
HAL Id: inria-00532912
https://hal.inria.fr/inria-00532912

Submitted on 10 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Independent Checkpointing in a Heterogeneous Grid
Environment

Eugen Feller, John Mehnert-Spahn, Michael Schoettner, Christine Morin

To cite this version:
Eugen Feller, John Mehnert-Spahn, Michael Schoettner, Christine Morin. Independent Checkpointing
in a Heterogeneous Grid Environment. First International Conference on Utility and Cloud Computing
(UCC 2010), Dec 2010, Chennai, India. �inria-00532912�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49977393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00532912
https://hal.archives-ouvertes.fr


Independent Checkpointing in a Heterogeneous

Grid Environment

Eugen Feller∗, John Mehnert-Spahn†, Michael Schoettner†, Christine Morin∗

∗INRIA Centre Rennes - Bretagne Atlantique

IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex, France

{Eugen.Feller, Christine.Morin}@inria.fr
†Institut für Informatik

Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40255 Düsseldorf, Germany

{John.Mehnert-Spahn, Michael.Schoettner}@uni-duesseldorf.de

Abstract—The EU-funded XtreemOS project implements an
open-source grid operating system based on Linux. In or-
der to provide fault tolerance and migration for grid appli-
cations, it integrates a distributed grid-checkpointing service
called XtreemGCP. This service is designed to support different
checkpointing protocols and to address the underlying grid-
node checkpointers (e.g. BLCR, LinuxSSI, OpenVZ, etc.) in a
transparent manner through a uniform interface. In this paper,
we present the integration of an independent checkpointing and
rollback-recovery protocol into the XtreemGCP. The solution we
propose is not checkpointer bound and thus can be transparently
used on top of any grid-node checkpointer.

To evaluate the prototype we run it within a heterogeneous
environment composed of single-PC nodes and a Single System
Image (SSI) cluster. The experimental results demonstrate the
capability of the XtreemGCP service to integrate different check-
pointing protocols and independently checkpoint a distributed
application within a heterogeneous grid environment. Moreover,
the performance evaluation also shows that our solution outper-
forms the existing coordinated checkpointing protocol in terms
of scalability.

Keywords-fault tolerance, independent checkpointing, rollback-
recovery, heterogeneity, distributed systems, grid computing.

I. INTRODUCTION

With the growing demand for computing power, grids have

become very popular for managing large amounts of resources

during the last decade. Grids provide a large-scale distributed

platform for the execution of various kinds of computation

and data intensive applications (e.g. weather prediction and

climate simulation, particle system simulation, etc.) across

many heterogeneous resources. Hence, they are vulnerable to

all sorts of failures, either caused by hardware, communica-

tion or programming errors. Given a long-running scientific

application, it is obvious that fault-tolerance becomes a major

concern. Fault tolerance techniques based on checkpoints can

be used to save the state of these applications on stable storage

in order to recover them in the event of failure. Thus, upon

failure the execution can be resumed from the last consis-

tent checkpoint while preserving already done computations.

Moreover, checkpointing and recovery are essential in the

process of dynamic scheduling in order to migrate applications

across multiple resources and thereby help optimizing global

resource usage.

A lot of work has been done during the last three decades

on developing fault-tolerance solutions. That work can be

classified into two categories: non-distributed and distributed.

The most prominent examples for non-distributed solutions

include BLCR [1], Condor [2], libCkpt [3] and OpenVZ [4].

These approaches focus on single node and either save the

local state of a process or encapsulate the processes within

a container (e.g. OpenVZ) and save the latter entirely. While

most of the complexity of those solutions relies on the proper

extraction of local resources (e.g. process information, files,

signals, message queues, shared memory, etc.) and their re-

covery, additional complexity is introduced when considering

the distributed case.

In distributed systems where parts of the application com-

municate across multiple resources it is not sufficient to

solely rely on the individual checkpoints of the participating

processes in order to compute a consistent global state of

the application. Here, in-transit messages need to be handled,

otherwise orphan-messages and lost-messages can lead to in-

consistent checkpoints. Orphan-messages are messages whose

receive events are part of the destination process checkpoint

but the corresponding send events are lost. In case of a

recovery the destination process would receive those mes-

sages twice, which could result in unpredictable application

behavior. On the other hand, lost-messages occur when the

send events are part of the sender-side checkpoint, however

the receiving events are lost. As a consequence, protocols and

checkpointers are needed in order to address the problem of

in-transit messages. In the two common checkpoint protocols,

the processes either coordinate their checkpoints or take them

independently [5]. Some examples for distributed cluster-level

checkpointers include BLCR+MPI [6], which supports both

protocols within MPI and DMTCP [7] which integrates the

coordinated checkpointing protocol.

