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Breaking the 64 spatialized sources barrier

Nicolas Tsingos, Emmanuel Gallo and George Drettakis
REVES / INRIA-Sophia Antipolis

http://www-sop.inria.fr/reves

Spatialized soundtracks and sound-effects are standard elements of today’s video games.  However, although 3D
audio modeling and content creation tools (e.g., Creative Lab’s EAGLE [4]) provide some help to game audio
designers, the number of available 3D audio hardware channels remains limited, usually ranging from 16 to 64 in
the best case. While one can wonder whether more hardware channels are actually required, it is clear that large
numbers of spatialized sources might be needed to render a realistic environment. This problem becomes even
more significant if extended sound sources are to be simulated: think of a train for instance, which is far too long
to represented as a point source. Since current hardware and APIs implement only point-source models or
limited extended source models [2,3,5], a large number of such sources would be required to achieve a realistic
effect (view Example1). Finally, 3D-audio channels might also be used for restitution-independent representation
of surround music tracks, leaving the generation of the final mix to the audio rendering API but requiring the
programmer to assign some of the precious 3D channels to the soundtrack. Also, dynamic allocation schemes
currently available in game APIs (e.g. Direct Sound 3D [2]) remain very basic. As a result, game audio designers
and developers have to spend a lot of effort to best-map the potentially large number of sources to the limited
number of channels. In this paper, we provide some answers to this problem by reviewing and introducing
several automatic techniques to achieve efficient hardware mapping of complex dynamic audio scenes in the
context of currently available hardware resources.

Figure 1 - A traditional hardware-accelerated audio rendering pipeline. 3D audio channels process the audio data to
reproduce distance, directivity, occlusion, Doppler shift and positional audio effects depending on the 3D location of
the source and listener. Additionally, a mix of all signals is generated to feed an artificial reverberation or effect engine.

We show that clustering strategies, some of them relying on perceptual information, can be used to map a larger
number of sources to a limited number of channels with little impact to the perceived audio quality. The required
pre-mixing operations can be implemented very efficiently on the CPU and/or the GPU (graphics processing
unit), out-performing current 3D audio boards with little overhead. These algorithms simplify the task of the
audio designer and audio programmer by removing the limitation on the number of spatialized sources. They
permit rendering of extended sources or discrete sound reflections, beyond current hardware capabilities. Finally,
they integrate well with existing APIs and can be used to drive automatic resource allocation and level-of-detail
schemes for audio rendering.

In the first section, we present an overview of clustering strategies to group several sources for processing
through a single hardware channel. We will call such clusters of sources auditory impostors. In the second
section, we describe recent techniques developed in our research group that incorporate perceptual criteria in
hardware channel allocation and clustering strategies. The third section is devoted to the actual audio rendering
of auditory impostors. In particular, we present techniques maximizing the use of all available resources
including the CPU, APU (audio processing unit) and even the GPU which we turn into an efficient audio
processor for a number of operations. Finally, we demonstrate the described concepts on several examples
featuring a large number of dynamic sound sources1.

                                                          
1 The soundtrack of the example movies was generated using binaural processing. Please, use headphones for
best spatial sound restitution.

http://www-sop.inria.fr/reves
http://www-sop.inria.fr/reves/personnel/Nicolas.Tsingos/publis/Examples/Ex1.avi
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Figure 2- Clustering techniques
group sound sources (blue dots) into
groups and use a single
representative per cluster (colored
dots) to render or spatialize the
aggregate audio stream.

Clustering sound sources

The process of clustering sound sources is very similar in spirit to the
level-of-detail (LOD) or impostor concept introduced in computer
graphics [13]. Such approaches render complex geometries using a
smaller number of textured primitives and can scale or degrade to fit
specific hardware or processing power constraints whilst limiting
visible artefacts. Similarly, sound-source clustering techniques (Figure
2) aim at replacing large sets of point-sources with a limited number of
representative point-sources, possibly with more complex
characteristics (e.g. impulse response). Such impostor sound-sources
can then be mapped to audio hardware to benefit from dedicated (and
otherwise costly) positional audio or reverberation effects (see Figure
3).  Clustering schemes can be divided into two main categories: fixed
clustering, which uses a predefined set of clusters, and adaptive
clustering which attempts to construct the best clusters on-the-fly.

