
HAL Id: inria-00606799
https://hal.inria.fr/inria-00606799

Submitted on 19 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TileTrees
Sylvain Lefebvre, Carsten Dachsbacher

To cite this version:
Sylvain Lefebvre, Carsten Dachsbacher. TileTrees. Symposium on Interactive 3D graph-
ics and games (I3D 2007), ACM SIGGRAPH, Apr 2007, Seattle, United States. pp.25-31,
�10.1145/1230100.1230104�. �inria-00606799�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49976616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00606799
https://hal.archives-ouvertes.fr

TileTrees

Sylvain Lefebvre∗

REVES / INRIA Sophia-Antipolis

Carsten Dachsbacher†

REVES / INRIA Sophia-Antipolis

Figure 1: Left: A torus is textured by a TileTree. Middle: The TileTree positions square texture tiles around the surface using an octree. At
rendering time, the surface is projected onto the tiles. Right: The tile map holding the set of square tiles.

Abstract

Texture mapping with atlases suffer from several drawbacks:
Wasted memory, seams, uniform resolution and no support of im-
plicit surfaces. Texture mapping in a volume solves most of these
issues, but unfortunately it induces an important space and time
overhead.

To address this problem, we introduce the TileTree: A novel data
structure for texture mapping surfaces. TileTrees store square tex-
ture tiles into the leaves of an octree surrounding the surface. At
rendering time the surface is projected onto the tiles, and the color
is retrieved by a simple 2D texture fetch into a tile map. This avoids
the difficulties of global planar parameterizations while still map-
ping large pieces of surface to regular 2D textures. Our method
is simple to implement, does not require long pre-processing time,
nor any modification of the textured geometry. It is not limited to
triangle meshes. The resulting texture has little distortion and is
seamlessly interpolated over smooth surfaces. Our method natively
supports adaptive resolution.

We show that TileTrees are more compact than other volume ap-
proaches, while providing fast access to the data. We also describe
an interactive painting application, enabling to create, edit and ren-
der objects without having to convert between texture representa-
tions.

Keywords: texturing, texture mapping, interactive painting

∗e-mail: Sylvain.Lefebvre@sophia.inria.fr
†e-mail:Carsten.Dachsbacher@sophia.inria.fr

1 Introduction

Texture mapping has become one of the fundamental component of
computer graphics applications. By separating shape representation
from surface appearance it provides a powerful and convenient tool
to create, paint and render highly detailed objects and sceneries, at
low geometrical cost.

The established approach for texture mapping is to flatten a surface
into the 2D domain of a square image. The surface is parameterized
into the plane. While some surfaces have a natural planar param-
eterization (cylinders, cones, more generally all developable sur-
faces), in most cases this operation is extremely difficult. Thus, the
problem of finding good planar parameterizations has attracted lot
of research interest and extremely powerful techniques have been
devised [Floater and Hormann 2005]. The challenge is to flatten
the surface while keeping a low distortion, which often requires to
cut the surface in independently parameterized charts. These charts
are later packed into a single texture atlas [Maillot et al. 1993]. Pro-
viding a tight packing is key to avoid wasting memory.

Nowadays, with the increasing demand for realism and high qual-
ity in computer graphics, artists are often required to paint de-
tailed multi–layered texture maps for objects and large parts of
the scenery. As a result, memory consumption for texture data in-
creased much faster than available memory. The limitations and
inherent difficulties of planar parameterization become less accept-
able: Memory is wasted by the impossibility to efficiently pack
irregular charts, or by oversampling to compensate for distortion.
Most parameterizations are static and assume homogeneous sam-
pling: Once computed they cannot adapt to artist painted content.
Chart boundaries produce visible discontinuities in the bilinear in-
terpolation. Finally, most methods encode the mapping as 2D co-
ordinates in the vertices of a triangle mesh, and cannot be used on
implicitly defined surfaces.

This lead several researchers toward adaptive and volume ap-
proaches. The object is immersed into a volume storing color infor-
mation only around the surface. Data is stored in a spatial hierarchy,
typically an octree. This solves a number of issues: A planar pa-
rameterization is no longer necessary, a seamless interpolation can
be defined, the hierarchy can be refined in areas of interest. More-
over, the approach does not involve any complex pre-processing.
Unfortunately, spatial hierarchies also imply an overhead in access
time and space, which limits their use in interactive applications.