Regardless of the checkpointing solution it is obviously

not realistic for each grid node to use one specific check-

pointer. Therefore, in order to achieve fault tolerance for

distributed applications in grids, XtreemOS [8] deploys a

heterogeneous grid checkpointing service called XtreemGCP

[9]. This service is designed to support different checkpointing

protocols and address the underlying grid-node checkpointers



in a transparent manner through a uniform interface. Despite

the generic design of this service, it currently only imple-

ments the coordinated checkpointing protocol [10]. Given a

grid environment where data and computing resources of

one application can be distributed across thousands of grid

nodes, coordinated checkpointing can be costly in terms of

scalability [10]. Furthermore, the entire application needs to

be rolled back in the event of a single process failure. Thereby,

additional overhead is added to the communication and storage

infrastructure.

Therefore, we decided to design and implement a solution

for independent checkpointing within XtreemGCP. In this pa-

per, we present all the necessary steps towards this goal. This

involves transparent dependency tracking among processes,

transparent selection of the underlying grid-node checkpointer,

monitoring of process failures, computing a consistent global

state out of the recorded dependency information and recovery

of an application. Our solution is not bound to a specific

checkpointer and can be transparently used on top of any

existing grid-node checkpointer.

The result of this work is an extended XtreemGCP service

with the support of two checkpointing protocols, which is

able to checkpoint an application distributed across different

grid-node checkpointers. This is the first work dealing with

integration aspects of independent checkpointing in grids. We

believe that our results can help future works to identify

the issues related to implementing checkpointing protocols in

large heterogeneous environments such as grids.

This paper is organized as follows. Section II outlines the

architecture and the components of the XtreemGCP service.

Section III details the theoretical foundations of our work. Sec-

tion IV presents the integration of independent checkpointing

within XtreemGCP. Section V describes the results from the

performance evaluation of our prototype. Section VI discusses

the related work. Finally, Section VII closes the paper with

conclusions and future work.

II. XTREEMOS GRID-CHECKPOINTING SERVICE

In the following section we briefly describe the architecture

of the XtreemGCP service and its components. In particular,

we first introduce the terminology used in the context of

XtreemGCP and then detail the relevant components where

we integrate independent checkpointing.

A. Terminology

We use the term job for any kind of applications (e.g.

parallel, distributed, etc.) running in the grid. Each job is

identified by a unique global job identifier and consists of

one or multiple job units, whereas each job-unit may itself

comprise one or multiple processes running on one grid-node.

The processes of a job-unit are addressed by a unique process

group identifier.

B. Architecture

The architecture of the XtreemOS grid checkpointing ser-

vice is depicted in Figure 1.

Fig. 1. XtreemOS Grid-Checkpointing Architecture [9]

At the grid level, a job checkpointer service is in charge of

managing the checkpoint/restart of a job, possibly spanning

multiple grid nodes. It is located on the same node as the

job manager and uses virtual nodes [11] to achieve service

replication and thus high-availability. The job checkpointer is

designed to implement different checkpointing protocols and

control the underlying node-level components (i.e. job-unit

checkpointer) in order to issue checkpoints and restarts of the

corresponding job-units. Moreover, with its global view of a

job, it has the knowledge about all of its job-units and their

locations. Hence, it is capable of taking checkpoint decisions

either issued by grid users or the grid scheduler. When the

coordinated checkpointing protocol is used, it coordinates the

job-unit checkpointers in order to take a globally consistent

checkpoint and restart the job-units in the event of failure.

Furthermore, job meta information is created by the job-

checkpointer. This information is required during the recovery

and contains the resource requirements of the job, information

about the job units (e.g. job-unit ID), location of the job-units

checkpoint images and other job related details.

Each grid node has a job-unit checkpointer. It is addressed

by the job checkpointer during the checkpoint coordination

phase and is in charge of taking checkpoints of job-units

running on a grid-node. This is done by selecting the ap-

propriate translation library (e.g. BLCR, LinuxSSI, etc.) and

addressing its routines by the use of a uniform access interface,

referred as “Common Kernel Checkpointer API” [9]. This

interface abstracts the different kernel checkpointer specific

calling semantics and provides a uniform way to access the

kernel checkpointers in a transparent manner to the job-unit

checkpointer.

A dedicated translation library implements this API for

each kernel checkpointer and provides a mapping of the

grid semantics to the node-level semantics (i.e. grid job to

local process group). It is dynamically loaded by the job-

unit checkpointer during the checkpointing operation and

implements all the necessary routines to address the underlying

kernel checkpointer. In addition, some kernel checkpointers

require extra parameters to be set, such as permissions flags

before being able to initiate a checkpoint. Therefore, additional

routines are available within the translation library. Currently,

two translation libraries exist in order to support the kernel

checkpointers of the XtreemOS PC and cluster flavor. These



checkpointers provide the low-level functionality necessary to

take a snapshot of the entire process group, including process

memory and other process related resources. Furthermore, they

are used during the recovery to restart the process group from

a given snapshot.

