
HAL Id: inria-00606918
https://hal.inria.fr/inria-00606918

Submitted on 7 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chasing the Weakest Failure Detector for k-Set
Agreement in Message-passing Systems

Achour Mostefaoui, Michel Raynal, Julien Stainer

To cite this version:
Achour Mostefaoui, Michel Raynal, Julien Stainer. Chasing the Weakest Failure Detector for k-Set
Agreement in Message-passing Systems. [Research Report] PI-1981, 2011, pp.15. �inria-00606918�

https://hal.inria.fr/inria-00606918
https://hal.archives-ouvertes.fr

Publications Internes de l’IRISA

ISSN : 2102-6327

PI 1981 – Juillet 2011

Chasing the Weakest Failure Detector for

k-Set Agreement in Message-passing Systems

Achour Mostéfaoui* , Michel Raynal** , Julien Stainer***

{achour|raynal|jstainer}@irisa.fr

Abstract: This paper continues our quest for the weakest failure detector which allows the k-set agreement problem to be solved in

asynchronous message-passing systems prone to any number of process failures. It has two main contributions which (we hope) will be

instrumental to complete this quest.

The first contribution is a new failure detector (denoted ΠΣx,y). This failure detector has several noteworthy properties. (a) It is

stronger than Σx which has been shown to be necessary. (b) It is equivalent to the pair 〈Σ,Ω〉 when x = y = 1 (from which it follows

that ΠΣ1,1 is optimal to solve consensus). (c) It is equivalent to the pair 〈Σn−1,Ωn−1〉 when x = y = n − 1 (from which it follows

that ΠΣn−1,n−1 is optimal for (n − 1)-set agreement). (d) It is strictly weaker than the pair 〈Σx,Ωy〉 (which has been investigated in

previous works) for the pairs (x, y) such that 1 < y < x < n. (e) It is operational: the paper presents a ΠΣx,y-based algorithm that

solves k-set agreement for k ≥ xy.

The second contribution of the paper is a proof that, for 1 < k < n − 1, the eventual leaders failure detector Ωk (which eventually

provides each process with the same set of k process identities, this set including at least one correct process) is not necessary to solve

k-set agreement problem. More precisely, the paper shows that the weakest failure detector for k-set agreement and Ωk cannot be

compared.

Key-words: Asynchronous system, Distributed computing, Eventual leader, Failure detector, Fault-tolerance, Message-passing system,

Quorum, Reduction, k-Set agreement, Wait-freedom.

En quête du détecteur de fautes minimal

pour le problème d’accord ensembliste

Résumé : Ce rapport est une avancée dans la recherche du détecteur de fautes minimal permettant de résoudre le problème d’accord

ensembliste dans un système asynchrone à communication par messages.

Mots clés : Calcul distribué, détecteur de fautes, k-accord, leader inéluctable, réduction, système asynchrone, tolérance aux fautes,

wait-free.

* IRISA, Université de Rennes, 35042 Rennes Cedex, France
** Insitut Universitaire de France

*** IRISA, Université de Rennes, 35042 Rennes Cedex, France

c©IRISA – Campus de Beaulieu – 35042 Rennes Cedex – France – +33 2 99 84 71 00 – www.irisa.fr

2 A. Mostefaoui & M. Raynal & J. Stainer

1 Introduction

The k-set agreement problem This problem is a natural generalization of the consensus problem. It is a coordination problem (also

called decision problem) introduced by S. Chaudhuri [10] to explore the relation linking the number of process failures and the minimal

number of values that processes are allowed to decide. This problem can be defined as follows [10, 23]. Each process proposes a value

and every non-faulty process has to decide a value (termination), in such a way that a decided value is a proposed value (validity) and

no more than k different values are decided (agreement). The problem parameter k defines the coordination degree: k = 1 corresponds

to its most constrained instance (consensus) while k = n − 1 corresponds to its weakest non-trivial instance (called set agreement).

Let t be the model parameter that defines the upper bound on the number of processes that may crash in a run, 0 ≤ t < n. If t < k,

k-set agreement can be trivially solved in both synchronous and asynchronous systems: k predetermined processes broadcast (write in

the shared memory) the values they propose and a process decides the first proposed value it receives (reads from the shared memory).

Hence, the interesting setting is when t ≥ k, i.e., when the number of values that can be decided is smaller or equal to the maximal

number of processes that may crash in a run.

Round-based algorithms that solve the k-set agreement problem for k ≤ t < n in crash-prone synchronous message-passing systems

are presented in [2, 17, 26]. These algorithms are optimal in the sense that the processes decide in at most ⌊ t
k
⌋ + 1 rounds which has

been shown to be a lower bound on the number of rounds for a process to decide1. For asynchronous systems where the processes

communicate by reading/writing a shared memory or sending/receiving messages, the situation is different, namely, when t ≥ k, the

k-set agreement problem has no solution [6, 15, 29].

Failure detectors Let us observe that in an asynchronous system where the only means for processes to communicate is a read/write

shared memory or send/receive message-passing network, no process is able to know if another process has crashed or is only very slow.

The concept of a failure detector originates from this simple observation. A failure detector is a device (distributed oracle) that enriches

a distributed system by providing alive processes with information on failed processes [8]. Several classes of failure detectors can be

defined according to the type of information on failures they provide to processes (see [24] for an introduction to failure detectors).

Given a system model M (e.g., asynchronous read/write shared memory system model or asynchronous send/receive message-

passing system model) a failure detector A is stronger than a failure detector B with respect to M (denoted A �M B or B �M A) if

there is an algorithm (called reduction) that builds B in M enriched with A (we then also say that B is weaker than A). If A is stronger

than B and B is stronger than A, then A and B are equivalent with respect to M (denoted A ≃M B). If A �M B and B 6�M A then

A is strictly stronger than B -equivalently B is strictly weaker than A- (denoted A ≻M B or B ≺M A). If A 6�M B and B 6�M A
(denoted A 6≃M B), A and B cannot be compared in M.

Failure detectors have been investigated since 2000 [18] to circumvent the “t ≥ k” impossibility result associated with the k-set

agreement problem in asynchronous systems. (Random oracles to solve the k-set agreement problem have also been investigated [19].)

The question of the weakest failure detector to solve the k-set agreement problem (k > 1) has been stated first in [28]. A failure detector

A is the weakest failure detector that allows a problem P to be solved in a model M if any failure detector B that allows P to be solved

in M is such that B �M A.

The weakest failure detector for k-set agreement in shared memory systems where t = n−1 The eventual leader failure detector

Ω introduced in [9] is the weakest failure detector that allows consensus (i.e., 1-set agreement) to be solved in shared memory systems

where any number of processes may crash [16]. Ω ensures that there is an unknown but finite time after which all the processes have the

same non-faulty leader (before that time, there is an anarchy period during which each process can have an arbitrarily changing faulty

or non-faulty leader). At the other end of the spectrum (k = n − 1), the failure detector Ωn−1 (anti-omega) has been introduced in [30]

where it is shown to be the weakest failure detector that allows (n − 1)-set agreement to be solved in these systems.

A simple generalization of Ω and Ωn−1 denoted Ωk, 1 ≤ k ≤ n− 1, (Ω1 is Ω) has been introduced in [22] where it is conjectured to

be the weakest failure detector class for solving k-set agreement in asynchronous read/write shared memory systems. This conjecture has

been proved in [13]. A failure detector of the class Ωk provides each process with a (possibly always changing) set of k processes such

that, after some unknown but finite time, all the sets that are output have in common the same non-faulty process. The optimality of Ωk

to solve k-set agreement in shared memory systems seems to be related to the fact that this problem is equivalent to the k-simultaneous

consensus problem [1] in which each process executes k independent consensus instances (to which it proposes the same input value)

and is required to terminate in one of them. As indicated in [30], this problem has been instrumental in determining the weakest failure

detector for wait-free solving the (n − 1)-set agreement problem in asynchronous shared memory systems.

The cases k = 1 and k = n−1 in message-passing systems where t = n−1 When k = 1, as already indicated k-set agreement boils

down to consensus, and it is know that the failure detector denoted Ω is the weakest to solve consensus in asynchronous message-passing

systems where t < n/2 [9]. This lower bound result is extended to any value of t in [11] where the failure detector Σ is introduced and

1In synchronous systems with more severe failures such as general omission failures, ⌊ t
k
⌋ + 1 is still an upper bound on the number of rounds but k-set agreement

can be solved if and only if t < k n
k+1

[26].

Collection des Publications Internes de l’Irisa c©IRISA

Failure Detectors for k-Set Agreement 3

is shown that Σ×Ω is the weakest failure detector to solve consensus in message-passing systems when t < n. This means that Σ is the

minimal additional power (as far as information on failures is concerned) required to overcome the barrier t < n/2 and attain t ≤ n−1.

