 0. If f is a3-face of other type, then by R6 and R2

ω∗(v) ≥ 4− 1− 3 · 1 = 0.

Assumev is incident to exactly two 3-facesf1 andf2. If v gives twice at most3
2

to the 3-faces,
thenω∗(v) ≥ 4− 2 · 3

2
− 1 = 0. So we may assume thatf1 or f2, sayf1, is a poor(3, 5, 5)-face. If

f2 is a(3, 5−, 5)-face, thenv has no pendent 3-faces by (C4) andω∗(v) ≥ 4− 2− 2 = 0. If f2 is a
3-face of other type, thenv may have a pendent 3-face andω∗(v) ≥ 4− 2− 1− 1 = 0 by R6.

Casek ≥ 6. Initially ω(v) = 2k − 6. Vertexv gives2 to each of theα incident3-faces by R7
and1 to each of theβ pendent3-faces by R2. By Observation 2,ω∗(v) ≥ 2k − 6 − 2α − β ≥
2k − 6− k = k − 6 ≥ 0.

Let f be ak-face.

Casek = 3. Initially ω(f) = −3. By (C8),f is not a(3, 3, 4−)-face.

Let f = uvw be a(3, 3, 5)-face so thatd(u) = d(v) = 3 andd(w) = 5. By (C9) the outer
neighbor ofu (resp.v) has degree at least5 and so gives at least1 to f by R2. By R6,w gives1 to
f . It follows thatω∗(f) = −3 + 2 · 1 + 1 = 0.

Let f = uvw be a(3, 3, 6+)-face so thatd(u) = d(v) = 3 andd(w) ≥ 6. By (C6), the outer
neighbor ofu (resp.v) has degree at least4 and so gives at least1

2
to f by R1. By R7,w gives2 to

f . It follows thatω∗(f) = −3 + 2 · 1

2
+ 2 = 0.

Let f = uvw be a(3, 4, 4)-face so thatd(u) = 3 andd(v) = d(w) = 4. By (C7) the outer
neighbor ofu has degree at least5 and so gives1 to f by R2. Verticesv (resp.w) give1 to f by R3.
Henceω∗(f) = −3 + 1 + 2 · 1 = 0.

Let f = uvw be a(3, 4, 5)-face so thatd(u) = 3, d(v) = 4 andd(w) = 5. By (C10), the outer
neighbor ofu has degree at least4 and so gives at least1

2
to f by R1. Verticesv andw give each 1

and 3

2
to f respectively by R3 and R5. Henceω∗(f) = −3 + 1

2
+ 1 + 3

2
= 0.

RR n° 7669



8 G. J. Chang, F. Havet, M. Montassier, and A. Raspaud

Let f = uvw be a(3, 4, 6+)-face so thatd(u) = 3, d(v) = 4 andd(w) ≥ 6. By R3 and R7,
verticesv andw give each 1 and 2 tof respectively. Henceω∗(f) = −3 + 1 + 2 = 0.

Let f = uvw be a(3, 5, 5)-face so thatd(u) = 3, d(v) = d(w) = 5. Assumef is poor andv is
light. By (C5)w cannot be light. Henceω∗(f) = −3 + 1 + 2 = 0 by R4 and R6. Assumef is not
poor. Thenω∗(f) = −3 + 2 · 3

2
= 0 by R5.

Let f = uvw be a(3, 5+, 6+)-face so thatd(u) = 3, d(v) ≥ 5, d(w) ≥ 6. Verticesv andw give
each at least 1 and 2 respectively by R6-7. Henceω∗(f) ≥ −3 + 1 + 2 = 0.

Let f = uvw be a(4+, 4+, 4+)-face. Each incident vertex gives at least 1 tof by R3-7. Hence
ω∗(f) ≥ −3 + 3 · 1 = 0.

Casek ≥ 4. Faces of length 4 and 5 do not exist by hypothesis. Faces of length at least 6 are not
involved in the discharging procedure. Henceω∗(f) = ω(f) = r(f) − 6 ≥ 0.

It follows that every vertex and face has a non-negative charge as required. This completes the
proof.

4 (4, 0, 0)-colorability of F

In this section we prove that every graph ofF is (4, 0, 0)-colorable, namely we consider the case of
(s1, s2, s3) = (4, 0, 0) for whichs = s1 + s2 + s3 = 4.