III. THEORETICAL FOUNDATIONS OF INDEPENDENT

CHECKPOINTING

In this section, we first give a brief introduction into

the concepts of independent checkpointing. Afterwards, we

detail our system model and then define how we record the

dependencies among the job-units. Finally, we show how this

information is used in order to compute a consistent global

state of the application.

A. Overview

Unlike coordinated checkpointing where processes coor-

dinate their checkpoints to take a consistent global check-

point, independent checkpointing allows the processes to ini-

tiate checkpoints independently. Therefore, it requires that all

the non-deterministic events (i.e. reception of messages) are

logged with checkpoints on stable storage in order to be able

to detect and resolve inter-process dependencies during the

recovery.

There exist two independent checkpointing approaches: with

full and with partial message-logging. The latter solution is

solely based on checkpoints and the recorded event informa-

tion. Therefore, it is vulnerable to the so called domino effect

[5]. Depending on the application communication pattern this

effect can enforce the entire application to roll back to its

initial state, losing the entire computation. On the other hand,

independent checkpointing with full message-logging is based

on the piecewise deterministic (PWD) [12] assumption which

requires to record all the data necessary in order to replay the

events in case of failure. It is therefore not affected by the

domino effect but introduces additional complexity to record

and replay the data in the same order as it was initially

received.

In this paper we focus on independent checkpointing with

partial message-logging.

B. System model

Our system model considers exclusively jobs whose job-

units communicate by exchanging messages. Further, we as-

sume a reliable communication protocol (i.e. TCP), which

delivers the messages in the First-In-First-Out (FIFO) order.

The job-units can interact either using a client-server or a peer-

to-peer networking model. At the beginning of the execution

each job-unit halts, takes an initial checkpoint and continues

to run. In the event of failure, job-units stop according to

the fail-stop model [13]. Failures which occur during the

checkpoint operation are not tolerated as they may introduce

a non-deterministic behavior in the kernel checkpointer. Each

job-unit has access to a fault-tolerant distributed storage (i.e.

XtreemFS [14]) in order to store the dependency informa-

tion and checkpoints. This information can be transparently

accessed by XtreemGCP during the job-unit recovery.

C. Recording the dependency information

Independent checkpointing requires the knowledge of all

inter job-unit dependencies in order to compute a consistent

global state in the event of failure. Therefore, it is necessary

to identify which information needs to be recorded and how to

record it. In our system the dependency recording is inspired

by the work done in [15] and works as depicted in Figure 2.

Thereby, we use arrows to represent messages and circles to

illustrate checkpoints.

Fig. 2. Dependency information recording

We define ci,x as the x − th checkpoint (x ≥ 0) of the

job-unit JUi (0 ≤ i ≤ N−1) and denote x as the checkpoint-

index and N as the number of job-units. Two checkpoints ci,x
and cj,y are considered as inconsistent if either x < y and a

message was sent after ci,x and received before cj,y or x = y

and a message was sent before cj,y and received after ci,x.

Further, we define Ii,x as the checkpoint-interval between two

consecutive checkpoints ci,x−1 and ci,x. When a job-unit JUi

sends a message to JUj within the interval Ii,x, the pair (i, x)
is attached. JUj receives the message in the interval Ij,y and

records a dependency between ci,x−1 and ci,y . Thereby, one

message received by job-unit j from a job-unit i within the

same interval Ij,y is enough in order to establish a dependency.

D. Recovery line computation

In order to compute a consistent global state we first need

to acquire all the recorded dependency information and then

generate a set of consistent checkpoints, also referred to as

the recovery line. In this section we use a concrete example

to illustrate the process. Figure 3 shows a job composed of

three job-units which communicate and record the dependency

information according to the previously introduced definitions.

Fig. 3. Example job with three job-units

Shortly after issuing the third checkpoint c2,2, job-unit 2
fails and the recovery line computation is started by generating

a checkpoint graph and applying the rollback-propagation

algorithm [15] on it.



Figure 4 depicts the checkpoint graph and the final recovery

line for our example job. Here we use dashed circles to

represent the current state of the remaining job-units.

Fig. 4. Checkpoint graph

The generation of the checkpoint graph works as follows.

We draw a directed edge from ci,x−1 to cj,y if and only if

i 6= j and a message was send during Ii,x and received in

Ij,y , or i = j and y = x+1. Afterwards, we use the rollback-

propagation algorithm to compute the recovery line. Therefore,

we first create a set of checkpoints and include the dependency

information associated with the last checkpoint from the failed

job-units as an element into the set. In addition, we include

the dependency information associated with the current state of

the other still running job-units as an element into the set. We

then sequentially examine the dependency information of the

elements in the set and mark all elements which are reachable

by following the edges of all element in the set. Afterwards,

we iterate over the marked elements and replace each marked

element with the previous checkpoint of the same job-unit. In

the next step the dependency information of the elements in the

set is examined again and all the elements are marked which

are reachable by following the edges of all element in the set.