Actually the power provided by Σ is the minimal one required to implement a shared register in a message-passing system [4, 11].

Σ provides each process with a quorum (set of process identities) such that the values of any two quorums (each taken at any time)

intersect, and there is a finite time after which any quorum includes only correct processes. Fundamentally, Σ prevents partitioning. A

failure detector Σ × Ω outputs a pair of values, one for Σ and one for Ω.

The Loneliness failure detector (denoted L) has been proposed in [12] where it is proved that it is the weakest failure detector for

solving (n − 1)-set agreement in the asynchronous message-passing model with t = n − 1. Such a failure detector provides each

process p with a boolean (that p can only read) such that the boolean of at least one process remains always false and, if all but one

process crash, the boolean of the remaining process becomes and remains true forever. Let us notice that the weakest failure detector for

(n − 1)-set agreement is not the same in the read/write shared memory model (where it is Ωn−1) and the send/receive message-passing

model (where it is L).

The quest for the weakest failure detector for k-set agreement in message-passing systems This quest seems to be one of the most

difficult research topics in the theory of fault-tolerant distributed computing. Since a few years, several new failure detectors have been

proposed for solving k-set agreement in asynchronous message passing systems prone to any number of crashes, but so far finding the

weakest still remains a challenge.

A recent survey on failure detectors proposed so far to solve k-set agreement has appeared in [27]. The interested reader will also

find in [20] a study on relations linking some of these failure detectors. Here we only present the failure detector Σx introduced in [5]

because it is central to the paper. Σx generalizes the quorum failure detector class Σ introduced in [11] (Σ1 is Σ). This failure detector

provides each process with a set (quorum) such that at least two quorums do intersect in any set of x + 1 quorums (whose values are

taken at any times). Moreover, there is a finite (but unknown) time after which the quorum of any process includes only non-faulty

processes. Two main results are proved in [5]: (a) as far as information on failures is concerned, Σk is a necessary requirement to solve

k-set agreement; (b) Σn−1 is sufficient to solve (n−1)-set agreement. Interestingly, a Σx-based algorithm is presented in [7] that solves

k-set agreement for k ≥ n − ⌊ n
x+1⌋.

Contributions of the paper This paper is a new step in the quest for the weakest failure detector for k-set agreement in message-

passing systems. It has two main contributions.

• The first contribution is the definition and the investigation of a new failure detector class denoted ΠΣx,y .

– Intuitively ΠΣx,1 (1) prevents the system from partitioning into more than k independent subsets and (2) guarantees that the

processes of at least one of these subsets agree on a common leader. ΠΣx,y can be seen as y independent instances of ΠΣx,1

in which item (2) is has to be guaranteed in only one of these instances.

– Let AMP denote the asynchronous message-passing system model where up to n − 1 process may crash. The properties

of ΠΣx,y are the following: (a) ΠΣ1,y ≃AMP 〈Σ1,Ωy〉; (b) ΠΣx,n−1 ≃AMP Σx; (c) ΠΣx,y �AMP 〈Σx,Ωy〉 for

1 ≤ x, y ≤ n and ΠΣx,y ≺AMP 〈Σx,Ωy〉 for 1 < y < x < n.

It follows from (a) and (b) that ΠΣ1,1 and ΠΣn−1,n−1 are the weakest failure detectors to solve k-set agreement for k = 1
and k = n − 1, respectively.

For 1 ≤ k ≤ n − 1, we have the following. An algorithm based on the pair of failure detectors 〈Σx,Ωy〉 is presented in [7]

that solves k-set agreement for k ≥ xy (let BT-2010 denote this algorithm). Moreover, it is shown in that paper that there is

no 〈Σx,Ωy〉-based k-set agreement algorithm when (k < xy) ∧ (n ≥ 2xy).

Actually, an appropriate modification of BT-2010 provides us with a ΠΣx,y-based k-set algorithm that has the same prop-

erties (listed above) as BT-2010. The important point is here the following one: while BT-2010 and the proposed algorithm

work for the same pairs (x, y), it follows from item (c) that the proposed algorithm is based on weaker information on

failures than BT-2010.

• The second contribution of the paper (which has been obtained thanks to the previous failure detector ΠΣx,y) is the following:

Ωk is not necessary to solve k-set agreement when 1 < k < n − 1. Combined with the fact that Σk is necessary [5], this result

restricts the area we have to look for in order to discover the weakest failure detector for k-set agreement in message-passing

systems for 1 < k < n − 1.

Roadmap The paper is made up of 7 sections. Section 2 presents the base computation model and the k-set agreement problem.

Section 3 presents the eventual leaders and generalized quorums failure detectors. Section 4 defines the new failure detector ΠΣx,y and

shows that it is strictly weaker than 〈Σx,Ωy〉 for 1 < y < x < n. Assuming k ≥ xy, Section 5 presents an algorithm that solves the

k-set agreement problem in the asynchronous message-passing model enriched with ΠΣx,y . Section 6 shows that Ωk is not necessary

for solving k-set agreement (when 1 < k < n − 1). Finally, Section 7 concludes the paper.

Collection des Publications Internes de l’Irisa c©IRISA

4 A. Mostefaoui & M. Raynal & J. Stainer

2 Base computation model and k-set agreement

2.1 Computation model

Process model The system consists of a set of n sequential processes denoted p1, ..., pn. P = {1, . . . , n} is the set of process

identities. Each process executes a sequence of (internal or communication) atomic steps. A process executes its code until it possibly

crashes (if it ever crashes). After it has crashed, a process executes no more steps. A process that crashes in a run is said faulty in that

run, otherwise it is correct. Given a run, C and F denote the set processes that are correct and the set of processes that are faulty in that

run, respectively. Up to t = n − 1 processes may crash in a run, hence, 1 ≤ |C| ≤ n.

Communication model The processes communicate by executing atomic communication steps which are the sending or the reception

of a message. Every pair of processes is connected by a bidirectional channel. The channels are failure-free (no creation, alteration,

duplication or loss of messages) and asynchronous (albeit the time taken by a message to travel from its sender to its receiver is finite,

there is no bound on transfer delays). The notation “broadcast MSG_TYPE(m)” is used as a (non-atomic) shortcut for “for each j ∈ P
do send MSG_TYPE(m) to pj end for” (let us observe that pi sends then the message also to itself).

Underlying time model The underlying time model is the set N of natural integers. As we are in an asynchronous system, this time

notion is not accessible to the processes (hence, the model is sometimes called time-free model). It can only be used from an external

observer point of view to state or prove properties. Time instants are denoted τ , τ ′, etc.

Notation The previous asynchronous crash-prone message-passing system model is denoted AMP[∅]. AMP stands for “Asynchronous

Message-Passing”; ∅ means this is the “base” system (not enriched with a failure detector).

2.2 The k-Set agreement problem

As already indicated in the Introduction, the k-set agreement problem has been introduced by Soma Chaudhuri [10]. It generalizes the

consensus problem (that corresponds to k = 1). It is defined as follows. Each process proposes a value and has to decide a value in such

a way that the following properties are satisfied:

• Termination. Every correct process decides a value.

• Validity. A decided value is a proposed value.

• Agreement. At most k different values are decided.

3 Existing families of failure detectors

This section presents failure detectors that have been proposed in the quest of the weakest failure detector for k-set agreement. The

system model AMP[∅] enriched with a failure detector A is denoted AMP[A].
A failure detector provides each alive process with a read-only local variable. Let xxxi be such a variable of process pi. Let xxxτ

i

denotes the value of xxxi at time τ .

3.1 The Ωk and Ωk families

The eventual leaders failure detectors of the families Ωk and Ωk provide each process pi with a local variable denoted leadersi . They

originates from Ω [9] (Ω1 ≡ Ω1 ≡ Ω). Ωk is a straightforward generalization of Ωn−1 (introduced in [30]). Ωk has been shown to be

the weakest failure detector to solve k-set agreement in asynchronous shared memory systems with any number of process crashes in

[13].

Base properties Let us consider the following properties on the sets leadersi .

• Validity. ∀i,∀τ : leadersτ
i is a set of k process identities.

• Strong eventual leadership. ∃ LD , τ : (LD ∩ C 6= ∅) ∧ (∀τ ′ ≥ τ, ∀i ∈ C : leadersτ ′

i = LD).

• Weak eventual leadership. ∃ ℓ ∈ C, τ : (∀τ ′ ≥ τ, ∀i ∈ C : ℓ ∈ leadersτ ′

i).

Validity combined with strong eventual leadership states that, after some unknown but finite time, all correct processes have the

same set of k leaders and at least one of them is a correct process. Validity combined with weak eventual leadership requires only that

the correct processes eventually share a common correct leader.

