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A NON-ERGODIC PROBABILISTIC CELLULAR AUTOMATON

WITH A UNIQUE INVARIANT MEASURE

PHILIPPE CHASSAING AND JEAN MAIRESSE

Abstract. We exhibit a Probabilistic Cellular Automaton (PCA) on {0, 1}Z with a
neighborhood of size 2 which is non-ergodic although it has a unique invariant measure.
This answers by the negative an old open question on whether uniqueness of the
invariant measure implies ergodicity for a PCA.

1. Introduction

Consider a random process on ΣZ
d

, where Σ is a finite set, with local interactions
and a translation invariant dynamic. There are two natural instanciations, one with
asynchronous updates of the sites of Zd, and one with synchronous updates. In the first
case, the model is a continuous time Markov process, known as a (finite range) Interacting
Particle System (IPS). In the second case, the model is a discrete time Markov chain
known as a Probabilistic Cellular Automaton (PCA).

The relevance of IPS in statistical mechanics, as well as in many other contexts, is
well established. Let us mention a couple of motivations for studying PCA. First, the
investigation of fault-tolerant computational models was the motivation for the Russian
school [13, 5]. Second, PCA appear in combinatorial problems related to the enumeration
of directed animals [7]. Third, in the context of the classification of (deterministic)
cellular automata (Wolfram’s program), robustness to random errors can be used as a
discriminating criterion [4].

For IPS and PCA, the first question is to study the equilibrium behavior. An equi-
librium is characterized by an invariant measure, that is a probability measure on the
state space which is left invariant by the dynamic. An invariant measure µ is attractive
if, for any initial condition, the state of the system converges (weakly) to µ as time goes
on.

By a compactness argument, there always exists at least one invariant measure. There-
fore, there are, a priori, three possible situations:

(1) several invariant measures;
(2) a unique invariant measure which is not attractive;
(3) a unique invariant measure which is attractive.

In the last case, which corresponds to the nicest possible situation, the model is said
to be ergodic. Roughly, an ergodic system completely forgets about its initial condition,
while a non-ergodic one remembers something forever.
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A classical foundational question is whether the intermediate case exists. In other
words, does uniqueness of the invariant measure imply convergence to it ? For monotone
systems, the intermediate case does not exist. But in general, the question is open.

For IPS, this question is Open Problem 4 in Chapter 1 of the classical textbook by
Liggett [8]. In [10], Mountford proves that the intermediate case does not exist for 1-
dimensional IPS (that is d = 1). Quoting [10], “it seems more than plausible that the
conclusion (...) is true in higher dimensions”. However, the question remains unsettled.
For PCA, the same question is Unsolved problem 3.4.3 in Toom [11], or Unsolved problem
5.7 in Toom [12].

In the present paper, we answer the question for PCA by exhibiting a 1-dimensional
PCA, model A, corresponding to the intermediate case (Theorem 3.1). There is a unique
invariant measure of the form (µ0 + µ1)/2 and the PCA maps µ0 to µ1 and µ1 to µ0.
Starting from an initial measure µ0, the probability measure of the state of the system
is µ0 at even times and µ1 at odd times. Therefore there is no convergence.

Observe that the situations for IPS and PCA are different: in 1-d, the intermediate
case exists for PCA, and not for IPS. This is consistent with the situation for Markov
processes on a finite state space: in discrete time, periodic phenomena may occur which
result in the existence of the intermediate case; in continuous time, the intermediate case
does not exist.

To prove the result for model A, we introduce two auxiliary PCA. The first one,
model B, corresponds to independently moving particles annihilating when they meet
(p+ p → ∅). The second one, model C, corresponds to independently moving particles
merging when they meet (p + p → p). We compute exactly the evolution of the one-
dimensional marginals for model C (Theorem 5.2) and models A and B (Prop. 6.1)
starting from a “full” configuration. In particular, it proves that the speed of convergence
to the invariant measure is of order 1/

√
n for the three models.