The two latter steps are repeated until there are no marked

elements left in the set. The result is a set of checkpoints which

represents the consistent global state (i.e. recovery line).

IV. INTEGRATION OF INDEPENDENT CHECKPOINTING IN

XTREEMGCP

The following section presents the design decisions and in-

tegration aspects of independent checkpointing in XtreemGCP.

Therefore, we first detail how the dependency information can

be recorded transparently to the application in a heterogeneous

environment. Afterwards, we describe the process of indepen-

dent checkpointing, which involves the interaction between the

job-units and the corresponding job-unit checkpointer. Finally,

we detail the recovery process and introduce the supported

networking models and recovery scenarios of the proposed

solution.

A. Transparent dependency tracking

During job execution, all the non-deterministic events (i.e.

reception of messages) need to be recorded in the distributed

storage (i.e. XtreemFS [14]) for a potential recovery line

calculation (see Section III). Therefore, we have developed

a library which is dynamically loaded by each job-unit using

the library interposition [16] mechanism available on Linux

systems during job submission. This mechanism works by

initializing the LD PRELOAD environment variable with the

desired shared library. Once submitted, all the job-units are

dynamically linked against this library, and all communication-

related system calls are redirected. In the used library we

currently redirect all the send() and receive() requests in

order to attach/extract the dependency information transpar-

ently and save it on distributed storage (i.e. XtreemFS [14]).

Furthermore, we use this library to transparently increment

the version number of the checkpoint and assign a tag to the

dependency information during the checkpoint. In particular,

this is done by intercepting the fork() call and transparently

registering a callback using the callback mechanism provided

by XtreemGCP. This callback is then executed during the

checkpoint. Figure 5 shows the interaction between the job-

units, our library and the distributed storage.

Fig. 5. Transparent dependency tracking

B. Application checkpoint

The ultimate goal of independent checkpointing is to pro-

vide support for the job-units to take checkpoints indepen-

dently. Therefore, we have developed another shared library

which is statically linked to each job-unit providing an inter-

face to the programmer in order to trigger checkpoints out of

the application at any point in time. Thereby, the main task of

this library is to communicate with the job-unit checkpointer

and request it to take a checkpoint. Moreover, it communicates

with the interpose library introduced before and instructs it

to increase the version number of the checkpoint and save

the dependency information on distributed storage during a

checkpoint.

We have modified the job-unit checkpointer accordingly

to handle the communication, initiate the checkpoints on

demand and update the job meta information in case when

the checkpoint was successful. The procedure of independent

checkpointing is depicted in Figure 6. When a checkpoint is

triggered by the job-unit, a blocking checkpoint request is sent

to the job-unit checkpointer. The job-unit checkpointer pro-

cesses the request, detects the underlying kernel checkpointer

of the grid-node and calls the translation library to initiate a

checkpoint. Thereby, potentially already existing checkpoints

need to be removed before a new one can be created. This

happens always when some of the job-units fail and need

to be recovered from one of the previous checkpoints. Thus,

they will start triggering checkpoints whose images already

exist on the distributed storage. Therefore, we have modified

the translation libraries to integrate the cleanup functionality

before initiating the checkpoint.



In case of a successful cleanup and checkpoint, the job-

unit checkpointer updates the job meta information on the

distributed storage and sends back a reply to the job-unit. After

the reception of the reply the job-unit continues its execution.

Fig. 6. Independent checkpointing in XtreemGCP

In addition to independent checkpointing, job-checkpointer

can be configured to initiate checkpoints periodically. Last but

not least, checkpointing is triggered when a migration request

is issued either by the user or the XtreemOS grid scheduler

itself.

C. Application recovery

The following section deals with the recovery of the job.

We have integrated all the necessary components such as

failure monitoring support and recovery line computation (see

Section III) into the XtreemGCP service. Now, we detail the

networking models and recovery use cases we have identified.

Furthermore, we describe the integration aspects.

1) Supported networking models: The job-checkpointer is

in charge of managing the recovery of a job and its job-units.

Therefore, it detects the job-units based on the recorded job

meta information and executes the appropriate checkpointing

protocol to perform the recovery. However, no matter which

protocol is used, the recovery process is asynchronous. Thus,

job-units are restarted in parallel by the corresponding job-

unit checkpointers. Thereby, some job-units are restarted faster

than others due to different resource requirements (i.e. cpu,

memory, etc.) and try to deliver messages to job-units which

potentially were not restarted yet.