Our novel approach combines the advantages of volume approaches
and 2D texture mapping. It removes the need for a global param-
eterization while relying on 2D textures for efficient packing and
access. Our key idea is to use an octree to position square texture
tiles around the surface. During rendering the surface is projected
onto the tiles, and the color is retrieved by a simple 2D texture fetch
into a tile map (see Figure 1). Note, however, that we do not seek to
define a continuous texture domain: The tiles have different sizes
and are packed together in arbitrary order. The square nature of the
tiles makes efficient packing easier and let us define a seamless in-
terpolation over the surface. Furthermore, by changing the resolu-
tion of the tiles we can locally and dynamically adapt the resolution
to artist painted content.

2 Previous Work
Since its introduction by Catmull [Catmull 1974], texturing has
spanned a large body of research. In particular, several researchers
have focused on overcoming the limitations of texture mapping.

Importance driven parameterization methods have been proposed
to allocate more resolution to regions with fine texture detail [Sloan
et al. 1998; Sander et al. 2002; Balmelli et al. 2002]. Carr and
Hart [Carr and Hart 2004] addressed the issue of dynamically up-
dating the parameterization while the user paints on the surface.
The geometry is clustered into charts mapped onto square regions
of the texture. The resolution allocated to each chart is dynamically
adapted to the user painted content. Our TileTree enables a similar
interactive painting approach, but without the need to pre-cluster
and dynamically parameterize the triangle mesh.

Several approaches avoid seams by parameterizing the surface onto
regular charts [Purnomo et al. 2004; Carr et al. 2006]. While stored
discontinuously, neighboring charts have corresponding samples:
A continuous interpolation can be defined along the surface. To
avoid splitting the geometry along chart boundaries, Tarini et
al. [Tarini et al. 2004] parameterize surfaces on the faces of a regu-
lar polycube: A set of fixed size cubes surrounding the object. Not
only does this define a continuous, tileable texture space, but the
original mesh does not need to be modified. However, the poly-
cube maps have some drawbacks: The fixed resolution has to be
carefully chosen to match the geometric features, the construction
requires manual intervention, and finally a triangle mesh is required
to encode the parameterization.

To enable texturing of implicit surfaces and avoid explicit parame-
terization altogether, Benson et al. [Benson and Davis 2002] and
DeBry et al. [DeBry et al. 2002] proposed to encode texture data in
an octree surrounding the surface. This provides low distortion and
adaptive texturing, at the expense of a space and time overhead: The
tree contains many unused entries in its nodes, and accessing the
data requires a long chain of indirections. Note that the number of
indirections can be reduced at the expense of increased space over-
head [Lefebvre et al. 2005; Lefohn et al. 2006]. Instead, Lefebvre
and Hoppe [Lefebvre and Hoppe 2006] forgo adaptivity and com-
pactly store fixed-resolution volume color data with a perfect spatial
hash. The space overhead is very low and data is accessed with only
two memory lookups. Unfortunately, both methods share difficul-
ties inherent to volume approaches when it comes to interpolation.

Figure 2: We position texture tiles around the surface using an oc-
tree. During rendering the surface is projected onto the tiles of clos-
est orientation. The figure shows the 2D equivalent of a tile tree: A
quadtree positioning 1D tiles around a curve.

Figure 3: Correct tri-linear interpolation in a volume requires stor-
ing the surface as a thick layer. However, the bottom (blue) samples
should be sufficient to texture the surface, leading to a 2x saving.

The surface is represented as a thick layer into the volume, thus
requiring to store and access 8 samples (see Figure 3). However,
interpolating over a surface should only require 4 samples: These
approaches always store and access at least twice the data required
to texture a given surface. In contrast, our TileTree maps 2D texture
tiles onto the surface.

Finally, volume surface trees [Boubekeur et al. 2006] are also re-
lated to our work. The authors notice that subdividing an octree
around a surface until very fine resolution is wasteful: After some
level of subdivision the surface is faithfully captured by a simple
heightfield. We follow a similar idea and stop subdividing the oc-
tree as soon as the surface can be textured by simple square tiles.

