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Abstract. We present a new sampling method for procedural and complex
geometries, which allows interactive point-based modeling and rendering of such
scenes. For a variety of scenes, object-space point sets canbe generated rapidly,
resulting in a sufficiently dense sampling of the final image.We present an inte-
grated approach that exploits the simplicity of the point primitive. For procedural
objects a hierarchical sampling scheme is presented that adapts sample densities
locally according to the projected size in the image. Dynamicprocedural ob-
jects and interactive user manipulation thus become possible. The same scheme
is also applied to on-the-fly generation and rendering of terrains, and enables the
use of an efficient occlusion culling algorithm. Furthermore, by using points the
system enables interactive rendering and simple modification of complex objects
(e.g., trees). For display, hardware-accelerated 3-D point rendering is used, but
our sampling method can be used by any other point-renderingapproach.

1 Introduction and Motivation

The complexity of virtual environments has grown spectacularly over the recent years,
with the advent of high performance, but affordable, graphics hardware. The paradox is
that the majority of objects in such scenes often covers onlya few, or even fractions of,
pixels on the screen. The traditional advantage of polygon-based scan-line coherence is
thus lost, while resources are wasted by transforming and clipping geometry which is
either invisible, or is smaller than a pixel. This has led to the investigation of alternatives
to pure polygon-based rendering in recent research. Several researchers have turned to
ray-tracing based approaches (e.g., [14, 24]); An interesting recent alternative ispoint-
based rendering[4, 16, 19], which is actually an old idea revisited [6].

Point based rendering methods represent the scene’s geometry as a set ofpoint
samples, that is object space position, surface normal and materialdata. Usually, the
point samples are obtained from images of the scene that include depth and material
information, but they are rendered and lit as independent small polygons or oriented
disks. It has been shown that such point sample representations are well suited both for
fast rendering of extremely complex geometry [19] and for high-quality visualisation
[16]. These methods however generate samples as apre-process, thus restricting their
use to static, unmodifiable scenes.

In this paper, we focus on points as a primitive well adapted forinteractive applica-
tions and non-static scenes. We believe that points are particularly well suited for such
applications for the following reasons:

� Objects can be represented at different levels of details very efficiently, by prop-
erly choosing point densities (e.g., [19]). When we interactively modify proce-
dural objects, sample recomputation is necessary for all levels of detail, at every



Fig. 1. Examples of our point sample generation algorithm.

frame. Most level of detail techniques create coarse levelsbottom-up, resulting in
computational expense proportional to the object’s complexity. In contrast, point
samples can be generated top-down, so coarse representations are obtained very
quickly. In addition, a coarse representation of an object can be refined incre-
mentally, for example for a closer view, by adding new points. If the object does
not change, all old samples remain valid.

� Rendering procedural and dynamic objects requires adaptive refinement in criti-
cal regions. With points this can be easily achieved in a straightforward manner
by adding additional points locally. Since point representations do not require the
maintenance of topological information, object topology can be trivially changed.
Examples are CSG models or geometry modifiers such as the wickerwork or
holes modifier used in Fig.1. In contrast, the use of meshes (e.g., of triangles),
to represent dynamically changing procedural objects or non-standard topolo-
gies requires intricate book-keeping when adaptively subdividing, and careful
processing to avoid cracks and other artifacts. This leads to complex implemen-
tations and numerical robustness problems.

� Points representing a single object or surface are independent, so they can be
generated in parallel, in contrast to polygonal meshes. As we shall see, points
also lead to simple solutions for visibility culling, and can take advantage of
hardware acceleration more easily than for triangles, whichrequire the use of
triangle-strips which are non-trivial to generate adaptively.

We present an integrated system which incorporates the aboveadvantages, and can
be used for applications such as interactive procedural modelling for design of outdoors
or indoors scenes, or VR/game type interactive viewing and manipulation. To achieve
sufficiently rapid generation of point samples in this context, we introduce

�
5 adaptive

sampling. Our new scheme allows us to hierarchically generatenew sampleslocally,
in the regions they are required, according to the current viewpoint. We apply this
approach to procedural models, including displacement maps and terrains. For complex
objects such as trees, we use quasi-random sampling to generate points. The continuous
level of detail property of points allows smooth frame rate control. Finally, the use
of a hierarchical caching mechanism, parallel computationand an direct mapping to
graphics hardware vectors, significantly increases the efficiency of rendering. Examples
of our approach are shown in Fig. 1.