Collection des Publications Internes de l’Irisa c©IRISA

Failure Detectors for k-Set Agreement 5

The Ωk family This family (introduced in [21]) includes the failure detectors that satisfy the validity and strong eventual leadership

properties.

The Ωk family This family (introduced in [22]) includes the failure detectors that satisfy the validity and weak eventual leadership

properties.

3.2 The Σk and Πk families

The Σk family As noticed in the Introduction, the generalized quorum failure detector Σk (introduced in [5]) is a generalization of the

quorum failure detector Σ introduced in [11] where it is shown to be the weakest failure detector to implement a register in AMP[∅].
Σk provides each process pi with a set qri (called quorum) that satisfies the following properties (after a process pi has crashed,

we have qri = P by definition). The self-inclusion property (which does not appear in [5]) is considered here because it allows for a

simpler formulation of algorithms.

• Self-inclusion. ∀ i ∈ P , ∀ τ : i ∈ qrτ
i .

• Quorum liveness. ∃ τ : ∀ i ∈ C, ∀ τ ′ ≥ τ : qrτ ′

i ⊆ C.

• Quorum intersection. ∀ id1, . . . , idx+1 ∈ P , ∀ τ1, . . . , τx+1: ∃ i, j : (i 6= j) ∧ (qrτi

idi
∩ qr

τj

idj
6= ∅).

It is shown in [5] that Σk is necessary when one wants to solve k-set agreement in AMP[∅].

The Πk family The failure detector Πk (introduced in [5]) is an extension of Σk to which it adds the following property.

• Eventual leadership. ∃ LD , τ : (|LD | = k) ∧ (∀τ ′ ≥ τ, ∀i ∈ C : qrτ ′

i ∩ LD 6= ∅).

It is shown in [5] that Πk and the pair 〈Σk,Ωk〉 are equivalent, i.e., Πk can be built in AMP[Σk,Ωk] and 〈Σk,Ωk〉 can be built

in AMP[Πk]. It is also shown in [5] that Πn−1 and L are equivalent. If follows from these observations that Π1 and Πn−1 are the

weakest failure detectors for k = 1 and k = n − 1. Unfortunately, as shown in [3, 7], Πk does not allow to solve k-set agreement for

1 < k < n − 1.

4 The family of failure detectors ΠΣx,y

4.1 Definition

The definition of ΠΣx,y is incremental, first is defined ΠΣx and then ΠΣx,y .

The failure detector ΠΣx A failure detector ΠΣx provides each process pi with a set qri and a variable leaderi which define the

current quorum and the current leader of pi. It is defined by the following properties.

• Self-inclusion. ∀ i ∈ P , ∀ τ : i ∈ qrτ
i .

• Quorum liveness. ∃ τ : ∀ i ∈ C, ∀ τ ′ ≥ τ : qrτ ′

i ⊆ C.

• Quorum intersection. ∀ id1, . . . , idx+1 ∈ P , ∀ τ1, . . . , τx+1: ∃ i, j : (i 6= j) ∧ (qrτi

idi
∩ qr

τj

idj
6= ∅).

• Eventual partial leadership. ∃ℓ ∈ C : ∀i ∈ C:
(

∀τ : ∃τi, τℓ ≥ τ : qrτi

i ∩ qrτℓ

ℓ 6= ∅
)

⇒
(

∃τ : ∀τ ′ ≥ τ : leaderτ ′

i = ℓ
)

.

The self-inclusion, liveness and intersection properties are the properties that define Σx: after some time the quorum of any correct

process contains only correct processes (liveness) and any set of x + 1 quorums contains two intersecting quorums (intersection).

Hence, ΠΣx � Σx.

Eventual partial leadership states that there is a correct process pℓ such that, for any correct process pi whose quorum qri intersects

infinitely often its quorum qrℓ (left part of the implication), then eventually pℓ is forever the leader of pi (right part of the implication).

The failure detector ΠΣx,y ΠΣx is ΠΣx,1. More generally, ΠΣx,y provides each process pi with an array FD i[1..y] such that for

each each j, 1 ≤ j ≤ y, FD i[j] is a pair containing a quorum FD i[j].qr and a process index FD i[j].leader. Let FD [j] denote the

corresponding distributed object. The failure detector ΠΣx,y consists of an array FD [1..y] that satisfies the following properties:

• Vector safety. ∀j ∈ [1..y]: FD [j].qr satisfies the liveness and intersection properties of ΠΣx.

• Vector liveness. ∃j ∈ [1..y]: FD [j] satisfies the eventual partial leadership property of ΠΣx.

Collection des Publications Internes de l’Irisa c©IRISA

6 A. Mostefaoui & M. Raynal & J. Stainer

4.2 ΠΣx,y vs 〈Σx, Ωy〉

A failure detector 〈Σx,Ωy〉 provides each process pi with two independent read-only local variables: qri that satisfies the properties

defined by Σx, and leadersi that satisfies the properties defined by Ωy .

Lemma 1. Let 1 ≤ x, y ≤ n − 1. ΠΣx,y �AMP 〈Σx,Ωy〉.

Proof Let qri be the output of Σx at process pi. For any j ∈ [1..y], let FD i[j].qr = qri. Hence, each quorum FD i[j].qr inherits from

the liveness and intersection properties of Σx and consequently the vector safety property of ΠΣx,y is satisfied.

The proof of the vector liveness property of ΠΣx,y is similar to the proof showing that vector-Ω can be built from Ωn−1 [30]. Each

process pi executes Algorithm 1 in which susp_nbi[1..n] is a local variable of pi initialized to [0, . . . , 0]. Moreover, the processes are

provided with a reliable broadcast operation denoted rel_broadcast. Such an operation ensures that, if a message is delivered by a process

(which can be correct or not), then it is delivered by all correct processes. This operation can be implemented in AMP[∅] (e.g., [8, 25]).

Each process pi repeatedly broadcasts (with rel_broadcast) its current value of leadersi (line 01). When, it is delivered LEADER(ld)

(01) repeat forever rel_broadcast LEADER(leadersi) end repeat.

(02) when LEADER(ld) is delivered:

(03) for each j /∈ ld do susp_nbi[j]← susp_nbi[j] + 1 end for;

(04) let j1, j2, . . . , jn be a permutation of {1, . . . , n} such that

(susp_nbi[j1], j1) < (susp_nbi[j2], j2) < · · · < (susp_nbi[jn], jn);

(05) for each x ∈ {1, . . . , y} do FDi[x].leader ← jx end for.

Algorithm 1: From 〈Σx,Ωy〉 to ΠΣx,y (code for pi)

a process pi first increases the suspicion number susp_nbi[j] of all j /∈ ld (line 03). It then sorts process identities according to the

lexicographical order on the pairs {(susp_nbi[j], j)}1≤j≤n (line 04). Finally, for each x ∈ [1..y], pi assigns to FD i[x].leader (line 05)

the xth process index (as defined from the previous order).

Let us observe that, due to the weak eventual leadership property of Ωy , there is a correct process pℓ that, after some finite time,

belongs permanently to all local variables leadersi . It follows from this observation and the rel_broadcast() operation that all the local

variables susp_nbi[ℓ] will stop increasing and stabilize to the very same value. As Ωy outputs sets of y processes, this is true for

m processes pℓ1, pℓ2, ..., with 1 ≤ m ≤ y. It then follows from line 05 that, for all the processes pi and for each z ∈ [1..m], the

local variables FD i[z].leader stabilizes to the very same process index and there is one entry j such that we eventually have forever

FD i[j].leader = ℓ such that pℓ is a correct process. As, when considering the distributed object FD [j], all processes have the same

correct leader pℓ, the eventual partial leadership property of ΠΣx is satisfied (more precisely, whatever the value of the left part of the

implication, the right part of the implication is satisfied). Consequently the vector liveness property of ΠΣx,y is also satisfied, which

concludes the proof of the lemma. ✷Lemma 1

Theorem 1. Let 1 ≤ y ≤ n − 1. ΠΣ1,y ≃AMP 〈Σ1,Ωy〉.

Proof Taking x = 1 in Lemma 1 we have ΠΣ1,y �AMP 〈Σ1,Ωy〉. Hence, we have only to show that 〈Σ1,Ωy〉 �AMP ΠΣ1,y .

Let qri of Σ1 be the output of FD i[1].qr. Hence, the quorums qri inherit the liveness and intersection properties of FD i[1].qr that

trivially satisfy the properties defining Σ1.