3 TileTrees

3.1 Overview

Our approach starts by building an octree around the surface to
be textured, similarly to previous octree-based texturing methods.
However - and this is the key idea of our work - instead of storing
a single color value in the leaves, we map 2D tiles of texture data
onto the faces of the leaves (up to six tiles per leaf). The tiles are
compactly stored into a regular 2D texture, the tile map. During
rendering, each surface point is projected onto one leaf face. This
produces texture coordinates then used to access the corresponding
texture tile. This idea is illustrated Figure 2.

We only subdivide the octree until no more than one fold exists in
each leaf (see Section 3.2). Since with most geometry the texture
detail is much finer than the geometric features, the octree leaves
tend to be much larger than the texture pixel size: Many neigh-
boring pixels share the same leaf, which guarantees a good access
coherence.

The surface is projected onto the faces of the leaves with a simple
parallel projection. The face to project onto is locally determined
from the surface normal. Note that this projection only requires
knowing the surface normal and enclosing leaf. It is performed
dynamically at rendering time: Thus our approach does not require
to store additional information in vertices. In fact, it does not even
require vertices at all: It can be used on implicitly defined surfaces.

The following sections describe each aspect of our approach in
more details.

Figure 4: The normal to the surface is used to select on which face
to project. The surface point is then mapped to the face with a
simple parallel projection.

Figure 5: Left: Each leaf may contain up to one fold in the direction
of projection. Right: If more than one fold is present the projection
is no longer injective.

3.2 Projection

Each leaf of the octree encloses a piece of surface. Our goal is to
project this part of the surface onto one or more faces of the leaf so
that each point is uniquely textured. In other words the projection
must be injective.

In addition, we want to perform the projection dynamically, at run-
time. Therefore, it has to be as simple as possible to compute. How-
ever, if the projection fails to handle some surface configurations,
we would have to subdivide the octree until reaching pixel resolu-
tion. As a compromise, we choose to perform a parallel projection
onto the faces of the leaves. The face to project onto is chosen using
the major direction of the normal to the surface. While being ex-
tremely simple to compute, this projection can handle successfully
non trivial cases, including a full sphere. It also handles correctly
two-sided thin surfaces, as illustrated Figure 4 – a difficult case with
previous volume approaches [Benson and Davis 2002; DeBry et al.
2002]. In fact, it can even texture the back and front sides of a
triangle differently.

However, it also has a few drawbacks. First, some small amount of
distortion is present on steep surfaces. However, it is worth noting
that this distortion is no greater than the one produced by an octree
texture on faces at an angle. Second, it is not surjective: Some parts
of the faces may never be covered by the projected surface. As
each face is represented in memory by a square tile, this will result
in wasted memory space (see Figure 6, left). We will see in the next
section how this issue is addressed.

3.3 Building a tight octree

The octree surrounding the surface has to satisfy two constraints.
First, we have to make sure to subdivide enough so that an injec-
tive projection is possible. Given the projection described in Sec-
tion 3.2, this implies that no leaf must contain more than one fold in
the directions used for projection (see Figure 5). Second, we seek to
minimize memory waste. Consider a leaf in which the surface only
projects partially onto the faces, leaving some unused pixels in the
tiles. By further subdividing we get a better approximation of the

Figure 6: We enforce coverage by subdividing further leaves with
coverage under a user specified threshold.

Figure 7: Leaves classification: full-leaves appear in blue, stacked-
leaves in dark-blue, boundary-leaves in green and n-leaves in red.

surface and we increase pixel usage (see Figure 6). Of course, at
the same time we increase the depth of the octree: There is a trade-
off between space efficiency and octree complexity. We therefore
expose a coverage threshold to the user. This threshold defines how
acceptable it is to waste space to favor access efficiency. We also
enforce a maximum tree depth, as this is mandatory for efficient
GPU implementation [Lefebvre et al. 2005].

Before describing the details of the octree construction, we define
terms for the leaf configurations that occur. We distinguish two
main types of leaves (see Figure 8). A 1-leaf is a leaf where the
surface projects onto a single face. A n-leaf is a leaf where the
surface projects to more than one face. Now, within the set of 1-
leaves we distinguish three subtypes. A full-leaf is a 1-leaf with a
percentage coverage value of 1 (the tile is entirely used). We call a
leaf-stack a set of 1-leaves at same octree level that are neighboring
in the direction of the face supporting the tile (see Figure 8). The
important property of a leaf-stack is that all the faces in the stack
can share a same texture tile without overlapping. A leaf involved
in a leaf-stack is named a stacked-leaf. Finally, a boundary-leaf is
defined as a 1-leaf which is not involved in any leaf-stack and is not
a full-leaf either. Figure 7 shows the various types of leaves on a
3D model.