2 Related work

Levoy and Whitted [6], were the first to explicitly investigate the use of points as an
alternative to traditional geometry; They treated issues of displacement mapping and
texture filtering. In the last few years, there has been significant interest in point-based



approaches. Grossman and Dally [4] generated point representations of objects in a
preprocess, and presented efficient ways of rendering them.The Surfels approach [16],
concentrates on ways to efficiently render point representations, and presents several
reconstruction mechanisms. Points are also used in the Q-splat algorithm [19], whose
goal is to render very large polygonal data sets. The emphasis of this work is the
compactness and the flexibility of the data structure and consequent rendering quality
to allow treatment of enormous databases, and in particularthose that do not fit into
main memory. A direct ray-tracing algorithm for point-setshas been developed by
Schaufler and Wann Jensen [20]. The use of particles for modeling, e.g., [23], is also
related to the use of points. The particle systems of Reeves and Blau [18] are in the spirit
of our work, however not in an interactive context. In [26], anexplicit level of detail
mechanism is applied in which leaves become points and then disappear, resulting in
effects similar to ours for trees, but from a completely different standpoint.

Interactive display using ray-tracing approaches is also related to our work; ex-
amples include the Utah interactive ray-tracing environment [14] and the Render Cache
[24]. Image-based rendering techniques share several problems with points based meth-
ods, in particular for hole filling. Some of the solutions developed, for example layered
depth-images e.g., [22, 8] and the work of Max for trees [9] are in a similar vein to those
developed for Surfels for example.

In what follows, we will be using procedural models, often based on the noise func-
tion [15]. We have used or been inspired by several models described in [11, 7]. The
procedural and other geometric modifiers we use are inspired by the work of Neyret
[12] and Dischler e.g., [2]. The approach of Meyer and Neyret [10] in particular per-
mits interactive viewing of similar kinds of procedural objects; The generation of slices
however requires quite sophisticated hole filling techniques. The initial idea of line-
based occlusion culling for which we use for terrains can be found in [5].

The Reyes [1] rendering architecture is close in spirit to our approach. Objects are
tessellated into polygons, until their size is under some predefined threshold. The major
differences are that their system stays in the polygonal world, and the emphasis there is
high quality rendering rather than interactivity; the choices and tradeoffs are thus very
different from our own.

A very recent paper partially covers similar ideas for the rendering of complex static
scenes [25], in the context of a walkthrough system.

3 � 5-Sampling: adaptive point generation

As mentioned in the introduction, procedural objects like displaced surfaces will require
adaptive sampling. The

�
5-sampling scheme is a hierarchical object-space sampling

which allows us to efficiently treat displacement mapped objects, procedural geometry
modifiers and terrains.

We start with an initial set of samples for each object, with each sample corre-
sponding to a region of surfaceA (“sample area”) on the object (Fig. 2(a)). The union
of these regions entirely covers the object. The projectionof the regionA in image space
is A��� Acosα

d2 , whereα is the angle of the surface normal to the viewing direction, and
d is the distance of the surface element to the eye (Fig. 2(a)).

If we were to compute the exact projectionsA� of the sample regions onto the image
plane, we would have an image of the object without holes. Sinceour goal is interactive
rendering, we instead project the center of the sample to the image, and draw a simple
primitive around it in image space (a hardware accelerated disk in practice). To avoid
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Fig. 2. (a) The basic point sample geometry in world and image space.(b) Object curvature
results in denser sampling as we approach silhouettes. Projective foreshortening results in denser
image space sampling further in the distance. (c) After displacement, holes appear in the steep
parts (left). With adaptive insertion of new samples, theseholes are filled (right),

holes, this primitive should have an image space area which isroughly the size ofA � .
The size of these primitives provides a user-controlled tradeoff between speed and qual-
ity. The user defines a thresholdA�min, which is the desired image size of a projected
sample region. For example ifA�min is 4, a sample will cover 2x2 pixels on average in
the image. Thus for larger values ofA�min, fewer samples will be generated, resulting
in faster display. This is similar to the approach used in Q-splat [19], for controlling
display speed.

Clearly, a uniform sample density in object space does not always result in a uniform
density in image space, as illustrated in Fig. 2(b)-(c). Displacement mapping makes this
worse. In what follows, we present a sampling scheme which increases sample density
where required for such objects.