Two main problems in a clustering approach are the choice of a good
clustering criteria and a good cluster representative. The answers to
these questions largely depend on the available audio spatialization and
rendering back-end and whether the necessary software operations can
be performed efficiently. Ideally, the clustering and rendering pipeline should work together to produce the best
result at the ears of the listener. Indeed, audio clustering is linked to human perception of multiple simultaneous
sound sources, a complex problem that has received a lot of attention in the acoustics community [7] . This
problem is also actively studied in the community of auditory scene analysis (ASA) [8,16]. However, ASA
attempts to solve the dual and more complex problem of segregating a complex sound mixture into discrete,
perceptually relevant components.

Figure 3 - An audio rendering pipeline with clustering. Sound sources are grouped into clusters which are processed
by the APU as standard 3D audio buffers. Constructing the aggregate audio signal for each cluster must currently be
done outside the APU, either using the CPU and/or GPU.

Fixed-grid clustering

The first instance of source clustering was introduced by Herder [21,22] in 1991 who grouped sound sources by
cones in direction space around the listener, the size of which was chosen relying upon available psycho-acoustic
data on the spatial resolution of human 3D hearing.  He also discussed the possibility of grouping the sources by
distance or  relative-speed  to the listener.  However, it is unclear that relative speed, which might vary a lot from
source to source is a good clustering criteria. One drawback of fixed grid clustering approaches is that they
cannot be targeted to fit a specified number of (non-empty) clusters. Hence, they can end-up being sub-optimal
(e.g., all sources fall into the same cluster while sufficient resources are available to process all of them
independently) or might provide too many non-empty clusters for the system to render any further (see Figure 5).

It is however possible to design a fixed grid clustering approach that works pretty well by using direction-space
clustering and more specifically “virtual surround”. Virtual surround renders the audio from a virtual rig of
loudspeakers (see Figure 4). Each loudspeaker can be mapped to a dedicated hardware audio buffer and
spatialized according to its 3D location. This technique is widely used for headphone rendering of 5.1 surround



film soundtracks (e.g., in software DVD players), simulating a
planar array of speakers. Extended to 3D, it shares some
similarities with directional sound-field decomposition
techniques such as Ambisonics [34]. However, not relying on
complex mathematical foundations, it is less accurate but does
not require any specific audio encoding/decoding and fits well
with existing consumer audio hardware. Common techniques
(e.g. amplitude panning [31]) can be used to compute the
gains that must be applied to the audio signals feeding the
virtual loudspeakers in order to get smooth transitions
between neighboring directions. The main advantage for such
an approach is its simplicity. It can be very easily
implemented in an API such as DirectSound 3D (DS3D). The
main application is responsible for the pre-mixing of signals
and panning calculations while the actual 3D sound restitution
is left to DS3D. Although there is no way to enforce perfect
synchronization between DS3D buffers, the method appears
to work very well in practice. Example 2 and Example 3
feature a binaural rendering of up to 180 sources using two
different virtual speaker rigs (respectively an octahedron and an
and 18 DS3D channels. One drawback of a direction-space 
distance rendering, e.g., in EAX [3] which implements autom
listener distance, can no longer be used directly. One work-aroun
located at different distances from the listener, at the expense of m

Adaptive positional clustering

In contrast to fixed-grid methods, adaptive clustering aims at gro
location (including incoming direction and distance to the listene
several advantages: 1) it can produce a requested number of  no
the subdivision where needed, 3) it can be controlled by a variety
exist and can be used for this purpose [18,19,24]. For instance, gl
cluster and progressively subdivide it until a specified error cri
approach constructs a subdivision of space that is locally optima
4 shows the result of such an approach applied to a simple exam
modeled as a set of 84 point-sources. Note the progressive de-ref
and the adaptive refinement when the listener is moving closer or
the error metric was a combination of distance and incident dir
were constructed as the centroid in polar coordinates of all source

Figure 5 – Fixed grid and adaptive clustering illustration in 2D.  (a) re
non-uniform “azimuth-log(1/distance)” grid (six non-empty clusters
clustering, adaptive clustering can « optimally » fit a predefined clus
Figure 4 - “Virtual surround”. A virtual set of
speakers (here located at the vertices of an
icosahedron surrounding the listener) are used
to spatialize any number of sources using 18
3D audio channels.
3

 icosahedron around the listener) mapped to 6
approach is that reverberation-based cues for
atic reverberation tuning based on source-to-
d this issue is to use several virtual speaker rigs
ore 3D channels.

