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1 Filtering Perlin and Wavelet Noise using

Frequency Clamping

In this section, we give more details on how we filter Perlin and
wavelet noise using frequency clamping.

Whether or not aliasing will occur is determined by how the fre-
quency content of the noise [fmin, fmax), i.e. the range of fre-
quencies in the noise, is positioned with request to the Nyquist fre-
quency fc, i.e., the maximum frequency that can be represented.
Frequencies in the noise smaller than fc correspond to detail, while
frequencies larger than fc will cause aliasing.

We filter the noise by multiplying it with a filtering weight w,
depending on how [fmin, fmax) is positioned w.r.t. fc: (i) if
fmax <= fc, then all frequencies correspond to detail, and
w = 1; (ii) if fmin > fc, then all frequencies will cause
aliasing, and w = 0; (iii) if fmin ≤ fc < fmax, then one
part of the frequencies correspond to detail [fmin, fc) and an-
other part will cause aliasing [fc, fmax), and we multiply with
w = smoothstep (fmin, fmax, fc).

We approximate the Nyquist frequency in texture space fc by
1/2∆, where ∆, the sampling interval in texture space, is approxi-
mated by

∆ ≈ max
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For wavelet noise, we use fmin = 1/4 and fmax = 1/2, motivated
by the theoretical framework of wavelet noise, and we optionally
slightly adjust both parameters for optimal results. For Perlin noise,
we use fmin = 0.25 and fmax = 0.95, which we determined
experimentally.

This derivation shows that frequency clamping is inherently subject
to an aliasing vs. detail loss trade-off. This is because of case (iii)
above, where a part of the noise corresponds to detail and another
part causes aliasing: lowering w results in less aliasing but also
less detail, while increasing w results in more detail but also more
aliasing. This is why the weight w is chosen proportionally to the
ratio of the parts corresponding to detail and aliasing. This prob-
lem improves as the noise becomes more narrowly band-limited:
as the interval [fmin, fmax) becomes smaller, case (iii) becomes
less frequent.
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2 Slicing Random-Phase Gabor Noise

In this section, we show that random-phase Gabor noise is closed
under slicing, i.e., that slicing a n-dimensional random-phase Ga-
bor noise results in a (n− 1)-dimensional random-phase Gabor
noise.

We slice an n-dimensional random-phase Gabor noise n with a hy-
perplane Π, which results in

SΠ [n (x; a, ω)]
(
x′) =

∑

i

ws
i g

(
x′ − x′

i; a, ω
s, φs

i

)

=
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i δ
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)
∗ g

(
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i

)
,

(2)

where ws
i = e−πa2d2i , di = n · xi + d and x′

i = projΠxi. This is
because S is a linear operator and because the random-phase Gabor
kernel is closed under slicing.

We show that the r.h.s. of Eqn. 2 is a (n−1)-dimensional random-
phase Gabor noise. This follows from two elements. (i) The r.h.s.
of the convolution in Eqn. 2 is an (n− 1)-dimensional random-
phase Gabor kernel. The phases {φs

i} with φs
i = φi − 2πdin · ω

are uniformly distributed over [0, π), i.e., the phase-shifted random
phases are still random. This is because φi is uniformly distributed
over [0, π), φi and di are independent, and the sum is modulo 2π
[Scheinok 1965, Eqn. 3.3 with gY (y) = 1/a]. (ii) The l.h.s. of the
convolution in Eqn. 2 is an (n−1)-dimensional weighted Poisson
process on Π. The random positions {x′

i} with x′
i = projΠxi are

the perpendicular projections of {xi} onto Π, the random weights

{ws
i } with ws

i = e−πa2d2i and di = n · xi + d are the Gaussian-
weighted distances of {xi} to Π, and the random variables corre-
sponding to x′

i and w
s
i are independent.

Eqn. 2 and Eqn. 7 in the paper have the same form, except for the
extra weight ws

i , i.e., the Poisson process in Eqn. 2 is weighted
while the Poisson process in Eqn. 7 is not. This results in an extra
factor ws in the expressions for the variance and the power spec-
trum of sliced random-phase Gabor noise, where

ws =

∫ ∞

−∞

(
e−πa2x2

)2

dx =
1√
2a

, (3)

which follows from the derivation of the shot noise equations for
this weighted Poisson process [van Etten 2005, Ch. 8].