3.1 The Hierarchical Sampling Scheme

When choosing the initial points, we try to capture all essential object features by choos-
ing a sufficiently dense set of points. For certain classes ofprocedural objects, we can
use a priori information about the frequencies used to generate them. If probable un-
dersampling is detected during evaluation of a point, new samples are created locally
in the neighbourhood, which can in turn recursively spawn new samples. Appropriate
sampling of a displaced surface, for instance, should increase sample density in steep
regions.

To guide the refinement process, we define theundersampling factor F� A� � A�min
which is a measure of how well the current set of samples represents the object, given
the users choice of sample sizeA�min. If F � 1 we meet the user defineA�min criterion.
If F � 1 too many samples were initially created and finally ifF � 1 more samples
are needed, thus spawning additional refinement.

We assume that we have an� u � v � parameterisation of the object considered. Ini-
tially, we create a uniform grid of points in the parameter domain. The grid step size
is h; we can consideru0 ��� h � 0 � andv0 ��� 0 � h � to be the initialspawning vectors,
Fig. 3(a). When denser sampling is required locally, werefineor subdividesingle grid
points. To refine an initial grid point, four new points are inserted at relative positions:

u1 � 2u0
�
5 	 v0

�
5 � v1 ��
 u0

�
5 	 2v0

�
5 � (1)

as well as
 u1 and 
 v1 (see Fig. 3(c)).
Thus, after each initial point has been refined, the initial and refined points form a

new uniform grid of step sizeh
� �

5 (Fig. 3(b)). The new grid is spawned by vectorsu1
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Fig. 3. � 5 sampling. (a) initial grid with vectorsv0, u0 (b) once subdivided and rotated grid
spanned by vectorsv1, u1 (c) adaptively refined sample set (d) fractal covered by generated
samples (e) resolving boundary problems

andv1 and it isrotatedby an angle ofα � arctan1
�
2 � 26� 6o.

This refinement procedure can also be applied to the new grid,using offset vectors
u2 � 2u1

�
5 	 v1

�
5, v2 � 
 u1

�
5 	 2v1

�
5, 
 u2 and 
 v2 and so forth. The grid at level

i has grid size
�

5 � i
and a rotation angle ofiα. Note that this refinement process can

be done locally, resulting in increased sample density whereneeded (see Fig. 3(c)). All
descendants of a single grid point form a fractal, Fig. 3(d),which is very similar to the
dragon fractal [21].

The computational effort required for
�

5 sampling is minimal, since we can pre-
compute vectorsui � vi . In order to subdivide� u � v � at leveli, we simply insert new points
at � u � v � 	 ui , � u � v � 	 vi , � u � v � 
 ui , � u � v � 
 vi . The samples form a forest, with one tree
per initial sample, which are “root”, Fig. 3(d). Each node has5 children, four with an
offset according the level in the tree and a self copy.

Consider the 2x2 grid shown in Figure 3(d), which has been subdivided globally
several times. Some regions, shown in white in the figure, are never reached, due to
the fractal like nature of our construction. Our solution is to also examine neighbours
during subdivision. When subdividing a pointp, we always look at its neighbours; if a
neighbourp� lies outside, but one of its children lies inside, we attach itas a child top,
Fig. 3(e). Note that these neighbours do not exist in the initial grid or its subdivisions.
Care has to be taken since other neighbours ofp may then have the same children
attached. For example, 1� and 4� are attached top� and also toq in Fig. 3(e). The
solution is to attach such “boundary children” ofp� to a single neighbour ofp� . We
choose the neighbour which is inside the boundary and is closest to the child being
considered.

This sampling scheme has nice properties. Due to its uniformity and its lack of
randomness new samples are well positioned in between other samples resulting in
little overlap. The scheme is purely hierarchical, i.e., every point has exactly one
parent in a previous level. Two other schemes with this property are a correspond-
ing

�
2-subdivision scheme (u0 � v0 � 1

�
2) or a

�
9-subdivision scheme (� ui � vi � �

� 
 1
�
3 � 0 � 1 �

3 � 2 � � 0 � 0 � . The former has a very directional nature: when refining a
sample, only one new sample is created, and it is always offset in a certain direction.
The latter scheme has a large branching factor of 9.

3.2 Displacement mapping

Displacement mapping is a way to add very rich visual detail tootherwise simple mod-
els. However, the sample density problems mentioned above become worse when dis-
placement mapping is applied.