Let leadersi be any subset of size y that contains ∪1≤j≤y{FD i[j].leader}. Due to the vector liveness property of ΠΣ1,y , there is

an entry j such that FD [j] satisfies the eventual partial leadership (Observation O1). Moreover, as x = 1, any pair of quorums output

by FD [j] do intersect (Observation O2). It follows from O1 and O2 that there is a correct process pℓ such that, for each correct process

pi, there is a time after which the predicate FD i[j].leader = ℓ remains forever true. Consequently, there is a finite time after which the

predicate ℓ ∈ leadersi remains forever true at any correct process pi, from which follows the weak eventual leadership property of Ωy .

✷Theorem 1

Theorem 2. Let 1 ≤ x ≤ n − 1. ΠΣx,n−1 ≃AMP Σx.

Proof Taking y = n − 1 in Lemma 1 we have ΠΣx,n−1 �AMP 〈Σx,Ωn−1〉. Hence, we have only to show that 〈Σx,Ωn−1〉 �AMP

ΠΣx,n−1.

It is shown in [5] (Corollary 2 in [5]) that Σx �AMP Σx+1 �AMP · · · �AMP Σn−1 �AMP Ωn−1. Moreover, it follows directly

from their definitions that Ωn−1 �AMP Ωn−1. It follows that Σx �AMP 〈Σx,Ωn−1〉 which completes the proof of the theorem.

✷Theorem 2

Lemma 2. Let 1 ≤ y < n. ΠΣy+1,1 6�AMP Ωy .

Collection des Publications Internes de l’Irisa c©IRISA

Failure Detectors for k-Set Agreement 7

The proof of this lemma is given in Appendix A.

Theorem 3. Let 1 < y < x < n. ΠΣx,y ≺AMP 〈Σx,Ωy〉.

Proof ΠΣx,y �AMP 〈Σx,Ωy〉 follows from Lemma 1. Hence, we have to show that ΠΣx,y 6�AMP 〈Σx,Ωy〉. Let us first observe

that ΠΣy+1,1 �AMP ΠΣy+1,y . This is easily obtained by providing each FD [j] of the array FD [1..y] of ΠΣy+1,y with the outputs

supplied by ΠΣy+1,1. On an other side, (as shown in [5]) Σz is strictly stronger than Σz+1 for 1 ≤ z < n − 1 and, consequently,

ΠΣy+1,y �AMP ΠΣx,y for y < x. It follows from Lemma 2 (i.e., ΠΣy+1,1 6�AMP Ωy) that, as ΠΣy+1,1 is stronger than ΠΣx,y , we

have ΠΣx,y 6�AMP Ωy which proves the theorem. ✷Theorem 3

Remark A main difference between ΠΣx,y and 〈Σx,Ωy〉 lies in the fact that the eventual correct leader elected by Ωy has to be the

same for all correct processes, while ΠΣx,y requires only that the correct processes of a subset (dynamically defined by one of the y
Σx failure detectors) agree on a common leader. Hence, the scope of the leadership provided by ΠΣx,y is not required to be the whole

system but only a subset of it.

5 Solving k-Set agreement in AMP [ΠΣx,y]

This paper presents an algorithm that solves the k-set agreement problem in AMP[ΠΣx,y]. This algorithm is similar to the one

presented in [7] which in turn is an adaptation of the algorithms described in [14, 28].

5.1 The Alphax abstraction

This abstraction has been introduced in [14] to capture the safety property of consensus and generalized in [28] to capture the safety prop-

erty of k-set agreement in crash-prone systems. Corresponding implementations in read/write shared memory systems and send/receive

message-passing systems can be found in [14, 28].

Let ⊥ be a default value that cannot be proposed by processes. Alphax is an object initialized to ⊥ that may store up to x different

values proposed by processes. It is an abstraction (object) that provides processes with a single operation denoted propose(r, v) (where

r is a round number and v a proposed value) that returns a value to the invoking process. The round number plays the role of a logical

time that allows identifying the propose() invocations. It is assumed that distinct processes use different round numbers and successive

invocations by the same process use increasing sequence numbers. Alphax is a kind of abortable object in the sense that propose()
invocations are allowed to return the default value ⊥ (i.e., abort) in specific concurrency-related circumstances (as defined from the

obligation property, see below). More precisely, the Alphax objects used in this paper are defined by the following specification in

which the obligation property takes explicitly into account the fact that we are interested into an Alphax object that will be implemented

on top of AMP[Σx] (which is a strictly stronger underlying model than AMP[∅]).

• Termination. Any invocation of propose() by a correct process terminates.

• Validity. If propose(r, v) returns v′ 6= ⊥, then propose(r′, v′) has been invoked with r′ ≤ r.

• Quasi-agreement. At most k different non-⊥ values can be returned by propose() invocations.

• Obligation. pℓ being a correct process let Q(ℓ, τ) = {i ∈ C | ∀ τi, τℓ ≥ τ : qrτi

i ∩ qrτℓ

ℓ = ∅}. If, after time τ , (a) only pℓ

and processes of Q(ℓ, τ) invoke propose() and (b) pℓ invokes propose() infinitely often, then at least one invocation issued by pℓ

returns a non-⊥ value.

Differently from the obligation property stated in [7, 14, 28] the previous obligation property is Σx-aware which allows for a weaker

property (the Alphax object used in [7] is implemented on top of AMP[Σx] but its specification is not Σx-aware). More precisely, our

obligation property allows concurrent invocations of propose() to return non-⊥ values as soon as the quorums of the invoking processes

do not intersect during these invocations.

An algorithm implementing the previous Alphax object in AMP[Σx] is described in Appendix B.

5.2 k-set agreement in AMP [ΠΣx,y]

This section presents a simple algorithm that implements k-set agreement in AMP[ΠΣx,y] for k ≥ xy. It is as the algorithm presented

in [7]: it uses a base algorithm (similar to the one introduced in [14]) that solves x-set agreement in AMP[ΠΣx,1] and then assuming

k ≥ xy (as in [1, 7]) it uses y instances of this base to solve k-set agreement in AMP[ΠΣx,y].

Collection des Publications Internes de l’Irisa c©IRISA

8 A. Mostefaoui & M. Raynal & J. Stainer

x-Set agreement in AMP[ΠΣx,1] Algorithm 2 solves x-set agreement in AMP[ΠΣx,1]. A process pi invokes ks_proposex,1 (vi)
where vi is the value it proposes. It decides a value d when it executes the statement return (d) which terminates its invocation. The

local variable ri is the local round number (as it is easy to see, each process uses increasing round numbers and no two distinct processes

use the same round numbers).

A process loops until it decides. If during a loop iteration pi is such that leaderi = i (leaderi is one of the two local outputs provided

by ΠΣx,1), pi invokes the Alphax object to try to deposit its value vi into it (the success depends on the concurrency and quorums

pattern). If a non-⊥ value is returned by this invocation, pi broadcasts it (with the reliable broadcast operation). A process decides as

soon as it is delivered a DECISION() message.

operation ks_proposex,1 (vi):

(01) deci ← ⊥; ri ← i;
(02) while (deci = ⊥) do

(03) if (leaderi = i) then Alphax.propose(ri, vi); ri ← ri + n end if

(04) end while;

(05) rel_broadcast DECISION(deci).

when DECISION(d) is delivered: return (d).

Algorithm 2: x-Set agreement in AMP[ΠΣx,1] (code for pi)

Theorem 4. Algorithm 2 solves the x-set agreement in AMP[ΠΣx,1].

The proof of this theorem is given in Appendix C.

k-Set agreement in AMP[ΠΣx,y] As in [1, 7], a simple k-set algorithm can be obtained by launching concurrently y instances of

Algorithm 2, the jth one relying on the component FD[j] of the failure detector AMP[ΠΣx,y]. A process decides the value returned

by the first of the y instances that locally terminates. As there are y instances of Algorithm 2 and at most x values can be decided in

each of them, it follows that at most xy different values can be decided. Moreover, as at least one FD[j] is a ΠΣx,y failure detector, it

follows that the correct processes decide (if not done before) in at least one of the y instances of Algorithm 2. Let us observe that, in

such a “worst” case where the processes decide in the same instance, at most x values are decided).

6 Ωk is not necessary for k-set agreement when 1 < k < n − 1

Lemma 3. Let 1 < k < n − 1. Ωk cannot be built in AMP[ΠΣk,1].

Proof Preliminaries. Let us first observe that (1 < k < n − 1) ⇔ (n ≥ k + 2 ≥ 4). The proof is by contradiction. It consists in

building distinct runs that are indistinguishable for some processes. The impossibility will follow from the fact that, while each of these

runs is provided with correct outputs from ΠΣk,1, there are runs in which Ωk has to provide each process with a set containing infinitely

often k + 1 process identities.