In order to build the octree, we take the following steps, summa-
rized in Figure 9:

1. Subdivide the octree until leaves contain one fold at most.

2. Enforce coverage constraint on n-leaves.

3. Enforce coverage constraint on boundary-leaves.

4. Split all 1-leaves that could form a stack with a neighbor at a
deeper subdivision level.

5. Detect leaf-stacks (all members share a same texture tile).

Our implementation relies on ray–surface intersections for the tree
construction, making it suitable for both polygonal meshes and im-
plicit surfaces. Within each leaf we cast axis aligned rays to detect
folds and obtain surface normals. The sampling rate must be high
enough so that all leaf faces required for proper texturing will be
detected, and so that no fold will be missed. Note that nothing pre-
cludes the use of more robust detection mechanisms.

Once the octree is created, we allocate tiles for each of the leaf face
reached by the surface. The next section describes how tiles are
allocated.

n-leaf

full-leaf leaf-stack full-leaf boundary-leaf

n-leaf

1-leaf

Figure 8: The 2 main types and 4 sub-types of TileTree leaves.

1)

3)

2)

4)

Figure 9: The octree construction involves four types of subdivi-
sions. 1) Split until no foldover. 2) and 3) Split to enforce coverage
threshold. 4) Split to create leaf-stacks.

3.4 Tiles

After octree subdivision, the number of tiles to allocate is:

#full-leaves+#boundary-leaves+#leaf-stacks+ ∑
{n-leaf}

(n)

where # is the counting operator.

Each tile is mapped onto a leaf face so that the centers of the border
samples are aligned with the boundaries of the face. This ensures
seamless rendering and enables use of native hardware bilinear fil-
tering. This also implies some sample duplication: Two neighbor-
ing tiles encode the same samples along their boundary. Using large
tiles reduces this overhead.

To ensure matching samples between leaves at different subdivision

levels, the tile size must be equal to 2k + 1, with k a positive inte-
ger (see Figure 10, left). In case of adaptive resolution, this will
also ensure that samples of the finer resolution tile are aligned with
samples of the coarser resolution tile (see Figure 10, right).

For a simple access during rendering all tiles are packed together
into a single texture: the tile-map. Tiles within n-leaves are stored
contiguously. Thus for each leaf we allocate a texture rectangle

with a size of n(2k + 1)× (2k + 1), 1 ≤ n ≤ 6. The coordinates
of the top left corners are stored in the octree leaves. The square
shape of the tiles allows for simpler and therefore faster packing
than with arbitrarily shaped charts. In our implementation we used
a naive approach which places larger tiles first, from left-to-right
and top-to-bottom. For speed-up, we track the first free column of
every texture row. Although the packing can be further optimized
by using quad-trees, it already performs very well, placing 18664
tiles in 96 milliseconds on the armadillo model of Figure 13.

3.5 Seamless interpolation

Interpolating the texture samples along the surface is key to avoid
pixelated appearance. Seamless interpolation is a difficult issue
which must not be overlooked. For instance, with volume ap-

5 x 5 3 x 33 x 3

3 x 3

3 x 3

3 x 3

Figure 10: Left: For samples to match across boundaries, tiles must

have a size of 2k +1. Right: Samples of tiles at different resolution
are aligned. Color at samples marked by two circles is computed to
be the bi-linear interpolation of the neighbors. This ensure continu-
ity across resolutions.

0 0 1 1 1

1

0

0

1

1

1 1

Figure 11: Within the outlined cell, the face used to texture the
surface is abruptly changing, resulting in a visible seam. To perform
interpolation within this cell, we flag whether each tile sample is
used by the enclosed surface.

proaches interpolation requires up to 8 lookups into the data struc-
ture [Lefebvre and Hoppe 2006], and more if adaptive texturing is
used [Benson and Davis 2002]. Of course, this strongly impacts
performance. This can be reduced by storing small blocks of data
instead of point-wise colors, but border sample replication largely
increases space overhead - especially in a volume where a thick
layer has to be defined around the surface (see Figure 3).