uping sound sources based on their current 3D
r) in an “optimal” way.  Adaptive clustering has
n-empty clusters, 2) it will automatically refine
 of error metrics. Several clustering approaches
obal k-means techniques [24] start with a single
teria or number of clusters has been met. This
l according to the chosen error metric. Example
ple where three spatially-extended sources are

inement when the number of clusters is reduced
 away from the large “line-source”. In this case,
ection onto the listener. Cluster representatives
s in the cluster.

gular grid clustering (ten non-empty clusters), (b)
), (c) adaptive clustering. Contrary to fixed grid

ter budget (four in this case).

http://www-sop.inria.fr/reves/personnel/Nicolas.Tsingos/publis/Examples/Ex2.avi
http://www-sop.inria.fr/reves/personnel/Nicolas.Tsingos/publis/Examples/Ex3.avi
http://www-sop.inria.fr/reves/personnel/Nicolas.Tsingos/publis/Examples/Ex4.avi
http://www-sop.inria.fr/reves/personnel/Nicolas.Tsingos/publis/Examples/Ex4.avi
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Perceptually-driven source prioritization and resource allocation

So far, very few approaches have attempted to include psycho-acoustic knowledge in the audio rendering
pipeline. Most of the effort has been dedicated to speeding up signal processing cost for spatialization purposes,
e.g. spatial sampling of HRTF or filtering operations for headphone rendering [6,28]. However, existing
approaches never consider the characteristics of the input signal. On the other hand, important advances in audio
compression, such as MPEG-1 layer 3 (mp3),  have shown that exploiting both input signal characteristics and
our perception of sound could provide unprecedented quality vs. compression ratios [15,25,26]. Thus, taking into
consideration signal characteristics in audio rendering might help to design better prioritization and resource
allocation schemes, perform dynamic sound source culling and improve the construction of clusters. However,
contrary to most perceptual audio coding (PAC) applications, that encode once to be played repeatedly, the
soundscape in a video game is highly dynamic and perceptual criteria have to be recomputed at each processing
frame for a possibly large number of sources. We propose a perceptually-driven audio rendering pipeline with
clustering, illustrated in Figure 6.

Figure 6 – A perceptually-driven audio rendering pipeline with clustering. Based on pre-computed information on the
input signals, the system dynamically evaluates masking thresholds and perceptual importance criteria for each sound
source. Inaudible or masked sources are discarded. Remaining sources are clustered. Perceptual importance is used
to select better cluster representatives.

Prioritizing sound sources

Assigning priorities to sound sources is a fundamental aspect of resource allocation schemes. Currently, APIs
such as DS3D use basic schemes based on distance to the listener for on-the-fly allocation of  hardware channels.
Obviously, such schemes would benefit from the ability to sort sources by perceptual importance or
“emergence” criteria. As we already mentioned, this is a complex problem, related to the segregation of complex
sound mixtures as studied  in the ASA field.  We experimented with a simple, loudness-based model that appears
to give good results in practice, at least in our test examples. Our model uses power spectrum density
information pre-computed on the input waveforms (for instance, using short time Fast Fourier Transform) for
several frequency bands. This information does not represent a significant overhead in terms of memory or
storage space. In real-time, we access this information, modify it to account for distance attenuation, directivity
of the source, etc., and map the value to perceptual loudness space using available loudness contour data [11,32].
We use this loudness value as a priority criterion for further processing of sound sources.

Dynamic sound source culling

Sound source culling aims at reducing the set of sound sources to process by identifying and discarding inaudible
sources. A basic culling scheme determines whether the source amplitude is below the absolute threshold of
hearing (or below a 1-bit amplitude threshold). Using dynamic loudness evaluation for each source, as described
in the previous section, makes this process much more accurate and effective.  Perceptual culling is a further
refinement aiming at discarding sources that are perceptually masked by others. Such techniques have been
recently used to speed-up modal/additive synthesis [29,30], e.g., for contact-sound simulation. To exploit them
for sampled sound signals, we pre-compute another characteristics of the input waveform, the tonality. Based on
PAC techniques, an estimate of the tonality in several sub-bands can be calculated using short-time FFT. This
tonality index [26] estimates whether the signal in each sub-band is closer to a noise or a tone. Masking
thresholds, which typically depend on such information, can then be dynamically evaluated. Our perceptual
culling algorithm sorts the sources by perceptual importance, based on their loudness and tonality, and
progressively inserts them into the current mix. The process stops when the sum of remaining sources is masked
by the sum of already inserted sources. In a clustering pipeline, sound source culling could be used either before
or after clusters are formed. Both solutions have their own advantages and drawbacks. Performing culling first



reduces the load of the entire subsequent pipeline. However, culling in this case must be conservative or take
into account more complex effects, such as spatial unmasking, i.e., sources we can still hear distinctly because of
our spatial audio cues, although one would mask the other if both were at the same location [23]. Unfortunately,
little data is available to quantify this phenomenon. Performing culling on a per-cluster basis reduces this
problem since sources within a cluster are likely to be close to each other. However, the culling process will be
less efficient since it will not consider the entire scene. In the following train-station example, we experimented
with the first approach, without spatial unmasking, using standard mp3 masking calculations [26].