DefineA to be the sample area of the undisplaced surface, andAd the sample area



of the displaced surface. Also,A�d is the projected area on the image plane ofAd, with
α the angle between the the undisplaced and the displaced surface normals, andβ the
angle between the viewing direction and the displaced surfacenormal, Fig. 4(a). Thus,

Ad � A
cosα

� A�d � Ad cosβ
d2 � cosβ

cosα d2 A (2)

The geometry of these quantities is illustrated in Fig. 4(a)-(c).
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Fig. 4. Undersampling factor determination.

We select the number of initial samplesns by assuming that all points have distance
d̃ (later on, we will account for the error due to this assumption automatically):

ns � Atotal

A�mind̃
2 � A � A�mind̃

2 � (3)

whereAtotal is the total area of the object. After displacement we have:

Ad � A
cosα

� A�mind̃
2

cosα
� (4)

and after image projection:
A�d � Ad

cosβ
d2 � A�min

d̃2

d2

cosβ
cosα

� A�minF � (5)

which determines the undersampling factor for displacement.

3.3 Procedural Geometry Modifiers

Interpreting scene objects as point sample generators allows for procedural geometry
manipulation beyond simple displacement, which can be very complicated with a sur-
face based object representation. We attach a callback function to each object, which
processes each sample point created. The function can then modify this point, remove
it, or create several new points.

An example is the WickerWork-modifier (see Fig. 7). For each point sample the
modifier tests whether the sample is (a) in a hole of the wickerwork ( � remove it), (b)
in the region where two strings overlap (� create two points, one with positive, one
with negative elevation), or (c) it is in the region of a singlestring, in which case it
is just displaced accordingly. For each modified point, a newundersampling factor is
computed, using Eq. (5). The Wickerwork-modifier returns a value larger than 1 only
in case (c). Another example of modifiers are Holes in the sphereof Fig. 1.

3.4 Terrains

Terrains are different in that they are infinite, so we cannot start with a uniform sam-
pling. Nevertheless, it is possible and effective to represent them as point sets since
their image is finite. Furthermore, their heightfield naturealso enables efficient occlu-
sion culling, explained below. In the following we assume the terrain is a heightfield on
thez � 0 plane. The elevation is positive, with maximum valuezmax.



Base Plane Sampling. Obviously, it is sufficient to sample a sector of the base plane
with the projection of the camera as its apex and an opening angle which is sufficient to
contain all visible points. We use a parameterisation that leads to a sufficiently uniform
sampling of the sector’s projection onto the image plane. Wefirst describe how the
sector is computed and then define a mapping of

� 
 1 � 1��� �
0 � 1� to the sector.
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Fig. 5. Side view: (a) horizon is visible and thusdmax � ∞, (b) horizon invisible,dmax is finite.
Top view: (c) Paramterization of a sector, (d)v parameter.

The medial axis of the sector is the projection of the camera’s viewing direction
onto the base plane. Its opening angle is determined such that it contains all visible
base plane points. We can parameterise this sector using a normalised medial axis
vector �m and a perpendicular vector�p. The sector point defined by parameters� u � d � is

���m 	 u �p� d (Figure 5(c)).
We scalep so thatu is in the range

� 
 1 � 1� . For d a possibly infinite interval�
dmin � dmax� is needed to address the entire visible sector. If the horizon is visible,
dmax equals infinity (Fig. 5(a)), otherwise it can be obtained fromthe intersection of
the viewing frustum with the base plane (Fig. 5(b),(d)). The value dmin can be deter-
mined accordingly (Fig. 5(a)-(b)), however it usually has tobe decreased further since
invisible base plane points are likely to be elevated into the viewing frustum.

For the parameterisation of the interval
�
dmin,dmax� we consider the typical case

where the viewing direction is parallel to the base plane. In this case, theyi-coordinate
of a projected point is proportional to 1

�
d, if the horizon is atyi � 0. Consequently, we

computed � v � � � 1�
dmin 
 v � 1 �

dmax 
 1
�
dmin � � � 1, wherev � �

0 � 1� . Note that fordmax �
∞ we can set 1

�
dmax � 0. Thus, we parameterise the sector byp � u � v � � ���m 	 u �p � d � v � ,

whereu � � 
 1 � 1� andv � �
0 � 1� (Fig. 5(d)).