Our TileTrees enable fast seamless interpolation over smooth sur-
faces. We rely on the graphics hardware interpolation when ac-
cessing the tiles, and only have to perform a few more operations to
obtain a seamless result. In the following discussion, we assume the
per-sample color is already known. Please refer to Section 4 for an
overview of how to fill a TileTree with texture content. Also, please
note that seamless interpolation is currently limited to smooth sur-
faces. By smooth surface, it is to be understood that we refer to a
continuous normal field over the surface, may it be a triangle mesh.
We discuss this issue in more details in Section 6.

For correct interpolation, there are three cases to consider: full-
leaves and stacked leaves, partially covered faces, and n-leaves in-
terior.

full-leaves
Within full-leaves and stacked-leaves a correct seamless interpola-
tion is guaranteed: The tile has all the necessary samples. Recall
we have a one pixel border replication between neighboring tiles
(see Section 3.4 and Figure 10, left).

partially covered faces
Within boundary-leaves and n-leaves the surface often only par-
tially covers a face. Therefore, some tile samples have no defined
color. At boundaries, these undefined colors would bleed-in during
interpolation. Fortunately, the color of these samples is simply lo-
cated in a tile of the neighboring leaf. For instance, consider the
boundary-leaf of Figure 8. The missing samples are located in the
n-leaf just below. We simply fill-in undefined samples by reading
their color in the neighboring leaf.

n-leaves interior
N-leaves have an additional difficulty: The face accessed during
rendering is abruptly changing along the surface (see Figure 11).
The key idea to achieve a correct interpolation is to define the final
color as a weighted sum of the contribution of all faces. Note that
three faces can contribute at most: The three faces corresponding
to the direction of the normal. We name the corresponding tiles Tx,
Ty and Tz, one for each main direction.

To define the interpolation weights, we store a binary flag into the
alpha channel of the tile samples. This flag determines whether a
sample is used by the enclosed surface (see Figure 11). This is eas-
ily computed by considering the surface normal at the location onto
which the sample projects. Note that if the surface is not found
under the sample, the color of the closest sample may be repeated.
Alternatively, we can march along the faces to find the color of the
sample on the neighboring tile. Note however that none of this will
introduce a discontinuity: The final color is a continuous interpola-
tion of the colors from all faces.

The flag is interpolated when accessing the tile data, so its value
varies contiguously between [0,1] on the surface. Within the n-leaf
we now have three continuously varying flag values: αx,αy and αz

interpolated from tiles Tx, Ty and Tz. Note that if a face is not used
by the surface it has no associated tile and we force its flag value
to 0. The key idea is that the flag value will be 1 whenever the tile
contains proper samples for the surface, and will continuously drop
to 0 when the tile is no longer relevant. Interpolation only has to
occur in areas where none of the flag values equal 1. This leads to
a first definition of the weights wx, wy and wz:

wx = αx · (1−αy) · (1−αz)
wy = αy · (1−αz) · (1−αx)
wz = αz · (1−αx) · (1−αy)

From which we compute the final color as:

c =
(cx ·wx + cy ·wy + cz ·wz)

(wx +wy +wz)

where cx, cy and cz are colors fetched from tiles Tx, Ty and Tz.

This works well in most cases, however these weights are not ro-
bust. If more than one flag equals 1, or all equal 0, the weights are
null and the color is undefined. Both cases are possible if small ge-
ometric features are present in between tile samples. Fortunately,
there exists a simple solution to this issue. We need to enforce that
only one flag reaches 1 simultaneously. The normal to the surface
gives exactly that: It always selects a single face, so we use it to
dampen the flags. We thus compute the weights as:

damp = abs(nrm)/max(|nrmx|, |nrmy|, |nrmz|)
wx = αxdampx · (1−αydampy) · (1−αzdampz)
wy = αydampy · (1−αzdampz) · (1−αxdampx)
wz = αzdampz · (1−αxdampx) · (1−αydampy)

where nrm is the normal to the surface at the point being considered,
and abs a per-component absolute value. The zero case can then be
avoided by always adding a small epsilon to the flag values. As
long as the normal field is smooth, the weights are continuous and
the final result is a seamless interpolation of the samples.

adaptive resolution
Whenever adaptive resolution is used, an additional difficulty ap-
pears: At the boundary between two tiles of different resolution,
some samples of the higher resolution tile have no correspond-
ing sample on the coarser resolution tile. This is illustrated Fig-
ure 10, right. With no specific treatment this produces obvious
high-frequency discontinuities. In order to ensure smooth interpo-
lation, we force the color of higher-resolution border samples to
match the bi-linear interpolation of the lower-resolution samples.