We distinguish between two networking models: client-

server and peer-to-peer. In the former model each job-unit

operates exclusively either as client or as server. Therefore,

the recovery process is straight forward. The job-checkpointer

first restores the server job-units and then the client job-

units, avoiding the possible conflicts introduced through par-

allelization. In the latter model each job-unit operates as

client and server simultaneously. Thus, the job-checkpointer

first computes a consistent global state and then initiates the

recovery of the job-units without taking into account the

recovery order. Afterwards, we use the dependency tracking

library to interpose the connect() call and send a connection

request message consisting of the IP address and the port of

the target job-unit to the job-unit checkpointer, which then

forwards the message to the assigned job-checkpointer. The

job-checkpointer verifies if the target job-unit has already been

restored and sends back a reply message to the source job-

unit. During this period the source job-unit remains blocked

and continues its execution in case of a positive feedback. This

way we can make sure that the target job-unit has always been

restored before others can send messages to it.

2) Permanent application failure: In the previous section

we have introduced the two networking models supported by

our architecture. Now, we detail the first recovery scenario

which assumes a permanent application failure. In such a case,

the job checkpointer computes a consistent global state based

on the last taken checkpoint of each job-unit and restores the

job-units afterwards. The recovery itself can be either initiated

by the user or done automatically by the system upon failure

detection. Figure 7 illustrates this workflow.

Fig. 7. Application recovery - Permanent failure

First, the job checkpointer identifies the job-units belonging

to the job based on the recorded job meta information.

Then, the dependency information is loaded and the consistent

global state of the application is generated using the rollback-

propagation algorithm introduced in Section III. Finally, the

job-checkpointer initiates the recovery of the job-units using

one of the two previously introduced networking models.

Therefore, it addresses the job-unit checkpointers in order

to select the appropriate kernel checkpointer and restart the

job-units. Thereby, sockets need to be recreated first as most

of the available kernel checkpointers (e.g. BLCR, LinuxSSI,

etc.) nowadays do not support the saving and restoring of

sockets. In fact, they are ignored during the checkpoint. Hence,

sockets are not part of the checkpoint and need to be recreated

during the restart, otherwise job-units will fail to resume

their execution. We use the XtreemGCP callback mechanism

to register a restart callback and recreate them within this

callback before starting the job-units execution.

3) Partial application failure: The second recovery use

case supported by our work deals with the most common grid

environment scenario where some job-units fail while others

keep running. In order to support the recovery of the failed

job-units we have extended the job-checkpointer by a failure

monitoring module. This module keeps track of the failed job-

units and is required during the recovery. Figure 8 depicts

our modifications and the workflow of the failure monitoring.

First, the job-unit checkpointer detects a failure based on the

exit-code of the job-unit and informs the corresponding job-

checkpointer. This information is then stored within the job-

checkpointer failure monitoring module for later usage.



Fig. 8. Application recovery - Failure monitor

Once the failure has been detected, recovery can be initi-

ated. Therefore, failure monitoring information is extracted, a

checkpoint graph is generated and the recovery line compu-

tation algorithm is run. Depending on the resulting recovery

line, one or multiple still alive job-units need to be rolled back

to some previously taken checkpoint due to existing depen-

dencies. In this particular case the job-checkpointer requests

the status of the currently running job-units from the failure

monitoring module. In case the job-units are still running they

are stopped and the recovery from the set of checkpoints given

by the recovery line is started analogous to the first case. After

a successful recovery the job-unit status needs to be updated

inside the job-checkpointer and its failure monitoring module.

Thus, the job-unit checkpointers send an update message to

the job-checkpointer upon successful recovery.

V. PERFORMANCE EVALUATION

A. Experimental setup

To evaluate the implementation, we have configured a

heterogeneous environment composed of six AMD Opteron

244 1.8 GHz nodes, running Debian GNU/Linux 5.0 (“lenny”).

Each node is equipped with 1GB RAM, 1GB swap and a

gigabit network card. We have chosen the first four nodes to

operate in a single-PC mode and installed a modified version

of BLCR (v0.8.2) for XtreemOS on them. Moreover, 2.6.20.20

vanilla-kernel is used. The remaining two nodes are running

the latest LinuxSSI kernel (v1.0-rc2) and thus form an SSI

cluster. LinuxSSI is a Single System Image (SSI) cluster

operating system based on Kerrighed [17] which serves as

the basis for the XtreemOS cluster flavor. In all experiments

we use the Networking File System (NFS) to provide storage

for the checkpoints, dependency and the job meta information

to all the nodes.

Currently, our prototype implementation supports indepen-

dent checkpointing and recovery for distributed applications

using the first networking model, discussed in Section IV-C1.

We have installed our extended version of the XtreemGCP

service on all nodes and measured the time to record the

dependencies, to checkpoint the application and to perform

the recovery.