Fig. 6(a) shows a uniform� u � v � 
 grid of this parameterisation, projected to image
space. If the viewing direction is parallel to the base plane (Fig. 6(a)), the grid remains
uniform, if the viewing direction moves up or down (Fig. 6(b)),the projected pattern
becomes less uniform. However, this is just an initial pattern; if critical undersampling
is detected, we automatically insert new samples.

 uv grid looking at the horizon

constant u
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Fig. 6. (a) If we look straight at the horizon, the projected grid is uniform. (b) If we look down,
there is distortion. The elevation occurs along the constant u line in image space, facilitating
occlusion culling. (c) Undersampling factorF geometry. (d) Occlusion culling for terrains.



Another alternative would be to directly parameterise the image plane with� u � v �
and map these to the base plane point visible through this image point. Our parameter-
isation however fits well with our occlusion culling method described below.

Terrain Generation. We generate a set of points on the base plane sector using a
uniform grid of valid � u � v � values. Due to our choice of parameterisation, the image
projections of these points on the base plane are approximately uniform. By elevating
these points, the sampling on the image plane becomes non-uniform, resulting in the
same kind of undersampling as for finite displaced objects.

If � u � v � are sampled uniformly with step sizes� ∆u � ∆v � , the base plane areaA rep-
resented by this sample is approximately (see Fig. 6(c)):

A �
���� ∂p � u � v �

∂u

���� ���� ∂p � u � v �
∂v

���� ∆u∆v � d � v � 3 � 1�
dmax 
 1

�
dmin � ∆u∆v� (6)

Elevating this area (Ad, Fig. 6(c)-(d)) and projecting it onto the image plane results in

A�d � d � v � 3 � 1 �
dmax 
 1

�
dmin � cosγ ∆u ∆v

cosβ d � 2 � (7)

so the undersampling factorF � A�d �
Amin. Note that this factor accounts for under- and

oversampling due to non-optimal sector sampling as well as due to the displacement.

Occlusion culling. The sector parameterisation has a nice property for occlusion culling:
if we consider base plane lines with constantu, their projection also forms a line in im-
age space. By elevating these points, their image is only moved along this line (see
Figure 6(b)). Consequently, a point at� u � v � can only be hidden by a point� u � v � � , where
v� � v. This property is reportedly used in computer games and has been used before
e.g., in [5].

As a result, we can render the terrain line by line, where each line has constantu.
The lineu � ul is rendered from front to back, uniformly samplingv in the interval�
0 � 1� . The current horizon point is the point on the line that currently has the maximum
y-coordinate in the image. A later point atv� � v is hidden if it is below the horizon.
We do this occlusion test twice: first we test whether the point would be visible with
maximum elevation. If it cannot be rejected trivially, the real elevationz is computed
and the test is repeated withz, avoiding many costly elevation computations.

We only perform occlusion culling for initial sample points. Child samples have
differentu and violate the strict ordering alongv. A point only spawns samples if it is
not occluded. Nonetheless, an initial point can be occluded,while one of its children
is not. We account for this by approximating the maximum elevation of the point and
its children by extrapolating the elevation to the childrenusing the terrain gradient at
the point. We only discard points if none of its children could be visible, based on this
computation.

4 Complex Geometry

Point based rendering is also a highly efficient means for therendering of complex
geometry, e.g., defined by polygons. Others have investigated this approach very suc-
cessfully (QSplat [19], Surfels [16]), using precomputed samples.



To achieve rapid sample generation for complex geometry, we create a vector of
point samples for every object, randomly distributed over the object. There is no spatial
order within the vector. We generate this vector by addressing all surface points with

� u � v � -coordinates and sampling the object using quasi random numbers, in our case the
first two Halton-sequences [13]. This way, we can create an arbitrarily long vector and,
more importantly, we can extend this efficiently when needed.

Due to our construction, any prefix of the vector contains samples which are quite
evenly distributed over the object’s surface. At each frame,we determine how many
samplesns are necessary to obtain adequate image sample density. If the current vector
has fewer elements, it is filled to sizens, by using subsequent samples of the Halton
sequence. Only the firstns samples are rendered, since the vector may be longer.

To determinens, we compute the minimum distancẽd of the object’s bounding box
to the camera. If the object’s surface area isA, we selectns � A

�
d̃2A�min. Note that this

neglects the cosine of the surface normal to the camera, sons reflects the “worst” case
of an object directly facing the viewer.