Figure 12 illustrates seamless interpolation and adaptive resolution.

Figure 12: Left: Close-up on an n-leaf without interpolation. Mid-
dle: Same with seamless interpolation enabled. Right: Interpola-
tion and adaptive resolution.

3.6 MIP-mapping

Due to the tile resolution of 2k + 1, we cannot directly apply MIP-
mapping to the tile map. MIP-mapping can be achieved by com-
puting a separate tile map for each resolution level. This requires
to store one tile coordinate per-level in the octree leaves. During
rendering, the appropriate MIP-mapping level is computed and the
color is fetched from the corresponding tile map. Two levels may
be accessed for linear interpolation in-between MIP-mapping lev-
els. Also note that in case of extreme undersampling, the tree itself
may be MIP-mapped.

3.7 Implementation details

For the tree storage and lookup we rely on the hardware implemen-
tation of [Lefebvre et al. 2005]. Each leaf stores:

• A bit vector marking tile presence on each face (6 bits).

• The coordinates of the top left corner of the tiles within the
tile map (two 16 bits numbers).

• The resolution of the tile (8 bits).

The complete pseudo-code for the shader is given below:

float4 tileTreeLooukp(float3 p) {

/// lookup into the octree

float4 leaf = octree_lookup(p);

/// decode faces presence

float3 face_p = decode_pos_face_presence(leaf);

float3 face_n = decode_neg_face_presence(leaf);

/// coordinates within node

float3 local = frac(p * lvlsize);

/// align samples on leaf boundaries

float tileres = decode_tile_resolution(leaf);

float3 uvw = local*((tileres-1.0)/(tileres))

+(0.5/(tileres));

/// select faces

float3 nrm = normalize(IN.Nrm);

v_p = face_p * nrm;

v_n = face_n * (-nrm);

float3 id_p = float3(X_P,Y_P,Z_P);

float3 id_n = float3(X_N,Y_N,Z_N);

float3 faceid = (v_p > 0) ? id_p : -1;

faceid = (v_n > 0) ? id_n : faceid;

/// access tile data for present tiles

float4 clr0=0,clr1=0,clr2=0;

if (faceid.x>-1) clr0=tileLkup(leaf,faceid.x,uvw.yz);

if (faceid.y>-1) clr1=tileLkup(leaf,faceid.y,uvw.xz);

if (faceid.z>-1) clr2=tileLkup(leaf,faceid.z,uvw.xy);

/// sample usage vector

float3 alpha_xyz = 1e-6+float3(clr0.w,clr1.w,clr2.w);

/// seamless interpolation

float3 anrm = abs(nrm);

float3 damp = anrm/max(anrm.x,max(anrm.y,anrm.z));

alpha_xyz *= damp;

float3 inv = (1-alpha_xyz);

float3 w = alpha_xyz * inv.yzx * inv.zxy;

/// compute final color

return (clr0*w.x+clr1*w.y+clr2*w.z)/(dot(w,1));

}

Figure 13: Left: Armadillo model textured with a uniform resolution of 10243. The entire TileTree fits in 11.4 MB. Right: Dragon model
textured with a uniform resolution of 10243. The entire TileTree fits in 11.3 MB.

4 Filling with content

We introduced the TileTree data structure and explained how to ac-
cess it during rendering. We now have to define means of filling a
TileTree with texture content. In this section we describe an inter-
active painting tool for TileTrees, and briefly explain how to convert
between TileTrees and other texture representations.

Interactive painting
Interactive painting is performed easily using TileTrees. The idea
is simple: When building the tile map, we also create an auxiliary
texture storing the coordinates of the surface points projecting to
the tile samples. A simple ray-surface intersection is used for this
purpose.

Once the auxiliary texture is built, painting is performed as a render
to texture operation: We directly paint into the tile map using the
GPU. We rasterize a quad covering the entire tile map, retrieve the
world space coordinate of the samples from the auxiliary table, and
check whether samples are inside the brush. If inside, their color
is updated. Alpha blending is used to attenuate the brush influence.
Painting is extremely fast, and the speed does not depend on the
brush size: In fact all pixels may be updated at once if desired.