Hence, let us assume that there is an algorithm A that builds Ωk in AMP[ΠΣx,1]. Let us remember that leadersi denotes the output

of Ωk while qri and ldi (instead of leaderi to prevent confusion) are the output provided to pi by ΠΣx,1.

The runs considered in the proof are such that the processes p1, p2 and p3 on one side and the processes pi with i ∈ [4..k + 2] on

another side play special roles. Moreover, (if it exists) each process pj with j ∈ [k + 3..n] is initially crashed in all runs.

The “α” runs. For all i ∈ [4..k + 2], let αi be a run in which all processes but pi have initially crashed and pi does not crash. Hence,

∀ τ , qrτ
i = {i} and ldτ

i = i are correct outputs of ΠΣx,1 in the run αi. As pi is the only correct process in αi, it follows from the very

existence of algorithm A that there is a time τi such that ∀τ ≥ τi: i ∈ leadersτ
i .

Let α[1..3] be a run in which p1, p2 and p3 do not crash and all other processes have initially crashed. For each i ∈ [1..3] and any

time τ , qrτ
i = {1, 2, 3} and ldτ

i = leadα (where leadα ∈ {1, 2, 3}) are correct outputs of ΠΣx,1 in the run α[1..3]. Due to the existence

of A, there is a correct process pℓα (with ℓα ∈ [1..3]) and a time τ[1..3] such that ∀τ ≥ τ[1..3], ∀ i ∈ {1, 2, 3}, ℓα ∈ leadersτ
i .

Let τα = max({τi}i∈[4..k+2], τ[1..3]) and α be a run in which (1) all processes pi such that i > k + 2 have initially crashed, (2) the

other processes are correct, (3) all messages but the ones exchanged by p1, p2 and p3 are delayed until τα, and (4), up to τα, the outputs

of ΠΣx,1 are the same in α and α[1..3] for p1, p2 and p3 and the same in α and αi for pi with i ∈ [4..k + 2] (the important point to

observe here is that, due to the fact that the processes pj with k + 2 < j ≤ n have initially crashed, the intersection property of ΠΣx,1

is satisfied). Considering the runs previously defined, we have the following:

• For any i ∈ [4..k + 2], pi cannot distinguish α and αi up to time τα.

• Each of p1, p2 and p3 cannot distinguish α and α[1..3] up to time τα.

Collection des Publications Internes de l’Irisa c©IRISA

Failure Detectors for k-Set Agreement 9

It follows that, considering the outputs of algorithm A in run α, we have ℓα ∈ leaders
τα

i for i ∈ {1, 2, 3} and i ∈ leaders
τα

i for

i ∈ [4..k + 2].

The “β” runs. Let τf
α be a time in run α after which all messages sent before τα have been received. Moreover, for each i ∈ [4..k + 2],

let βi be a run in which all processes take the same steps as in run α until τf
α and then all processes but pi crash. Let us observe that, in

the run βi, correct outputs of ΠΣx,1 at pi can still be ∀τ : qrτ
i = {i} and ldτ

i = i.
Let β[1..3]\{ℓα} be the same run as α until τf

α and where all processes but pi such that i ∈ [1..3] \ {ℓα} crash just after τf
α . In

β[1..3]\{ℓα}, ∀τ ≥ τf
α , qrτ

i = [1..3] \ {ℓα} and ldτ
i = leadβ (with leadβ ∈ [1..3] \ {ℓα}) are correct outputs of ΠΣx,1 at each process

pi such that i ∈ [1..3] \ {ℓα}.

Due to the existence of A, there is a finite time τβ such that (a) in the run β[1..3]\{ℓα}, there is ℓβ such that ℓβ ∈ [1..3] \ {ℓα} and

ℓβ ∈ leadersj for each j ∈ [1..3] \ {ℓα} (let us remember that pℓα has crashed just after τf
α) and (b) due to the very definition of each

run βi for i ∈ [4..k + 2], we have i ∈ leaders
τβ

i in run βi.

Let β be a run that is the same as run α until time τf
α and where the messages sent after τf

α (1) by or to the processes pi where

i ∈ [4..k + 2] and (2) by pℓα are delayed until after τβ (this means that each process pi where i ∈ [1..3] \ {ℓα} cannot distinguish if pℓα

is alive or crashed; differently, as it receives their messages pℓα does not suspect these two processes).

In the run β, let the outputs of ΠΣx,1 be the same as in the run α until time τf
α , and then forever be (1) the same as in β[1..3]\{ℓα}

for pi with i ∈ [1..3] \ {ℓα}, (2) the same as in βi for pi with i ∈ [4..k + 2], and (3) qrℓα = {1, 2, 3} and ldℓα = leadβ for pℓα (as

before, the important point to observe here is that, due to the fact that the processes pj with k + 2 < j ≤ n have initially crashed, the

intersection property of ΠΣx,1 is satisfied). Considering the runs previously defined, we have the following:

• For any i ∈ [4..k + 2], pi cannot distinguish β and βi.

• For each i ∈ [1..3] \ {ℓα}, pi cannot distinguish β and β[1..3]\{ℓα}.

It follows that, considering the outputs of algorithm A in the run β, we have ℓβ ∈ leaders
τβ

i for i ∈ [1..3] \ {ℓα} and i ∈ leaders
τβ

i for

i ∈ [4..k + 2].

The “γ” runs. Let τf
β be a time in the run β after which all the messages sent before τβ have been received. In a similar way to the

one used to build the run β from the run α, it is possible to build a run γ from the run β in which, for each i ∈ [1..3] \ {ℓβ} there is

ℓγ ∈ [1..3] \ {ℓβ} such that we eventually have forever ℓγ ∈ leadersi .

This construction can be repeated to obtain an infinite run in which at least k+1 process identities (namely, the identities 4, . . . , k+2,

and at least two among the identities {1, 2, 3}) are infinitely often in the set variables leadersi which contradicts the strong eventual

leadership property of Ωk while the outputs produced by ΠΣx,1 at each process pi satisfy the specification of ΠΣx,1 (in particular, the

intersection property of ΠΣx,1 are satisfied in all the runs that have been built). ✷Lemma 3

Theorem 5. Let 1 < k < n − 1. Ωk is not necessary for solving k-set agreement in AMP[∅].

Proof The theorem follows directly from Lemma 3 and the fact that k-set agreement can be solved in AMP[ΠΣk,1]. ✷Theorem 5

Let X(k) denote the (still unknown) weakest failure detector such that k-set agreement can be solved in AMP[X(k)]. The following

corollary shows that, when 1 < k < n − 1, Ωk is neither necessary nor sufficient for solving the k-set agreement problem.

Corollary 1. Let 1 < k < n − 1. Ωk 6≃AMP X(k).

Proof The proof is by contradiction. Let us first assume that Ωk �AMP X(k). It that case k-set agreement can be solved from Ωk.

But it is impossible to solve k-set agreement in AMP[〈Σk,Ωk〉] [3].

Let us now assume that X(k) �AMP Ωk. Due to the definition of X(k), we have ΠΣk,1 �AMP X(k), hence ΠΣk,1 �AMP Ωk

(by transitivity). But, for 1 < k < n − 1, this is contradicted by Lemma 3 which has shown that ΠΣk,1 6�AMP Ωk. It follows that Ωk

and X(k) cannot be compared. ✷Corollary 1

7 Conclusion

As indicated in the abstract, this paper is a new step in the quest for discovering the weakest failure detector for k-set agreement in

asynchronous message-passing systems prone to any number of process failures. It has presented a new failure detector denoted ΠΣx,y

which enjoys many noteworthy features and an associated algorithm that solves k-set agreement for k ≥ xy. It has also shown that the

weakest failure detector (that still remains to be discovered) and Ωk (a well-studied failure detector) cannot be compared.

More generally, an important issue that remains to be solved lies in capturing the “weakest” type of shared memory that has to be

emulated for solving k-set agreement in asynchronous message-passing systems.

Collection des Publications Internes de l’Irisa c©IRISA

10 A. Mostefaoui & M. Raynal & J. Stainer

Acknowledgments

The authors want to thank Martin Biely, Peter Robinson and Ulrich Schmid for interesting discussions on failure detectors suited to the

k-set agreement problem in asynchronous message-passing systems.

References
[1] Afek Y., Gafni E., Rajsbaum S., Raynal M. and Travers C., The k-Simultaneous Consensus Problem. Distributed Computing, 22:185-195, 2010.

[2] Attiya H. and Welch J., Distributed Computing: Fundamentals, Simulations and Advanced Topics, (2d Edition), Wiley-Interscience, 414 pages,

2004.

[3] Biely M., Robinson P. and Schmid U., Easy Impossibility Proofs for k-Set Agreement in Message-passing Systems. Brief Announcement, Proc.