Our approach provides straightforwardlevel-of-detail(LOD) control. By selecting
ns, we have an almost continuous degree of accuracy. Objects withm polygons can
be rendered with good quality even withns � m samples. Since we always render the
prefix of a list up to a certain number, the overall appearanceof the object will not
change quickly from frame to frame, and flickering or poppingartifacts are diminished,
compared to traditional LOD approaches.

Finally, simple time dependent object modifications can be performed on-the-fly, for
example the movement of trees in a turbulent breeze. For eachpoint sample of a tree
we precompute the distance to the stem. According to this distance the point is moved
in the current wind direction. Wind directions are defined by aturbulence function. We
compute the wind direction for each object at its center and use this direction for the
entire object. We do not insert additional samples to fill potential resulting holes, as a
display speed/computation tradeoff.

5 System Issues

5.1 Sample distance and splat size

Almost continuous and predictable quality control are a major advantage of point based
rendering methods. Very fast images can be obtained by rendering few, large points,
whereas many small points require more time, but give accurate results. In our imple-
mentation the user can steer this tradeoff by defining the desired sample density in the
rendered image: the average distance in pixels between samples. Using this size, the
point radius is selected automatically, such that holes arealmost always avoided.

Alternatively, the user can select a desired frame rate. The time needed for render-
ing each frame is measured and the sample density parameter is adapted continuously.
During motion, the user might see coarse, approximate solutions at high frame rates,
which refine quickly as soon as motion stops. This is illustrated in Fig 8, and in the
accompanying movie (see the publications page at http://www-sop.inria.fr/reves).

5.2 Caching of
�

5-sampled Points

If we consider the samples obtained by the
�

5 scheme as a forest, the depth of some
trees changes from frame to frame, but the upper parts in the hierarchy remain the same.
It is thus natural to store the forest computed in each frame and to reuse it for the next



frame. Such a forest is stored per object.
The cached forest can then be traversed top down: for each nodethe refinement

criterion is reevaluated considering the new camera. If a leaf in the cache needs to
be refined, new children are computed. If an inner node is classified as a leaf in the
new frame, all the children in the cache are skipped. This caching mechanism can
significantly reduce the sample computations; the subdivision criterion however has to
be evaluated for every sample at every frame.

5.3 OpenGL issues

For point rendering we simply use OpenGLGL_POINTS. Evidently, higher quality
rendering could be achieved by using ellipsoidal splats as in the Surfels approach [16].
The current implementation of hardware supported points limits our ability to correctly
treat texture and transparency. Use of a Surfels-type rendering method would resolve
these problems.

The rendering of unmodified complex geometry is acceleratedusing OpenGL’s
glVertexPointer-calls, where an entire array of points can be passed to OpenGL
in one call. If the object is composed of different materials, we generate random points
on the object, but store these in different vectors, one for each material. Thenns is dis-
tributed over the arrays, and each material’s sample vectoris rendered separately with
the according material properties, reducing expensive OpenGL material switches.

5.4 Parallelism

Point sample generation is a perfect candidate for parallelisation. No neighbourhood
or coherence between samples is considered, so samples can begenerated on parallel
processors or remote machines. The

�
5 subdivision scheme leads to a forest of com-

pletely independent trees, which can be computed independently on parallel processors.

6 Results

We have tested our system in three different scenarios. The first is an indoors proce-
dural design test, where we add procedural objects to the scene, and interactively select
their parameters. The second is the design of an outdoors world, in which we choose
procedural parameters for the terrain. Finally, we have a VR- or game-style scenario,
where the user can move around and interact with the scene.

The indoor design example is illustrated in Fig. 7, including an indoor plant moving
in the wind of a fan, a procedural wicker work basket and a rock paperweight. The user
can move in this scene at 13 frames per second (fps)1. Modifications of the procedural
objects as shown in the figure can be done at 8 fps for the paperweight, and 4 fps for
the basket. During modification of the paperweight object 8% ofthe time is spent on
the base object sample generation, 75% on the displacement computation, and 3.5% on
the refinement decisions. When the user moves around the unchanged object, render-
ing becomes dominant. The time needed for refinement goes up to 30%, whereas the
generation of new samples requires limited resources.