Painting is slightly more complex when adaptive resolution is used.
Recall that for adaptive resolution we need to compute the color of
some samples to obtain a smooth interpolation (see Section 3.5).
In our current implementation, we update these samples after each
paint stroke. Also, in our current application the user is in charge of
increasing or decreasing the local tile resolution. A painting scheme
automatically adapting the texture resolution, such as the one pro-
posed by Carr and Hart [Carr and Hart 2004], could be easily de-
signed on top of TileTrees. Please refer to the accompanying video
for an example of an interactive painting session.

Conversion
Converting from an existing texture is a convenient feature. This
can be used, for instance, to provide a basis for further painting onto
an existing object. The key idea, similarly to interactive painting,
is to rely on the coordinates of the surface points projecting to the
samples. With a triangle mesh, it is easy to track texture coordinates
and to fetch an initial color from an existing atlas. With a volume
texture, the 3d coordinates can be directly used to obtain a color at
each sample. Converting a TileTree back into a texture atlas can
be performed similarly to the fast octree-atlas conversion described
in [Lefebvre et al. 2005].

Memory size Frame rate

TileTree
11.4 MB 91 FPS

Hashed texture
8 lookups for tri-linear 15.7 MB 34 FPS

Octree texture
8 lookups for tri-linear 32.6 MB 25 FPS

Hashed texture
blocking for tri-linear 45.9 MB 135 FPS

Table 1: Comparison of a TileTree with octree texture and hashed
textures on the armadillo model with an equivalent volume texture
resolution of 10243. Frame rate is measured with the viewpoint of
Figure 13.

5 Results and Discussion

We compare TileTrees with other volume texture mapping ap-
proaches: octree textures and hashed textures. Table 1 summaries
memory size and performance for each approach. TileTrees are
slower than blocked hashed textures, but require 3 times less mem-
ory. They are, however, faster than hashed textures with 8 lookups
for tri-linear interpolation, while still using less memory. It is re-
markable that even with the space overhead of border sample du-
plication and memory waste of partially covered tile, TileTrees are
still smaller than tri-linear hashed textures. This is of course due to
the fact that volume texture mapping requires much more samples
for interpolation. Note that for a fair comparison we did not use
the adaptive capability of the TileTree, which would have further
reduce memory usage.

Table 5 shows how octree complexity and tile map usage are linked.
We fix the final resolution to 10243 and vary the maximum octree
depth. As the depth increases, we get a better usage of the tile map,
but it reduces performance as the octree access gets more expansive.

Table 3 shows how the TileTree size evolves with the user ad-
justable coverage threshold. A higher coverage constraint decreases
tile map size, but also increases the octree size. The optimal is
therefore obtained for an intermediate value. In practice we often
use a coverage threshold of 1 for compactness.

Tree max Octree Tile map Tile map Frame
depth size size usage rate

5 27 KB 17.4 MB 49% 110 FPS

6 97 KB 13.5 MB 59% 98 FPS

7 303 KB 11.1 MB 68% 93 FPS

8 831 KB 10.9 MB 75% 91 FPS

Table 2: TileTree behavior for varying maximum tree depth and
fixed resolution of 10243.

Coverage Number Octree Tile map Tile map
threshold of tiles size size usage

0 13802 103 KB 18.12 MB 52%

0.25 20520 217 KB 11.5 MB 63.8%

0.5 24423 260 KB 11.0 MB 66.5%

0.75 27373 288 KB 11.0 MB 67.5%

1 29185 303 KB 11.1 MB 67.6%

Table 3: TileTree behavior for a fixed resolution of 10243 with vary-
ing coverage threshold. Maximum tree depth is set to 7.

6 Limitations and Future work

TileTrees have two main limitations.

First, seamless interpolation fails where normals are not continuous
along the surface. Typically, edges of a cube will not have a seam-
less interpolation. While this may be acceptable if the surfaces have
different materials, it may be a problem if a continuous texture is
desired across these edges. One possible direction to circumvent
this issue is to use a smoothed normal for computing the interpo-
lation weights. However, to properly take into account triangles at
angles greater than 90 degrees, interpolation must now consider all
faces, including those in a direction opposite to the normal. This
complicates the TileTree access.