30th ACM Symposium on Principles of Distributed Computing (PODC’11), ACM Press, 2010.

[4] Bonnet F. and Raynal M., A Simple Proof of the Necessity of the Failure Detector Σ to Implement an Atomic Register in Asynchronous Message-

passing Systems. Information Processing Letters, 110(4):153-157, 2010.

[5] Bonnet F. and Raynal M., On the Road to the Weakest Failure Detector for k-Set Agreement in Message-passing Systems. To appear in Theoret-

ical Computer Science, 2011.

[6] Borowsky E. and Gafni E., Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations. Proc. 25th ACM Symposium on

Theory of Computation (STOC’93), San Diego (CA), pp. 91-100, 1993.

[7] Bouzid Z. and Travers C., (Anti-Ωk×Σk)-Based k-Set Agreement Algorithms. Proc. 12th Int’l Conference on Principles of Distributed Systems

(OPODIS’10), Springer Verlag LNCS #6490, pp. 190-205, 2010.

[8] Chandra T. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the ACM, 43(2):225-267, 1996.

[9] Chandra T., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving Consensus. Journal of the ACM, 43(4):685–722, 1996.

[10] Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally Asynchronous Systems. Information and Computation,

105:132-158, 1993.

[11] Delporte-Gallet C., Fauconnier H. and Guerraoui R., Tight Failure Detection Bounds on Atomic Object Implementations. Journal of the ACM,

57(4):Article 22, 2010.

[12] Delporte-Gallet C., Fauconnier H., Guerraoui R. and Tielmann A., The Weakest Failure Detector for Message Passing Set-Agreement. Proc. 22th

Int’l Symposium on Distributed Computing (DISC’08), Springer-Verlag LNCS #5218, pp. 109-120, 2008.

[13] Gafni E. and Kuznetzov P., The Weakest Failure Detector for Solving k-Set Agreement. Proc. 28th ACM Symposium on Principles of Distributed

Computing (PODC’09), ACM Press, pp. 83-91, 2009.

[14] Guerraoui R. and Raynal M., The Alpha of Indulgent Consensus. The Computer Journal, 50(1):53-67, 2007.

[15] Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Computability. Journal of the ACM, 46(6):858-923„ 1999.

[16] Lo W.-K. and Hadzilacos V., Using Failure Detectors to Solve Consensus in Asynchronous Shared-memory Systems. Proc. 8th Int’l Workshop

on Distributed Algorithms (WDAG’94, now DISC), Springer-Verlag LNCS #857, pp. 280-295, 1994.

[17] Lynch N.A., Distributed Algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996.

[18] Mostéfaoui A. and Raynal M., k-Set Agreement with Limited Accuracy Failure Detectors. Proc. 19th ACM Symposium on Principles of Dis-

tributed Computing (PODC’00), ACM Press, pp. 143-152, 2000.

[19] Mostéfaoui A. and Raynal M., Randomized Set Agreement. Proc. 13th ACM Symposium on Parallel Algorithms and Architectures (SPAA’01),

ACM Press, pp. 291-297, 2001.

[20] Mostéfaoui A., Raynal M. and Stainer J., Relations Linking Failure Detectors Associated with k-Set Agreement in Message-passing Systems.

Tech Report #1973, 13 pages, IRISA, Université de Rennes (France), April 2011. Submitted to publication.

[21] Neiger G., Failure Detectors and the Wait-free Hierarchy. 14th ACM Symposium on Principles of Distributed Computing (PODC’95), ACM

Press, pp. 100-109, Las Vegas -NV), 1995.

[22] Raynal M., K-anti-Omega. Rump Session at 26th ACM Symposium on Principles of Distributed Computing (PODC’07), 2007.

[23] Raynal M., Set agreement. Encyclopedia of Algorithms, Springer-Verlag, pp. 829-831, 2008 (ISBN 978-0- 387-30770-1).

[24] Raynal M., Failure Detectors for Asynchronous Distributed Systems: an Introduction. Wiley Encyclopedia of Computer Science and Engineering,

Vol. 2, pp. 1181-1191, 2009 (ISBN 978-0-471-38393-2).

[25] Raynal M., Communication and Agreement Abstractions for Fault-Tolerant Asynchronous Distributed Systems. Morgan & Claypool Publishers,

251 pages, 2010 (ISBN 978-1-60845-293-4).

[26] Raynal M., Fault-Tolerant Agreement in Synchronous Message-Passing Systems. Morgan & Claypool Publishers, 165 pages, 2010 (ISBN 978-

1-60845-525-6).

[27] Raynal M., Failure Detectors to solve Asynchronous k-set Agreement: a Glimpse of Recent Results. The Bulletin of EATCS, 103:75-95, 2011.

[28] Raynal M. and Travers C., In Search of the Holy Grail: Looking for the Weakest Failure Detector for Wait-free Set Agreement. Proc. 10th Int’l

Conference On Principles Of Distributed Systems (OPODIS’06), Springer-Verlag LNCS #4305, pp. 1-17, 2006.

[29] Saks M. and Zaharoglou F., Wait-Free k-Set Agreement is Impossible: The Topology of Public Knowledge. SIAM Journal on Computing,

29(5):1449-1483, 2000.

[30] Zielinski P., Anti-Omega: the Weakest Failure Detector for Set Agreement. Proc. 27th ACM Symposium on Principles of Distributed Computing

(PODC’08), ACM Press, pp. 55-64, Toronto (Canada), 2008.

Collection des Publications Internes de l’Irisa c©IRISA

Failure Detectors for k-Set Agreement 11

A Proof of Lemma 2

Lemma 2 Let 1 ≤ y < n. ΠΣy+1,1 6�AMP Ωy .

Proof Supposing that there exists an algorithm Ay that builds Ωy in AMP[ΠΣy+1,1] we show a contradiction, namely, there is an

infinite run of Ay in which it is impossible to provide a valid output for Ωy .

Let R be the set of the infinite runs of Ay such that :

• all the processes pi with i > y + 1 have initially crashed,

• the outputs of ΠΣy+1,1 at each pi, i ≤ y + 1, are such that we always have qri = {i} and leaderi = i.

We show the following claim by induction on the number m of alive processes at time τ in a run of R.

Claim C(m). For each run r of R in which, at time τ , the only processes alive are pi, 1 ≤ i ≤ m, there is a run r′ ∈ R, similar to r
until τ , in which ∃τ ′ ≥ τ,∃i0 ∈ {1, . . . ,m} : leadersτ ′

i0
⊇ {1, . . . ,m}.

Base case. Let r be a run of R in which p1 is the only alive process at τ . The weak eventual leadership property of Ωy ensures that there

is a time τ ′ after which leaders1 ∋ 1, consequently, C(1) is verified.

Induction step. Assuming that C(m) is true for an m ≥ 1, we show that it entails C(m + 1). Let r ∈ R be a run in which, at τ , the only

alive processes are pi, 1 ≤ i ≤ m + 1. Let r′ be a run of R similar to r until τ in which p1 crashes after τ . According to the induction

hypothesis (applied on renamed processes), there is a run r′1 of R similar to r′ until τ in which there is i1 ∈ {2, . . . ,m + 1} and τ1 ≥ τ
such that leadersτ1

i1
⊇ {2, . . . ,m + 1}.

Let now r1 be a run of R, similar to r until τ , in which messages from p1 are delayed until τ1. r′1 and r1 are indistinguishable for

processes pi, i ∈ {2, . . . ,m + 1}. Hence, in r1, we also have leadersτ1

i1
⊇ {2, . . . ,m + 1}.

Repeating the same construction, we can now define a run r2 similar to r1 until τ1, in which there exist τ2 ≥ τ1 and i2 ∈ {1, . . . ,m+
1} \ {2} such that leadersτ2

i2
⊇ {1, . . . ,m + 1} \ {2}.

We iterate the process, by delaying the messages from each process, one after the other. Thus, we obtain an infinite run of R in

which, for all processes pj , j ∈ {1, . . . ,m + 1}, there is infinitely often a process pi that verifies leadersi ⊇ {1, . . . ,m + 1} \ {j}.

Consequently, if in this run no process ever verifies leaders ⊇ {1, . . . ,m + 1}, then every process disappears infinitely often from a set

leaders. That contradicts the weak eventual leadership property of Ωy which ends the induction step.

Contradiction. By induction, the claim C(m) is true for all m ∈ {1, . . . , y + 1}. But C(y + 1) entails that, there is a run of R in which

a process verifies leaders ⊇ {1, . . . , y + 1}. That contradicts the validity property of Ωy and proves the lemma.

✷Lemma 2

Another look at that proof could be the following : (1) ΠΣy+1,1 provides no information on failures in the runs of R, (2) Ay

simulates Ωy in a wait-free manner among y + 1 processes in the runs of R. The contradiction then comes from the non-triviality of Ωy

in a system of y + 1 processes.