Perceptually weighted clustering

The adaptive clustering scheme presented in the previous section can also benefit from psycho-acoustic metrics.
For instance, dynamic loudness estimation can be used to weight the error metric in the clustering process so that
clusters containing louder sources get refined first. It can also be used to provide a better estimate for the
representative of the cluster as a loudness-weighted average of the location of all sources in the cluster.

Rendering auditory impostors

The second step of the pipeline is to render the groups of
sound sources resulting from the clustering process.
Although we can replace a group of sound sources by a
single representative for localization purposes, a number
of operations still have to be performed individually for
each source. Such “pre-mixing” operations, usually
available in 3D audio APIs, include variable delay lines,
resampling and filtering (e.g., occlusions, directivity
functions and distance attenuation). For a clustering-based
rendering pipeline to remain efficient, these operations
must be kept simple and implemented very efficiently
since they can quickly become the bottleneck of the
approach. Another reason why one would want to keep as
much per-source processing as possible is to avoid
sparseness in the impulse response and comb-filtering
effects that would result from using a single delay and
attenuation for each cluster (see Figure 7).

Efficient pre-mixing using CPU and GPU

Pre-mixing operations can be efficiently implemented on th
mixing for Examples 3 and 4 consists of a linear interpolation
well, especially if the input signals are over-sampled beforeh
per sample for gain control and panning on the triplet of 
direction. We implemented all operations in assembly
language using 32 bit floating-point arithmetic. In our
examples, we used audio processing frames of 1024
samples at 44.1KHz. Pre-mixing 180 sound sources
required 38% of the audio frame in CPU time on a
Pentium4 mobility 1.8GHz, 70% on a Pentium3 1GHz.

For the train-station application presented in the next
section, pre-mixing consisted of a variable delay line
implemented using linear interpolation plus 3-band
equalization (input signals were pre-filtered) and
accumulation. Equalization was used to reproduce
frequency-dependent effects such as source directivity and
distance attenuation. For this application we experimented
with GPU audio premixing. By loading audio data into
texture memory (see Figure 8), it is possible to use
standard graphics rendering pipelines and APIs to perform
Figure 7 -  Rendering clusters of sound sources and
corresponding energy distribution throught time
(echograms). Using a single delay/attenuation for each
cluster results in sparse impulse response and comb-
filtering effects (top echogram). Per source pre-mixing
solves this problem (bottom echogram).
5

e CPU and even on the GPU. For instance, pre-
 for Doppler shifting and resampling (which works
and [33]), and three additions and multiplications
virtual speakers closest to the sound’s incoming

Figure 8 - Audio signals must be pre-processed in
order to be pre-mixed by the GPU. They are split into
three frequency bands (low, medium, high), shown as
the red, green and blue plots on the lower graph, and
stored as one-dimensional RGB texture chunks (one
pair for the positive and negative parts of the signal).



premixing operations. Signals pre-filtered in
multiple frequency sub-bands are loaded into
multiple color components of texture data. Audio
premixing is achieved by blending several textured
line segments and reading back the final image. Re-
equalization can be achieved through color
modulation. Texture resampling hardware allows
resampling of audio data and the inclusion of
Doppler shift effects (Figure 9). Our test
implementation currently only supports 8-bit mixing
due to limitations of frame buffer depth and blending
operations on the hardware at our disposal.
However, recent GPUs support extended resolution
frame-buffers and accumulation could be performed
using 32-bit floating-point arithmetic using pixel
Figure 9 - Pre-mixing audio signals with the GPU. Signals
are rendered as textured line segments. Resampling is
achieved through texturing operations and re-equalization
through color modulation. Signals for all sources in the
cluster are rendered with blending turned on, resulting in
the desired mix.
6

shaders. With performance comparable to optimized
(and often non-portable) software implementations, GPU pre-mixing can be implemented using multi-platform
3D graphics APIs. When possible, using the GPU for audio processing will reduce the load on the main CPU and
help balance the load between CPU, GPU and APU.