4.1 Reducible configurations for(4, 0, 0)-coloring

In this section we study structural properties ofG and establish a number of reducible configuarions.
See Figure 3.

A bad8-vertexis a8-vertexv incident to three(3, 3, 8)-faces and to a(3, 8, ∗)-facef = uvw

with d(u) = 3, d(v) = 8, where the vertexw is called thesponsorof f andf is abad faceof v. See
Figure 2.

sponsor

v

u w

f

Figure 2: A bad8-vertexv whose bad face isuvw with sponsorw. (Drawing conventions are the
same as in Figure 1.)

(C1’) G contains no2−-vertices.

(C2’) For 8 ≤ k ≤ 10, ak-vertex cannot be incident to exactlyk−5 (3, 3, k)-faces and adjacent
to k 3-vertices.

Proof. Supposev is ak-vertex incident to exactlyk − 5 (3, 3, k)-faces and adjacent to10 − k

other3-vertices not in these(3, 3, k)-faces. By the minimality ofG, the graphG′ obtained fromG
by deletingv and all its neighbors admits a(4, 0, 0)-coloring. We color properly and sequentially all
neighbors ofv. Since each(3, 3, k)-face contains at most one vertex colored by1, color1 appears
at mostk − 5 + 10 − k = 5 times on the neighbors ofv. If it appears less than5 times, we can

INRIA



Steinberg’s Conjecture and near-colorings 9

color v with 1, a contradiction. Hence color1 appears exactly5 times, once in each(3, 3, k)-face
and on all the10 − k other3-vertices. For each(3, 3, k)-facevxy with d(x) = d(y) = 3, wherex
is colored by1, y is colored by2 or 3. In the case ofy is colored by3, if the outer neighbor ofy is
colored by1 (resp.2), then we can recolory by 2 (resp.1). Then we can colorv with 3 to obtain a
(4, 0, 0)-coloring ofG, a contradiction. 2

(C3’) Every3-vertex ofG is adjacent to at least one7+-vertex.

Proof. This follows from the fact that the degree sequence for the three neighbors of a3-vertex
is lexicographically at least(7, 3, 3) by Lemma 5. 2

(C4’) If uvw is a (3, 3, 7)-face withd(u) = 3, then the outer neighbor ofu has degree at least
4.

Proof. Suppose to the contrary thatG has a(3, 3, 7)-faceuvw with d(u) = d(v) = 3 and
d(w) = 7, but the outer vertexx of u hasd(x) = 3. By Lemma 5, the degree sequence for the three
neighbors ofu is lex-graphically at least(7, 3, 3). Hencew is colored by1 andv is colored by2 or
3. This contradicts the last sentence of Lemma 5 asw is adjacent tov. 2

(C5’) The sponsorw of a bad8-vertexv has degree at least8 and is not a bad8-vertex.

Proof. Suppose to the contrary that the bad8-vertexv is incident to three(3, 3, 8)-facesx1x2v,
y1y2v andz1z2v and to a(3, 8, ∗)-faceuvw with d(u) = 3 and3 ≤ d(w) ≤ 7 or w a bad8-vertex.
By the minimality ofG, the graphG′ = G−{v, x1, x2, y1, y2, z1, z2, u} admits a(4, 0, 0)-coloring.
We can assume thatw is nicely colored; otherwise, ifd(w) ≤ 7, then we can recolor it properly, and
if w is a bad 8-vertex, then we can recolor properly all its colored neighborhood and then colorw
nicely. Now we color properly and sequentiallyx1, x2, y1, y2, z1, z2, u, and we assign color1 to v

(color 1 appears at most4 times on the neighbors ofv). This extends the(4, 0, 0)-coloring toG, a
contradiction. 2

4.2 Discharging procedure for(4, 0, 0)-coloring

We now apply a discharging procedure to reach a contradiction. The discharging rules are as follows:

R1’. For4 ≤ k ≤ 6, everyk-vertex gives1
2

to each pendent3-face.

R2’. Every7+-vertex gives1 to each pendent3-face.

R3’. For4 ≤ k ≤ 6, everyk-vertex gives1 to each incident3-face.

R4’. Every7+-vertex gives1 to each incident(4+, 4+, 4+)-face.

R5’. Every non-bad7+-vertex gives2 to each incident(3, 4+, 4+)-face; every bad8-vertex gives1
to its bad3-face.

R6’. Every7-vertex gives2 to each incident(3, 3, 7)-face.