B. Synthetic distributed client-server application

We have developed a synthetic distributed client-server ap-

plication and executed it on top of our heterogeneous environ-

ment consisting of single-PC nodes and a SSI cluster. Thereby,

we start our server job-unit on one of the single-PC nodes

and distribute the remaining five client job-units to the other

nodes. Each time a job-unit starts it triggers an independent

checkpoint and continues its execution. Furthermore, in order

to simulate random independent checkpoints each client job-

unit defines two numbers x ≥ 0 and y > x, randomly selects

a number in the interval [0, y] and continues its execution.

Afterwards, the random number is compared with x. In case

of a match independent checkpoint is triggered, else a message

(2 Bytes) is sent to the server. In our experiments we have

preassigned x to 4 and y to 6. Similarly, the server job-unit

simulates whether it will take a checkpoint or not.

In addition to random checkpointing, failures need to be

simulated. This can be either simulated by an external kill

event or by the job-unit itself using the exit call. We use the

latter approach and terminate the job-unit in case of a match

of the two numbers.

In the following we present our experimental results using

this application. The results are based on 10 measurements for

each test series and the computation of the arithmetic mean.

C. Dependency tracking

The dependency tracking mechanism intercepts the send and

receive calls of the job-units in order to attach and extract

the dependency information, used during the recovery. Hence,

we have measured the overhead introduced by this procedure.

The result from our evaluation is that this overhead is under

1µs and thus negligible. We explain this with the way how

we manage the interception process. In order to attach a

dependency information, we do not need to copy the message

into a buffer. In fact, we split the send and receive sequences

and first send the dependency information, followed by the

unmodified message. As the dependency information is small,

there is only a minimal additional overhead.

D. Application checkpoint

Figure 9 shows the times of independent checkpointing for

a single job-unit running on top of a single-PC node and the

LinuxSSI cluster.

Fig. 9. Time to checkpoint a single job-unit

We can note that independent checkpointing on top of

BLCR is slower approximately by a factor of 4 than with

LinuxSSI. Particularly, independent checkpointing on BLCR

takes 430 ms and LinuxSSI 110 ms. We explain this with

the integration of BLCR within the XtreemGCP service. In

LinuxSSI the kernel-checkpointer routines can be accessed



directly by the use of ioctl() calls, whereas checkpointing with

BLCR needs to be synchronized with semaphores, message

queues and local files. Therefore, the checkpointing process

is slower. However, the time to checkpoint the job-units

is still significantly lower than when using the coordinated

checkpointing protocol (see Section V-F).

E. Application recovery

Figure 10 shows the time needed to compute the recovery

line for a job composed of one, three and six job-units

respectively. The time taken to compute a recovery line for

one job-unit is approximately 26.4 ms. We explain this time

with the need to load the dependency information from the

storage, as no recovery line computation is done in this case.

When increasing the job-unit count to three and six, the time

increases to 71 ms and 131 ms respectively. Hence, the time

to compute the recovery line is proportional to the number of

job-units. We think that the reason for that is twofold. With

tripling the number of job-units, the amount of dependency

information to load is tripled too. Moreover, our application

did not show the strong domino effect which could potentially

increase the time to compute the recovery line for applications

of higher complexity (i.e. dependencies).

Fig. 10. Time to compute the recovery line

Figure 11 indicates the time to restart the application. This

time includes the time to compute the recovery line and the

time to restore the job-units. Here, the time to restart one, three

and six job-unit takes approximately 7.3, 7.7 and 8.1 seconds.

We explain this good scalability with the parallel restart of

job-units in XtreemGCP. Obviously, bigger job-unit data sizes

in conjunction with the previously mentioned domino effect

could result in larger restart times.

Fig. 11. Time to restart the application

F. Performance of coordinated and independent checkpointing

In [10] we have evaluated the coordinated checkpointing

protocol using a similar client-server application within a

heterogeneous environment consisting of single PC-nodes and

an SSI cluster. Therefore, we have measured the time it takes

to checkpoint this application when it opens up 50 communi-

cations channels and sends 100 Byte packets periodically every

five seconds. The result from this evaluation was that it takes

approximately 4.25 seconds to synchronize the processes,

buffer the messages and close the sockets. In addition, 2.12

seconds more are spent in order to reestablish the connections,

unblock the communication and deliver the possible in-transit

messages after the checkpoint has been taken. Consequently, in

total approximately 6.36 seconds were needed to checkpoint

this application. Furthermore, when it was not necessary to

close and reestablish the connections, improved checkpointing

duration of 3.37 seconds was measured.