Applications

Rendering of complex scenes with extended sound sources using DS3D

The techniques discussed above directly apply to audio rendering of complex, dynamic, 3D scenes containing
numerous point sources. They also apply to rendering of extended sources, modeled as a collection of point
sources such as the train in Figure 10. In this train station example with 160 sound sources, we were able to
render both the visuals (about 70k polygons) and pre-mix the audio on the GPU (ATI Radeon mobility 5700 on a
Compaq laptop). Pre-mixing with the CPU (Pentium4 mobility 1.8GHz), using a C++ implementation, resulted
in degraded performance (i.e., reduced visual refresh) but improved audio quality. Perceptual criteria used for
loudness evaluation, source culling and clustering were pre-computed on the input signals using three sub-bands
(0-500 Hz,500-2000 Hz,2000+ Hz) and short audio frames of 1024 samples at 44.1kHz. For more information
and technical details, we refer the reader to [36].

Figure 10 – (a) An application of the perceptual rendering pipeline to a complex train-station environment. (b)
Each pedestrian acts as two sound sources (voice and footsteps). Each wheel of the train is also modeled as a
point sound source to get the proper spatial rendering for this extended source. Overall, 160 sound sources must
be rendered (magenta dots). (c) Colored lines represent direct sound paths from the sources to the listener. All
lines in red represent perceptually masked sound sources while yellow lines represent audible sources. Note how
the train noise masks the conversations and footsteps of the pedestrians. (d) Clusters are dynamically
constructed to spatialize the audio. Green spheres indicate representative location of the clusters. Blue boxes are
bounding boxes of all sources in each cluster.

Audio rendering was implemented using DS3D accelerated by the built-in SoundMax chipset (32 3D audio
channels). A drawback of the approach is increased bus traffic, since the audio signals for each cluster are pre-
mixed outside the APU and must be continuously streamed to the hardware channels. Also, since aggregate
signals and representative location for each cluster are continuously updated at each audio frame to best-fit the
current soundscape, care must be taken to avoid artefacts when switching the position of the audio channel with
DS3D. Switching must happen in-sync with the playback of each new audio frame and can be implemented
through the DS3D notification mechanism. On certain hardware platforms, perfect synchronization cannot be
achieved but artefacts can be minimized by enforcing spatial coherence of the audio channels from frame to
frame (i.e., making sure a channel is used for clusters whose representatives are as close to each other as
possible).
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View Example 5 : train-station rendered with GPU pre-mixing

View Example 6 : train-station rendered with CPU pre-mixing

Another application that requires spatialization of numerous sound sources is the simulation of early reflected or
diffracted paths from walls and objects in the scene [20,27]. Commonly used techniques, based on geometrical
acoustics, use ray or beam tracing to model the indirect contributions as a set of virtual image-sources [14,27].
The number of image-sources grows exponentially with the reflection order, limiting such approaches to a few
early reflections or diffractions (i.e., reaching the listener first). Obviously, this number further increases with the
number of actual sound sources present in the scene, making this problem a perfect candidate for clustering
operations.

Spatial audio bridges

Voice communication, as featured on the Xbox Live! system, adds a new dimension to massively multi-player
on-line gaming but is currently limited to monaural audio restitution. Next generation on-line games or chat-
rooms will require dedicated spatial audio servers to handle real-time spatialized voice communication between
a large number of participants. The various techniques discussed in this paper can be implemented on a spatial
audio server to dynamically build clustered representations of the soundscape for each participant, adapting the
resolution of the process to the processing power of each client, server load and network load.  In such
applications, an adaptive clustering strategy could be used to drive a multi-resolution binaural cue coding
scheme [35], compressing the soundscape and including incoming voice signals as a single or a small collection
of monaural audio streams and corresponding time-varying 3D positional information. Rendering of the
spatialized audio scene could be done either on the client side (if the client supports 3D audio rendering) or on
the server side (e.g.,  if the client is a mobile device with low processing power).

Conclusions

We presented a set of techniques aimed at spatialized audio rendering of large numbers of sound sources with
limited hardware resources. This techniques will hopefully simplify the work of the game audio designer and
developer by removing limitations imposed by the audio rendering hardware. We believe these techniques can
be used to leverage the capabilities of current audio hardware while enabling novel effects, such as the use of
extended sources. They could also drive future research in audio hardware and audio rendering API design to
allow for better rendering of complex dynamic soundscapes.
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