Second, and this may be the most important limitation, the normal
field used for access has to be consistent with the real geometry. In
particular, if normals have a large angle compared to the real sur-
face, a very high distortion will result: The TileTree is mistaken
in using a face that does not match surface orientation. This prob-
lem, however, only exists on triangle meshes with extremely coarse
tessellations. In this situation a discontinuous normal may be used
along the edge, removing distortion at the expense of the aforemen-
tioned seam in the interpolation.

Finally, as additional future work we would like to explore the
opportunity of using TileTrees for efficient texture loading and
caching.

7 Conclusion
We introduced the TileTree, a new data structure for efficient tex-
ture mapping. TileTrees store square texture tiles in the leaves of an
octree. The surface is projected onto the tiles during rendering. The
resulting texture is seamlessly interpolated along smooth regions of
the surface, with little memory and access overhead.

We showed that TileTrees are more compact in memory than other
volume approaches, while offering many of their advantages. A low
distortion texture mapping is achieved. No parameterization needs
to be explicitly stored, making the approach available for implic-
itly defined surfaces. Moreover, TileTrees natively support adaptive
resolution, at no additional rendering cost.

We hope that TileTrees will provide artists and developers with a
practical tool to texture map surfaces with as little difficulty as pos-
sible.

Acknowledgements

Thanks to Christian Eisenacher for carefuly proof-reading the paper
and to George Drettakis for the video voice over.

References

BALMELLI, L., TAUBIN, G., AND BERNARDINI, F. 2002. Space-
optimized texture maps. In Proceedings of the Eurographics
Conference, 411–420.

BENSON, D., AND DAVIS, J. 2002. Octree textures. In Pro-
ceedings of ACM SIGGRAPH, ACM Press, ACM SIGGRAPH,
785–790.

BOUBEKEUR, T., HEIDRICH, W., GRANIER, X., AND SCHLICK,
C. 2006. Volume-surface trees. Proceedings of the Eurographics
Conference 25, 3, 399–406.

CARR, N. A., AND HART, J. C. 2004. Painting detail. Proceedings
of ACM SIGGRAPH 23, 3, 845–852.

CARR, N., HOBEROCK, J., CRANE, K., AND HART, J. C. 2006.
Rectangular multi-chart geometry images. In Proceedings of the
Eurographics Symposium on Geometry Processing, ACM Press,
181–190.

CATMULL, E. E. 1974. A Subdivision Algorithm for Computer
Display of Curved Surfaces. Ph.d. thesis, University of Utah.

DEBRY, D., GIBBS, J., PETTY, D. D., AND ROBINS, N. 2002.
Painting and rendering textures on unparameterized models.
In Proceedings of ACM SIGGRAPH, ACM Press, ACM SIG-
GRAPH, 763–768.

FLOATER, M. S., AND HORMANN, K. 2005. Surface Parameter-
ization: a Tutorial and Survey.

LEFEBVRE, S., AND HOPPE, H. 2006. Perfect spatial hashing.
Proceedings of ACM SIGGRAPH 25, 3, 579–588.

LEFEBVRE, S., HORNUS, S., AND NEYRET, F. 2005. Octree
Textures on the GPU. Addison–Wesley.

LEFOHN, A., KNISS, J., STRZODKA, R., SENGUPTA, S., AND

OWENS, J. 2006. Glift : Generic, efficient random-access gpu
data structures. ACM Transactions on Graphics 25, 1, 60–99.

MAILLOT, J., YAHIA, H., AND VERROUST, A. 1993. Interactive
texture mapping. In Proceedings of ACM SIGGRAPH, Computer
Graphics Proceedings, Annual Conference Series, 27–34.

PURNOMO, B., COHEN, J. D., AND KUMAR, S. 2004. Seamless
texture atlases. In Proceedings of the Eurographics Symposium
on Geometry Processing, ACM Press, 65–74.

SANDER, P. V., GORTLER, S. J., SNYDER, J., AND HOPPE, H.
2002. Signal-specialized parameterization. In Proceedings of
the Eurographics Workshop on Rendering, 87–100.

SLOAN, P.-P. J., WEINSTEIN, D. M., AND BREDERSON, J. D.
1998. Importance driven texture coordinate optimization. Com-
puter Graphics Forum 17, 3, 97–104.

TARINI, M., HORMANN, K., CIGNONI, P., AND MONTANI, C.
2004. Polycubemaps. ACM Transactions on Graphics 23, 3
(Aug.), 853–860. Proceedings of ACM SIGGRAPH.