B Implementation of Alphax in AMP [Σx]

This appendix presents an implementation of an Alphax object on top of AMP[Σx]. This implementation is obtained from a modifica-

tion of the algorithm proposed in [7] which is first described.

B.1 The Alphax object used by Bouzid and Travers [7]

The obligation property used in [7] The Alphax object used in [7] has the same specification as the one defined in Section 5.1 (which

is close to the one defined in [14, 28]) but for the obligation property which (similarly to [14]) is defined as follows.

• Obligation. Let I = propose(r,−) be a terminating invocation. If every invocation I ′ = propose(r′,−) that starts before I
returns is such that r′ < r, then I returns a non-⊥ value.

It is easy to see that this specification is not Σx-aware. In presence of concurrent invocations, it directs at most one process to decide a

non-⊥ value, namely, the one with the highest round number. The current outputs of Σx are irrelevant in this statement.

Principles: establish a priority on values Each process pi manages a local variable esti (initialized to ⊥) that represents its current

estimate v of the value it will decide and a pair (lrei, posi) that defines the priority associated with v from pi’s point of view (the aim is

to decide values with the highest priority); lrei = r means that r is the highest round seen by pi and posi = ρ ∈ [1..2r] is the position

of v in round r. The pairs 〈r, ρ〉 are used to establish a priority on proposed values. The function g(ρ, δ) = 2δ(ρ − 1) + 1 (where δ is a

difference between two round numbers) is used to compute the priority of a value in the following rounds. More precisely, let (r, ρ) and

Collection des Publications Internes de l’Irisa c©IRISA

12 A. Mostefaoui & M. Raynal & J. Stainer

(r′, ρ′) (such that r ≤ r′) be the pairs associated with the values v and v′, respectively. Value v has lower priority than value v′ at round

r′ iff g(ρ, r′ − r) < ρ′ or (g(ρ, r′ − r) = ρ′) ∧ (v < v′).
Our description of Bouzid-Travers’s algorithm (algorithm 3) is schematic. The reader will refer to [7] for more detailed presentation

and a proof. The implementation of the operation propose() is made up of two sequential phases: a read phase followed by write phase.

init lrei ← 0; esti ← ⊥; posi ← 0.

operation propose(r, vi):

(01) broadcast REQ_R(r);

(02) repeat Qi ← qri

(03) until (∀j ∈ Qi : RSP_R(r, 〈lrej , posj , estj〉) received from pj) end repeat;

(04) let rcvi = { 〈lrej , posj , estj〉 : RSP_R(r, 〈lrej , posj , estj〉) received };
(05) if (∃lre : 〈lre,−,−〉 ∈ rcvi : lre > lrei) then return(⊥) end if;

(06) posi ← max{pos | 〈r, pos, v〉 ∈ rcvi}; esti ← max{v | 〈r, posi, v〉 ∈ rcvi};
(07) if (esti = ⊥) then esti ← vi end if;

(08) while(posi < 2r) do

(09) posi ← posi + 1; psti ← posi; % this line is executed atomically %

(10) broadcast REQ_W(r, psti, esti);

(11) repeat Qi ← qri

(12) until (∀j ∈ Qi : RSP_W(r, psti, 〈lrej , posj , estj〉) received from pj) end repeat;

(13) let rcvi = {〈lrej , posj , estj〉 : RSP_W(r, psti, 〈lrej , posj , estj〉) received};
(14) if (∃lre : 〈lre,−,−〉 ∈ rcvi : lre > r) then return(⊥) end if;

(15) posi ← max{pos | 〈r, pos, v〉 ∈ rcvi}; esti ← max{v | 〈r, posi, v〉 ∈ rcvi}
(16) end while;

(17) return(esti).

when REQ_R(rd) received from pj :

(18) if rd > lrei then posi ← g(posi, rd− lrei); lrei ← rd end if;

(19) send RSP_R(rd, 〈lrei, posi, esti〉) to pj .

when REQ_W(rd, pos, est) received from pj :

(20) if rd ≥ lrei then posi ← g(posi, rd− lrei); lrei ← rd
(21) case posj > posi then esti ← est; posi ← pos
(22) posj = posi then esti ← max{vi, est}
(23) posj < posi then nop

(24) end case

(25) end if;

(26) send RSP_W(rd, pos, 〈lrei, posi, esti〉) to pj .

Algorithm 3: Alphak in AMP[Σk]: Bouzid-Travers’s implementation [7]

Succinct description of the algorithm: the read phase When it invokes propose(r, v), a process pi first broadcasts a read-request

message (line 01) to (a) obtain information on values proposed in previous rounds (if any) and (b) learn if other processes have started

higher rounds.

When a process pj receives such a message REQ_R(rd) (where rd is a round number) it redefines its pair (lrej , posj) if rd > lrej

(line 18) (the new position posj of estj is re-computed according to the values of rd and lrej). In all cases, pj sends back an answer to

pi carrying its current value estj and the associated pair 〈lrej , posj〉 (line 19).

Then, when it has received a response from each process in its current quorum qri as supplied by Σx (lines 02-03), pi returns ⊥ if

it has received an answer indicating that another process has started a round higher than lrei (lines 04-05). Otherwise, lrei = r is the

greatest round number known by pi. In that case, pi update posi to the greatest position associated with round r it has seen and adopts

the corresponding value v as its current estimate esti (line 06). Moreover, if v = ⊥, pi adopts vi into esti, namely, the value it proposes

to the Alphax object (line 07).

Succinct description of the algorithm: the write phase Process pi enters then a loop that it will exit either by returning ⊥ (line 14)

or its current estimate value (line 17). The maximum number of times that this loop can be executed depends on the round number r
and the current position value posi (line 08). The part of the loop body defined by lines 10-15 is the same as lines 01-06. The difference

is that, instead of obtaining information on the current state, pi cooperate with the processes of its current quorum qri in order to try to

increase the priority of its current esti. Hence instead of a read-request, pi broadcasts write-request messages.

Each time a process pj receives such a message that carries a triplet 〈rd, pos, val〉 it updates its current state in order this local state

contains the value with the highest priority (and the associated control data). Operationally, if rd ≥ lrej , pj first updates posj and lrej

(line 20) exactly as it did at line 18 when it received a read-request message. Then, according to the value of posj and pos (lines 21-24),

pj updates estj and posj if pos > posj or updates only estj if posj = pos. In all cases, pj sends back a response carrying its local state

to the process that sent the write-request.

Collection des Publications Internes de l’Irisa c©IRISA

Failure Detectors for k-Set Agreement 13

As already indicated, a proof that this algorithm implements an Alphax object that satisfies the round-based obligation property

stated at the beginning of this section is given in [7].

B.2 An implementation of Alphax as defined in Section 5.1

Algorithm 4 describes an implementation of the Σx-aware specification of Alphax defined in Section 5.1. This algorithm is an appro-

priate improvement of Algorithm 3.

To make the presentation easier, the line numbers are the same in both algorithms. The lines that are new or modified are prefixed

by the letter N. These modifications concern message filtering. This filtering is used to prevent a process pi from sending read or write-

requests to the processes pj such that pi does not need information from pj to complete its current invocation of propose(). Hence, such

a process pj cannot direct pi to return ⊥ while it could return a non-⊥ value (and additionally the values not sent by pi cannot force

other processes to return ⊥).

Modification of the read phase A process pi records in r_req_seti the set of processes to which it has already sent a REQ_R(r)
message (lines N01 and N02-2) and sends read-request messages REQ_R(r) only to the processes pj that belong to its quorum qri (line

N02-1).

Then, when it stops waiting for response messages, it considers only the responses sent by the processes of its last quorum plus its

own response (line N04).