Nevertheless, the results show that even if it is sometimes

possible to keep the connections open during the checkpoint,

additional global synchronization overhead still increases the

checkpoint duration approximately by the factor of 8 compared

to the usage of the independent checkpointing protocol. Our

previous measurements (see Section V-D) confirm this with

checkpointing times of just 430 ms and 110 ms for LinuxSSI

and BLCR respectively. Hence, we believe that especially in

the context of grids, independent checkpointing is a more

scalable solution.

VI. RELATED WORK

A lot of research has been done in order to provide fault tol-

erance for distributed applications during the last two decades.

This has led to the development of many checkpointing

protocols (e.g. [18], [12], [19], etc.) and a few cluster level

software frameworks with fault tolerance support. CoCheck

[20] supports the coordinated checkpoint/restart protocol using

the Condor checkpointer. Further, LAM/MPI [21] provides

coordinated checkpointing support for MPI applications using

either the BLCR or a “self” checkpointer. In the latter case

it is the responsibility of the application to perform the

checkpoint/restart functionality.

The most related work on supporting independent check-

pointing can be found in the implementation of Starfish [22]

and MPICH-V2 [23]. Starfish, implements coordinated and

independent checkpointing for MPI applications. MPICH-

V2 integrates independent checkpointing with full message-

logging using the Condor checkpointer. Moreover, in [24] the

authors have implemented independent checkpointing with full

message-logging and evaluated their implementation within a

homogeneous environment consisting of traditional worksta-

tions. However, our solution differs from all these approaches

as it is not limited to the MPI context and implements

independent checkpointing in a transparent manner within a

heterogeneous grid environment across different checkpointers

(e.g. BLCR, Condor, LinuxSSI, OpenVZ, etc.).

In terms of XtreemGCP architecture similar work can be

found in the CoreGRID grid checkpointer [25]. However, it

is currently limited to the use of Virtual Machines (VMs)

and does not provide any support for checkpointing distributed

applications. Even though virtualization helps preventing re-

source conflicts during recovery, coordination is still necessary



for jobs spanning multiple grid nodes. In contrast, XtreemGCP

supports either coordinated or independent transparent check-

point/restart of jobs those job-units are running on multiple

heterogeneous grid nodes.

VII. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, this work is the first

demonstration of the design and implementation of inde-

pendent checkpointing within a heterogeneous grid environ-

ment. Although we did not propose any new checkpointing

protocol, we have detailed the design and implementation

aspects of independent checkpointing in grids. In particular,

we have detailed how to transparently record the dependency

information, detect failures within a distributed application,

compute a consistent global state and finally how to recover

a distributed application using the independent checkpointing

protocol within a heterogeneous environment. Our work has

resulted in an extended version of the XtreemOS grid check-

pointer which now supports the independent checkpointing

protocol. Moreover, we have evaluated our implementation

within a heterogeneous environment consisting of traditional

PC-like nodes running BLCR and a Single System Image (SSI)

cluster.

The results show that independent checkpointing is more

suited for grid environments than coordinated checkpointing.

In fact, coordinating a checkpoint in a grid environment where

jobs can span across hundreds of nodes and be riddled with

communication links is often inefficient and can not scale.

Nevertheless, our implementation has some limitations which

we plan to address in the future. The first limitation regards the

networking model we currently support. This model supports

job-units which either act as a client or a server. We have

proposed a solution for supporting the alternative peer-to-peer

networking model (see Section IV-C1) which is scheduled

for future implementation. Further, independent checkpointing

with partial message-logging is vulnerable to the domino-

effect. Therefore, we plan to extend our implementation with

full message-logging support. Another limitation regards the

recovery process. Currently, the user is in charge of initiating

the recovery. We think about enabling the XtreemGCP service

to automatically initiate the recovery in the event of failure.

Finally, besides improving the current implementation we

plan to evaluate independent checkpointing in conjunction

with the existing support for incremental checkpointing [26].

REFERENCES

[1] J. Duell, “The design and implementation of berkeley labs linux check-
point/restart,” Berkeley Lab, Berkeley, CA, USA, Tech. Rep., December
2002.

[2] M. Litzkow and M. Solomon, “The evolution of condor checkpointing.”
New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 1999,
pp. 163–164.

[3] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
checkpointing under unix,” Knoxville, TN, USA, Tech. Rep., 1994.

[4] K. K. Andrey Mirkin, Alexey Kuznetsov, “Containers checkpointing and
live migration,” in Linux Symposium 2008, Jul. 2008, p. 101.

[5] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Comput. Surv., vol. 34, no. 3, pp. 375–408, 2002.

[6] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain,
T. Herault, P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and
A. Selikhov, “Mpich-v: toward a scalable fault tolerant mpi for volatile
nodes,” in Supercomputing ’02: Proceedings of the 2002 ACM/IEEE

conference on Supercomputing. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2002, pp. 1–18.