We conclude that slicing an n-dimensional random-phase Gabor
noise n with a hyperplane Π results in

SΠ [n (x; a, ω)]
(
x′) =

√
wsn

(
x′; a, ωs) , (4)

an (n−1)-dimensional random-phase Gabor noise, i.e., random-
phase Gabor noise is closed under slicing.

This derivation shows that the random phases are essential because
they ensure invariance w.r.t. slicing: since the phases of the Gabor
kernels are random, the phase-shifted phases of the sliced kernels
are random as well.
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3 Analytical Expressions for Random-Phase

Gabor Noise

In this section, we give the analytical expressions for random-phase
Gabor noise. For the definitions of all symbols, please see the paper.

3.1 The Phase-Augmented Gabor Kernel

The phase-augmented Gabor kernel is

g (x; a, ω, φ) = e−πa2|x|2 cos (2πx · ω + φ) . (5)

The Fourier transform of the phase-augmented Gabor kernel is

G (ξ; a, ω, φ)

=
1

2an

(
e
− π

a2 |ξ−ω|2
eiφ + e

− π
a2 |ξ+ω|2

e−iφ
)
. (6)

The scale factor equals 1/2a, 1/2a2 and 1/2a3 for n = 1, n = 2
and n = 3 respectively.

3.2 The Random-Phase Gabor Kernel

The integral of the random-phase Gabor kernel is

1

2π

∫ 2π

φ=0

∫

Rn

g (x; a, ω, φ) dxdφ = 0. (7)

The integral of the random-phase Gabor kernel squared is

1

2π

∫ 2π

φ=0

∫
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g2 (x; a, ω, φ) dxdφ =
1

2
(√

2a
)n . (8)

The scale factor equals 1/2
√
2a, 1/4a2 and 1/4

√
2a3 for n = 1,

n = 2 and n = 3 respectively.

The magnitude squared of the Fourier transform of the random-
phase Gabor kernel is

1

2π

∫ 2π

φ=0

|G (ξ; a, ω, φ)|2 dφ

=
1

4a2n
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e
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+ e
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)
. (9)

The scale factor equals 1/4a2, 1/4a4 and 1/4a6 for n = 1, n = 2
and n = 3 respectively.

3.3 Random-Phase Gabor Noise

Random-phase Gabor noise is

n (x; a, ω) =
∑

i

g (x− xi; a, ω, φi) . (10)

The variance of random-phase Gabor noise is

σ2
n = λ

1

2π

∫ 2π
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∫

Rn

g2 (x; a, ω, φ) dxdφ. (11)

The power spectrum of random-phase Gabor noise is

Snn (ξ; a, ω) = λ
1

2π

∫ 2π

φ=0

|G (ξ; a, ω, φ)|2 dφ. (12)

3.4 Sliced Random-Phase Gabor Noise

The slicing factor is

ws
a =

∫ ∞

−∞

(
e−πa2x2

)2

dx =
1√
2a

. (13)

The variance of sliced random-phase Gabor noise is

σ2
S[n(x;a,ω)] = ws

aσ
2
n(x′;a,ωs). (14)

The power spectrum of sliced random-phase Gabor noise is

SS[n(x;a,ω)]S[n(x;a,ω)]

(
ξ′; a, ω

)

= ws
aSn(x′;a,ωs)n(x′;a,ωs)

(
ξ′; a, ω

)
. (15)

4 Avoiding Matrix Inversions when Filtering

In this section, we give more details on how a matrix expression
involving the inverse of the sum of a scaled identity matrix and a
positive definite matrix can be simplified.

We use the expression

[
(aI)−1 +

(
UUT

)−1
]−1

= aI−a2
[
aI +

(
UUT

)]−1

, (16)

which follows from [Henderson and Searle 1981, Eqn. 1 with A =
aI , B = I and V = UT ]. This expression reduces the number of
matrix inversions for an expression such as the one forΣGF (paper,
Eqn. 10) from three to one.
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