R7’. Fork ≥ 8, everyk-vertex gives3 to each incident(3, 3, k)-face.

Let v be ak-vertex withk ≥ 3 by (C1’). Initially ω(v) = 2k − 6.

Casek = 3. The discharging procedure does not involves3-vertices. Henceω∗(v) = ω(v) = 0.

Case4 ≤ k ≤ 6. Vertexv gives1 to each of theα incident3-faces by R3’ and1
2

to each of theβ
pendent3-faces by R1’. By Observation 2,ω∗(v) ≥ 2k−6−(α+ 1

2
β) ≥ 2k−6− 1

2
k = 3

2
k−6 ≥ 0.

Casek = 7. Vertexv gives2 to each of theα′ incident(3, 3+, 4+)-faces by R5’-6’,1 to each
of theα′′ incident(4+, 4+, 4+)-faces by R4’, and1 to each of theβ pendent3-faces by R2’. By
Observation 2,ω∗(v) ≥ 2k − 6− (2α′ + α′′ + β) ≥ 2k − 6− k = k − 6 > 0.

Casek ≥ 8. For the case whenv is a bad8-vertex,v gives3 to each incident(3, 3, 8)-face by
R7’ and1 to the bad3-face by R5’. Henceω∗(v) = 2 · 8− 6− 3 · 3− 1 = 0.
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(C5’)

(C2’) (C2’)(C2’)

(C3’) (C4’)

(C5’)

Figure 3: The reducible configurations (C2’)-(C5’). (Drawing conventions are the same as in Fig-
ure 1.)
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Now assume thatv is not a bad8-vertex. By R7’, R5’, R4’ and R2’,v gives3 to each of
theα′ incident(3, 3, k)-faces,2 to each of theα′′ incident(3, 4+, 4+)-faces,1 to each of theα′′′

incident(4+, 4+, 4+)-faces, and1 to each of theβ pendent3-faces. By Observation 2,ω∗(v) =
2k − 6− (3α′ + 2α′′ + α′′′ + β) ≥ 2k − 6− ⌊ 3k

2
⌋ = ⌈k

2
⌉ − 6 ≥ 0 except for the cases (1)k = 10

with α′ = 5, (2) k = 9 with α′ = 4 andβ = 1, (3) k = 8 with α′ = 3 andβ = 2 (note that
the bad8-vertex case, i.e.α′ = 4 or α′ = 3 with α′′ = 1, is excluded). The exceptional cases
give ak-vertex,8 ≤ k ≤ 10, with exactlyk − 5 (3, 3, k)-faces and adjacent only to3-vertices, a
contradiction to (C2’).

Let f be ak-face.

Casek = 3. Initially ω(f) = −3.

Let f = uvw be a(a1, a2, a3)-face with3 ≤ a1 ≤ 6, 3 ≤ a2 ≤ 6 and3 ≤ a3 ≤ 6. By
(C3’), the outer neighbor of each3-vertex incident tof has degree at least7 and gives each at least
1 to f by R2’. By R3’, eachd-vertex with4 ≤ d ≤ 6 incident tof gives1 to f . It follows that
ω∗(f) = −3 + 3 = 0.

Let f = uvw be a(3, 3, 7)-face so thatd(u) = d(v) = 3 andd(w) = 7. By (C4’) the outer
neighbor ofu (resp.v) has degree at least4 and so gives at least1

2
to f by R1’. By R6’,w gives2 to

f . It follows thatω∗(f) = −3 + 2 · 1

2
+ 2 = 0.

Let f = uvw be a(3, 3, 8+)-face so thatd(u) = d(v) = 3 andd(w) ≥ 8. By R7’, w gives3 to
f . It follows thatω∗(f) = −3 + 3 = 0.

Let f = uvw be a(3, 4+, 7+)-face so thatd(u) ≥ 3, d(v) ≥ 4 andd(w) ≥ 7. By R3’-5’,
verticesv andw gives at least3 to f and soω∗(f) = −3 + 3 = 0, except for the case whenf is a
bad3-face with the pairv, w being either two bad 8-vertices or a bad 8-vertex and a6−-vertex. But
these two exceptional cases are impossible by (C5’).

Finally, let f = uvw be a(4+, 4+, 4+)-face. Every incident vertex gives at at least 1 tof by
R3’-4’. Henceω∗(f) ≥ 0.

It follows that every vertex and face has a non-negative charge as required. This completes the
proof.
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