
HAL Id: inria-00606754
https://hal.inria.fr/inria-00606754

Submitted on 20 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient 3D Audio Processing on the GPU
Emmanuel Gallo, Nicolas Tsingos

To cite this version:
Emmanuel Gallo, Nicolas Tsingos. Efficient 3D Audio Processing on the GPU. ACM Workshop on
General Purpose Computing on Graphics Processors, Aug 2004, Los Angeles, United States. 2004.
�inria-00606754�

https://hal.inria.fr/inria-00606754
https://hal.archives-ouvertes.fr


Efficient 3D Audio Processing with the GPU

Emmanuel Gallo and Nicolas Tsingos
REVES/INRIA Sophia-Antipolis∗

Introduction

Audio processing applications are among the most compute-
intensive and often rely on additional DSP resources for real-
time performance. However, programmable audio DSPs are in
general only available to product developers. Professional audio
boards with multiple DSPs usually support specific effects and
products while consumer “game-audio” hardware still only imple-
ments fixed-function pipelines which evolve at a rather slow pace.

The widespread availability and increasing processing power
of GPUs could offer an alternative solution. GPU features, like
multiply-accumulate instructions or multiple execution units, are
similar to those of most DSPs [3]. Besides, 3D audio rendering
applications require a significant number of geometric calculations,
which are a perfect fit for the GPU. Our feasibility study investi-
gates the use of GPUs for efficient audio processing.

GPU-accelerated audio rendering

We consider a combination of two simple operations commonly
used for 3D audio rendering: variable delay-line and filtering [1, 4].
The signal of each sound source is first delayed by the propagation
time of the sound wave. This involves resampling the signal at non-
integer index values and automatically accounts for Doppler shift-
ing. The signal is then filtered to simulate the effects of source and
listener directivity functions, occlusions and propagation through
the medium. We resample the signals using linear interpolation be-
tween the two closest samples. On the GPU this is achieved through
texture resampling. Filtering is implemented using a simple 4-band
equalizer. Assuming that input signals are band-pass filtered in a
pre-processing step, the equalization is efficiently implemented as a
4-component dot product. For GPU processing, we store the sound
signals as RGBA textures, each component holding a band-passed
copy of the original sound. Binaural stereo rendering requires ap-
plying this pipeline twice, using a direction-dependent delay and
equalization for each ear, derived from head-related transfer func-
tions (HRTFs) [1]. Similar audio processing can be used to generate
dynamic sub-mixes of multiple sound signals prior to spatial audio
rendering (e.g. the perceptual audio rendering of [5]).

We compared an optimized SSE (Intel’s Streaming SIMD Ex-
tensions) assembly code running on aPentium 4 3GHzprocessor
and an equivalentCg/OpenGLimplementation running on anVidia
GeForce FX 5950 Ultragraphics board on AGP 8x. Audio was pro-
cessed at 44.1 KHz using 1024-sample long frames. All processing
was 32-bit floating point.

The SSE implementation achieves real-time binaural rendering
of 700 sound sources, while the GPU renders up to 580 in one time-
frame (≈22.5 ms). However, resampling floating-point textures re-
quires two texture fetches and a linear interpolation in the shader. If
floating-point texture resampling was available in hardware, GPU
performance would increase. We have simulated this functionality
on our GPU using a single texture-fetch and achieved real-time per-
formance for up to 1050 sources. For mono processing, the GPU
treats up to 2150 (1 texture fetch)/ 1200 (2 fetches and linear interp.)
sources, while the CPU handles 1400 in the same amount of time.

∗{Emmanuel.Gallo|Nicolas.Tsingos }@sophia.inria.fr
http://www-sop.inria.fr/reves/projects/GPUAudio

Thus, although on average the GPU implementation was about 20%
slower than the SSE implementation, it would become 50% faster if
floating-point texture resampling was supported in hardware. The
latest graphics architectures are likely to significantly improve GPU
performance due to their increased number of pipelines and better
floating-point texture support.

The huge pixel throughput of the GPU can also be used
to improve audio rendering quality without reducing frame-size
by recomputing rendering parameters (source-to-listener distance,
equalization gains, etc.) on a per-sample rather than per-frame ba-
sis. This can be seen as an audio equivalent of per-pixel vs. per-
vertex lighting. By storing directivity functions in cube-maps and
recomputing propagation delays and distances for each sample, our
GPU implementation can still render up to 180 sources in the same
time-frame. However, more complex texture addressing calcula-
tions are needed in the fragment program due to limited texture
size. By replacing such complex texture addressing with a single
texture-fetch, we also estimated that direct support for large 1D tex-
tures would increase performance by at least a factor of 2.

Can the GPU be a good audio DSP ?

Our first experiments suggest that GPUs can be used for 3D audio
processing with similar or increased performance compared to opti-
mized software implementations running on top-of-the-line CPUs.
The latest GPUs have been shown to outperform CPUs for a num-
ber of other tasks, including Fast Fourier Transform, a tool widely
used for audio processing [2].

However, several shortcomings still prevent an efficient use of
GPUs for mainstream audio processing applications. Due to limi-
tations in texture-access modes and texture-size, long 1D textures
cannot be indexed easily. Infinite impulse response (recursive) fil-
tering cannot be implemented efficiently since past values are usu-
ally unavailable when rendering a given pixel in fragment pro-
grams. As suggested in [2], including persistent registers to ac-
cumulate results across fragments might solve this problem.

Slow AGP readbacks might also become an issue when large
amounts of audio data must be transfered from graphics memory to
the audio hardware for playback. However, upcoming PCI Express
support should solve this problem for most applications.

Finally, our results demonstrate that game-audio hardware, bor-
rowing from graphics architectures and shading languages, may
benefit from including programmable “voice shaders”, enabling
per-sample processing, prior to their main effects processor.

References
[1] Durand R. Begault.3D Sound for Virtual Reality and Multimedia. Academic

Press Professional, 1994.
[2] I. Buck, T. Foley, D. Horn, J. Sugerman, and P. Hanrahan. Brook for GPUs:

Stream computing on graphics hardware.ACM Transactions on Graphics, Pro-
ceedings of SIGGRAPH 2004, August 2004.

[3] J. Eyre and J. Bier. The evolution of DSP processors.IEEE Signal Processing
Magazine, 2000. See also http://www.bdti.com/.

[4] T. Funkhouser, J.M. Jot, and N. Tsingos. Sounds good to me ! Computational
sound for graphics, VR, and interactive systems.SIGGRAPH 2002 course #45,
2002.

[5] N. Tsingos, E. Gallo, and G. Drettakis. Perceptual audio rendering of complex vir-
tual environments.ACM Transactions on Graphics, Proceedings of SIGGRAPH
2004, August 2004.

http://www-sop.inria.fr/reves/projects/GPUAudio