For the outdoor design and VR scenarios, we use procedural terrains based on fractal
turbulence functions generated by Poisson events [7]. In order to give higher regions a
rougher appearance, we start with only a small number of turbulence octaves (e.g., 3).
If the resulting height is above a user-defined threshold, additional octaves are blended

1All timings are on a Pentium III PC at 733 Mhz (Sgi 330), with a VR3 (NVidia Quadro) graphics card.



in, resulting in smooth valleys and rocky mountains (this effect can also be obtained
with multifractals [3]). By applying an exponential function, the valleys can be made
wider and the mountains steeper. Since we know the area represented by each sample,
we stop this evaluation process for detail that is too small tobe represented by the
sample. This avoids computation for unnecessary or even undesired detail. The model
is fast enough for on-the-fly terrain generation but as a moreefficient alternative, we
can replace it by a tiled, precomputed terrain texture. We also implemented the sky
model of [17], which is precomputed and mapped to a dome aroundthe scene, adding
further realism to our outdoors views.

An example of an interactive design session for an outdoors scene in illustrated in
Fig. 8, where we add mountains and trees. The center right imageis rendered with
280,000 points, 23,000 of which are the online evaluated terrain. Without occlusion
culling the number of terrain samples is 40,000. The trees can be moved at 14 fps, if
the view point does not change and thus the terrain does not require recomputation.
The rightmost image is obtained by increasing sample density, resulting in 3.3 million
points, which took 2 seconds. The terrain is always computed by an additional thread
on the second processor.

In the VR- or game-like scenario, the user moves around in a coast scene. All terrain
points below water level are replaced by lake surface samples, which in turn is displaced
according to a procedural wave function (e.g., the ripples in the accompanying video).
For the images in Fig. 9 we use a precomputed terrain stored in atexture. Again 1,000
trees were added. The trees are moving in the wind, the user can create ripples in the
lake by throwing virtual stones. At 400x400 resolution we obtain about 8 fps.

7 Conclusion and Discussion
We have presented a novel sampling approach, which generatessamples for procedural
and complex geometry efficiently. The approach, coupled withcaching mechanisms, is
fast enough for interactive viewing on todays PC graphics hardware. Our object-space
sampling is based on a user-controlled speed/quality thresholdA�min, namely the desired
minimum image space coverage of a sample. This in turns controls the sample density.

For procedural objects, we introduced
�

5-sampling. Local refinement is controlled
by an undersampling factor, defined by theA�min threshold. We showed how this factor
is computed for displacement maps and other procedural modifiers. For terrains, we in-
troduced a suitable parameterisation, also allowing occlusion culling. Complex unmod-
ified geometries such as trees can also be sampled efficientlywith Halton sequences.
Samples are stored in vectors which can be efficiently and incrementally updated.

Evidently, there are certain cases where point-based representations are not the best
choice. Insufficient point densities or rendering techniques lead to visible holes in con-
tinuous surfaces. Our method strives to address this problemby choosing sample den-
sities based on the current viewpoint. Furthermore, coherence over smooth surfaces
cannot be exploited. Clearly, polygons are more efficient when they cover many pixels
on the screen, but when this is not the case, point representations become the natural
choice.

The main limitation of our approach is currently the expenseof generating points.
Using a hierarchy on very complex objects and a more general occlusion culling ap-
proach for all objects would reduce the number of samples generated. Hardware ac-
celerated noise functions would also greatly improve the performance of our method.
Better hardware support of point rendering could improve the quality of our images.
Other directions include rendering with shadows or more sophisticated illumination
models.
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Fig. 7. Interactive design of an interior environment. To a radiosity solution of an office rendered
with polygons, we added a complex tree, a wicker work basket and apaper weight, all displayed
with 75,000 points. After turning on the fan, the tree is movingin the wind (center, 13 fps
at 400x400). The images on the right show the interactive change of parameters of procedural
objects. Top row: changes at 4 fps, bottom row: 8 fps, the last one at 1.5 fps.

Fig. 8. Interactive design of an outdoors scene (resolution 400x400). We start with a simple
terrain (left: 23,000 points, 6 fps), add 1000 chestnut trees made of 150,000 triangles each and
add two clouds (280,000 points, 5 fps). If we increase accuracy, we get the right image using
3,300,000 points after 2 sec.

Fig. 9. Two snapshots of an interactive session in a dynamic procedural virtual world. The user
navigates at about 8 fps. The trees are moving in the wind and the user “throws rocks” into the
lakes. The terrain is precomputed and stored in a texture.