Modification of the write phase The message exchange pattern of that phase is modified similarly to what has been done for the read

phase (lines N10, N12-1, N12-2 and N13).

init lrei ← 0; esti ← ⊥; posi ← 0.

operation propose(r, vi):

(N01) r_req_seti ← ∅;
(02) repeat Qi ← qri;

(N02-1) for each j ∈ Qi \ r_req_seti do send REQ_R(r) to pj end for;

(N02-2) r_req_seti ← r_req_seti ∪Qi

(03) until (∀j ∈ Qi : RSP_R(r, 〈lrej , posj , valj〉) received from pj) end repeat;

(N04) let rcvi = { 〈lrej , posj , estj〉 : RSP_R(r, 〈lrej , posj , estj〉) received from Qi };
(05) if (∃lre : 〈lre,−,−〉 ∈ rcvi : lre > lrei) then return(⊥) end if;

(06) posi ← max{pos | 〈r, pos, v〉 ∈ rcvi}; esti ← max{v | 〈r, posi, v〉 ∈ rcvi};
(07) if (esti = ⊥) then esti ← vi end if;

(08) while (posi < 2r) do

(09) posi ← posi + 1; psti ← posi; % this line is executed atomically %

(N10) w_req_seti ← ∅;
(11) repeat Qi ← qri;

(N12-1) for each j ∈ Qi \ w_req_seti do send REQ_W(r, psti, esti) to pj end for;

(N12-2) w_req_seti ← w_req_seti ∪Qi

(12) until (∀j ∈ Qi : RSP_W(r, psti, 〈lrej , posj , valj〉) received from pj) end repeat;

(N13) rcvi ← {〈lrej , posj , estj〉 : RSP_W(r, psti, 〈lrej , posj , estj〉) received from Qi };
(14) if (∃lre : 〈lre,−,−〉 ∈ rcvi : lre > r) then return(⊥) end if;

(15) posi ← max{pos | 〈r, pos, v〉 ∈ rcvi}; esti ← max{v | 〈r, posi, v〉 ∈ rcvi}
(16) end while;

(17) return(esti).

when REQ_R(rd) received from pj :

(18) if rd > lrei then posi ← g(posi, rd− lrei); lrei ← rd end if;

(19) send RSP_R(rd, 〈lrei, posi, esti〉) to pj .

when REQ_W(rd, pos, est) received from pj :

(20) if rd ≥ lrei then posi ← g(posi, rd− lrei); lrei ← rd
(21) case posj > posi then esti ← est; posi ← pos
(22) posj = posi then esti ← max{vi, est}
(23) posj < posi then nop

(24) end case

(25) end if;

(26) send RSP_W(rd, pos, 〈lrei, posi, esti〉) to pj .

Algorithm 4: Alphak in AMP[Σk] as defined in Section 5.1

Theorem 6. Algorithm 4 implements an Alphax object as defined in Section 5.1.

Collection des Publications Internes de l’Irisa c©IRISA

14 A. Mostefaoui & M. Raynal & J. Stainer

Proof It is easy to see that the lines that are new or modified do not add spurious values, hence the proof of the validity property is the

same as the one given in [7].

The same holds for the quasi-agreement property. This follows from the observation that, as the channels are asynchronous, the

messages that are sent in Algorithm 3 and not sent in Algorithm 4 can be received too late in Algorithm 3, namely, after the processes

have invoked the return() statement and decided. The quasi-agreement property follows from this observation and the proof given in [7].

As far as the termination property is concerned, let us first observe that, due to line 09, a process will exit the while loop (lines

08-16) if it does not loop forever in the repeat loop of lines 11-12. Hence, the proof of the termination property consists in showing that

no correct process loops forever in the repeat loop of lines 02-03 or the repeat loop of lines 11-12.

Let us first consider the repeat loop of lines 02-03 and assume that a correct process pi loops forever. It follows from the liveness

property of Σx that there is a time τ after which qri contains only correct processes. Hence, due to lines 02-03 and the fact that the

number of processes is finite, it follows that there is a time τ ′ ≥ τ after which pi has sent a read-request message REQ_R(r) to each

correct process that belongs to qri (whatever the value of qri). As each correct process sends by return a matching response message

RESP_R(r,−), it follows that pi eventually receives from each process in Qi a message RESP_R(r,−) matching its REQ_R(r) request,

which completes the proof that the repeat loop of the read phase always terminates.

For the repeat loop of lines 11-12, let us first observe that the local variable psti (which is initialized to the current value of posi

before entering the loop, line 09) is not modified during the execution of that repeat loop. Observing that pi repeatedly sends then

a write-request message WRITE_W(r, psti,−) and wait for matching response messages RESP_W(r, psti,−), the same reasoning as

previously applies from which we conclude that pi eventually exits the repeat loop of the write phase.

For the obligation property, let us remember the following definition: pℓ being a correct process Q(ℓ, τ) denotes the set {i ∈
C | ∀ τi, τℓ ≥ τ : qrτi

i ∩ qrτℓ

ℓ = ∅}. We have to show that if, after some time τ , (a) only pℓ and processes of Q(ℓ, τ) invoke propose()
and (b) pℓ invokes propose() infinitely often, then at least one invocation issued by pℓ returns a non-⊥ value.

Let Π(ℓ, τ) = ∪τ ′≥τqrτ ′

ℓ and Π(ℓ, τ) = ∪τ ′≥τ,i∈Q(ℓ,τ)qr
τ ′

i . It follows from the definitions of the qri sets and Q(ℓ, τ) that Π(ℓ, τ)∩

Π(ℓ, τ) = ∅.

Let τ0 > τ be a time instant such that each invocation of the operation propose() issued before τ has returned or crashed and all the

request and response messages generated by these invocations have been received and processed.

Let us observe that in Algorithm 4, a process sends requests and receives responses only to or from processes in its quorum.

Consequently, after time τ0, (a) process pℓ sends requests and receives responses only to or from processes in Π(ℓ, τ); and (b) processes

in Q(ℓ, τ) sends requests and receives responses only to or from processes in Π(ℓ, τ). Moreover, as Π(ℓ, τ) ∩ ∪Π(ℓ, τ) = ∅, for the

processes in Π(ℓ, τ) such a run R cannot be distinguished from a run R′ in which the processes in Π(ℓ, τ) have crashed by time τ0

(Observation OB).

Since after τ0 (a) pℓ invokes infinitely often propose(), (b) the processes in Π(ℓ, τ) do not invoke propose(), and (c) the invocations

propose() issued by pℓ are done with strictly increasing round numbers, it follows that one of these invocations I = propose() carries a

round number greater than all those seen before τ by the processes in Π(ℓ, τ).
Let us consider the run in which the processes whose identities belong to Π(ℓ, τ) have crashed by τ0. When, in that run, pℓ issues

invocation I , the round-based obligation property used in [7] is satisfied and pℓ returns a non-⊥ value (Lemma 5 in [7]). Due to

Observation OB on the indistinguishability between R and R′ for process pℓ, it follows that pℓ returns the same non-⊥ value in run R,

which concludes the proof of the obligation property. ✷Theorem 6

C Proof of Theorem 4

Theorem 4 Algorithm 2 solves the x-set agreement problem in AMP[ΠΣx,1].

Proof Validity and agreement properties. Let us first observe that, due to the test of line 02, the default value ⊥ cannot be decided. The

fact that a decided value is a proposed value follows then from the validity of the underlying Alphax object. Similarly, the fact that at

most k non-⊥ values are decided follows directly from the quasi-agreement property of the underlying Alphax object.

Termination property. It follows from the reliable broadcast operation that, at soon as a process decides (invokes return()) each

correct process eventually delivers the same DECISION(d) message and decides (if not yet done). The proof is by contradiction: assuming

that no process decides, we show that at least one correct process executes rel_broadcast() (and consequently, all correct processes

decide).

Let pℓ be a correct process that appears in the definition of the eventual partial leadership property of ΠΣx. It follows from the

definition of pℓ that we eventually have forever leaderℓ = ℓ.

Let Rℓ be the set of the identities of the processes pj (with j 6= ℓ) such that we have leaderj = j infinitely often. It follows from

the contrapositive of the eventual partial leadership property of ΠΣx that there is a time τRℓ
such that ∀ j ∈ Rℓ, ∀ τ1, τ2 ≥ τRℓ

:

qrτ1
j ∩ qrτ2

ℓ = ∅, from which we conclude that Rℓ ⊆ Q(ℓ, τRℓ
) (this is the set defined in the obligation property of Alphax).

Collection des Publications Internes de l’Irisa c©IRISA

Failure Detectors for k-Set Agreement 15

Let us notice that, due to test of line 03, there is a finite time τa after which the only processes that invoke Alphax.propose() are

the processes in Rℓ ∪ {ℓ}. Moreover (as by the contradiction assumption no process decides) it follows that, after τa, pℓ invokes

Alphax.propose() infinitely often. Let τb be a time greater than max(τRℓ
, τa) from which we have Rℓ ⊆ Q(ℓ, τRℓ

) ⊆ Q(ℓ, τb).
As after τb (a) only processes in Rℓ ∪ {ℓ} invoke Alphax.propose(), (b) pℓ invokes Alphax.propose() infinitely often and (c)

Rℓ ⊆ Q(ℓ, τb), we conclude from the obligation property of Alphax that at least one invocation of pℓ returns a value d 6= ⊥ and

consequently executes rel_broadcast DECISION(d). This contradicts the fact that no process decides and concludes the proof of the

theorem. ✷Theorem 4

Collection des Publications Internes de l’Irisa c©IRISA