[7] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent check-
pointing for cluster computations and the desktop,” in 23rd IEEE

International Parallel and Distributed Processing Symposium, Rome,
Italy, May 2009.

[8] T. Cortes, C. Franke, Y. Jégou, T. Kielmann, D. Laforenza, B. Matthews,
C. Morin, L. P. Prieto, and A. Reinefeld, “XtreemOS: a Vision
for a Grid Operating System,” May 2008, white Paper Avail-
able at http://www.xtreemos.eu/publications/research-papers/xtreemos-
cacm.pdf.

[9] J. Mehnert-Spahn, T. Ropars, M. Schoettner, and C. Morin, “The
architecture of the xtreemos grid checkpointing service,” in Euro-Par

’09: Proceedings of the 15th International Euro-Par Conference on

Parallel Processing. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
429–441.

[10] J. Mehnert-Spahn and M. Schoettner, “Checkpointing and migration
of communication channels in heterogeneous grid environments,” in
The 10th International Conference on Algorithms and Architectures for

Parallel Processing (ICA3PP), Springer, Ed., Busan, Korea, May 2010.
[11] H. P. Reiser, R. Kapitza, J. Domaschka, and F. J. Hauck, “Fault-tolerant

replication based on fragmented objects,” in In Proceedings of the 6th

IFIP WG 6.1 International Conference on Distributed Applications and

Interoperable Systems (DAIS 2006), 2006, pp. 14–16.
[12] R. Strom and S. Yemini, “Optimistic recovery in distributed systems,”

ACM Trans. Comput. Syst., vol. 3, no. 3, pp. 204–226, 1985.
[13] R. D. Schlichting and F. B. Schneider, “Fail-stop processors: An

approach to designing fault-tolerant computing systems,” 1983.
[14] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J. Malo,

J. Marti, and E. Cesario, “The xtreemfs architecture—a case for object-
based file systems in grids,” Concurr. Comput. : Pract. Exper., vol. 20,
no. 17, pp. 2049–2060, 2008.

[15] Y. min Wang and W. K. Fuchs, “Lazy checkpoint coordination for
bounding rollback propagation,” in in Proc. IEEE Symp. Reliable

Distributed Syst, 1993, pp. 78–85.
[16] B. A. Kuperman and E. Spafford, “Generation of application level audit

data via library interposition,” Tech. Rep., 1999.
[17] D. Margery, G. Vallee, R. Lottiaux, C. Morin, and J. yves Berthou,

“Kerrighed: A ssi cluster os running openmp,” in In Proc. 5th European

Workshop on OpenMP, 2003.
[18] T. Ropars and C. Morin, “Fault tolerance in cluster federations with o2p-

cf,” in CCGRID ’08: Proceedings of the 2008 Eighth IEEE International

Symposium on Cluster Computing and the Grid. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 807–812.

[19] Q. Jiang, Y. Luo, and D. Manivannan, “An optimistic checkpointing and
message logging approach for consistent global checkpoint collection in
distributed systems,” J. Parallel Distrib. Comput., vol. 68, no. 12, pp.
1575–1589, 2008.

[20] G. Stellner, “Cocheck: Checkpointing and process migration for mpi,” in
in Proceedings of the 10th International Parallel Processing Symposium,
1996, pp. 526–531.

[21] S. Sankaran, J. M. Squyres, B. Barrett, and A. Lumsdaine, “The lam/mpi
checkpoint/restart framework: System-initiated checkpointing,” in in

Proceedings, LACSI Symposium, Sante Fe, 2003, pp. 479–493.
[22] A. Agbaria and R. Friedman, “Starfish: Fault-tolerant dynamic mpi

programs on clusters of workstations,” High-Performance Distributed

Computing, International Symposium on, vol. 0, p. 31, 1999.
[23] A. Bouteiller, F. Cappello, T. Herault, G. Krawezik, P. Lemarinier, and

F. Magniette, “Mpich-v2: a fault tolerant mpi for volatile nodes based
on pessimistic sender based message logging,” in SC ’03: Proceedings

of the 2003 ACM/IEEE conference on Supercomputing. Washington,
DC, USA: IEEE Computer Society, 2003, p. 25.

[24] P. Sens and B. Folliot, “The star fault manager for distributed operating
environments. design, implementation and performance,” Softw. Pract.

Exper., vol. 28, no. 10, pp. 1079–1099, 1998.
[25] A. Ciuffoletti, A. Congiusta, G. Jankowski, M. Jankowski, N. Meyer,

and O. Krajicek, “Grid infrastructure architecture: a modular approach
from coregrid,” CoreGRID Project, Tech. Rep. TR-0089, August 2007.

[26] J. Mehnert-Spahn, E. Feller, and M. Schoettner, “Incremental check-
pointing for grids,” in Linux Symposium 2009, Jul. 2009, p. 201.