Continuous-time versions of models B and C have been studied in the IPS literature
under the names of annihilating random walks and coalescing random walks, respectively,
see [1, 3, 6]. The PCA and IPS versions of B and C share the same features: ergodic-
ity with the invariant measure being the “all empty” Dirac measure, and with similar
and subexponential speed of convergence. In the IPS setting, the asymptotic speed of
convergence was given by Bramson & Griffeath [3] for model C, and by Arratia [1] for
model B. Also, the coupling between the models B and C, that we use in Section 6,
already appears in Griffeath [6, Ch. 3, Sec. 5] and in Arratia [1] in the continuous-time
setting. The novelty is that we get exact computations for the PCA models, as opposed
to asymptotic results for the IPS ones. At last, let us mention that IPS versions of
models B and C on a finite set of sites have also been studied, see for instance [2] for B,
[9] for C, and the references therein.

2. Probabilistic Cellular Automaton

Let Σ be a finite set. Denote by M(Σ) the set of probability measures on Σ. Let
us equip X = ΣZ with the product topology. Denote by M(X) the set of probability
measures on X for the Borelian σ-algebra. Weak convergence of (µn)n to µ is denoted
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by µn
w−→ µ. Let K be a finite subset of Z and consider x ∈ ΣK . The cylinder defined

by x is the set

∗x∗ =
{
u ∈ ΣZ, ∀k ∈ K,uk = xk

}
.

Given k ∈ Z and V = (v1, . . . , vn) ∈ Z
n, we use the notation k+V for (k+ v1, . . . , k+

vn), and the notation V (K) for {i | ∃k ∈ K,∃v ∈ V, i = k + v}.
Let us introduce probabilistic cellular automata, restricting ourselves to 1-dimensional

models.

Definition 2.1. The alphabet is a finite set Σ; the set of sites is Z. The set of con-
figurations is X = ΣZ. Given V ∈ Z

n, a transition function of neighborhood V is a
function f : ΣV → M(Σ). The probabilistic cellular automaton (PCA) F of transition
function f is the application M(X) → M(X), µ 7→ µF defined on cylinders by: ∀K,
∀y ∈ ΣK ,

µF (∗y∗) =
∑

x∈ΣV (K)

µ(∗x∗)
∏

k∈K

f((xi)i∈k+V )(yk) .

Let us look at how F acts on a Dirac measure δx. The value of all the sites are
updated. The value xk of the k-th site is changed into the letter a ∈ Σ with probability
f((xi)i∈k+V )(a), independently of the evolution of the other sites.

By specializing Definition 2.1, we recover two famous models:

• Assume that V = {0}, then all the sites behave independently. The restriction
of the PCA to one site is a Markov chain evolving on Σ. Conversely, any Markov
chain on a finite state space E can be realized as (a restriction of) a PCA on the
alphabet E with neighborhood V = {0}.

• Assume that the transition function f is such that: ∀u ∈ ΣV , f(u) is a Dirac
probability measure. Then we may view f as a function ΣV → Σ. We obtain a
(deterministic) cellular automaton.

A PCA F may be viewed as a Markov chain on the state space ΣZ. Thus we borrow
the classical terminology of Markov chains.

Definition 2.2. An invariant (probability) measure of F is a probability measure µ ∈
M(X) such that µF = µ. The PCA F is ergodic if it has a unique invariant measure
which is attractive, i.e. if

(1) (i)
[
∃!µ ∈ M(X), µF = µ

]
, (ii)

[
∀ν ∈ M(X), νFn w−→ µ

]
.

Consider for a moment a Markov chain on a finite state space with transition matrix
P . Let G(P ) be the graph of the matrix P . Classically, we have

(i) ⇐⇒ G(P ) has a unique terminal component(2)

(i)+(ii) ⇐⇒ G(P ) has a unique terminal component which is aperiodic .

In particular, uniqueness of the invariant measure does not imply ergodicity. The sim-
plest example of a non-ergodic Markov chain with a unique invariant measure is the
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following: the state space is X = {0, 1} and the transition matrix is

(3) P =

[
0 1
1 0

]
.

The unique invariant measure is µ = (δ0 + δ1)/2 and for ν = δ0, we do not have

νPn w−→ µ.

For PCA, it was an open question to know if (i) implies (ii) in (1). The purpose of the
present paper is to settle the question by proposing a non-ergodic PCA with a unique
invariant measure.

To get a hint of the difficulty, consider for instance a PCA F with neighborhood
V = {0}. Recall that each site behaves independently and as a finite Markov chain P .
As recalled in (2), P may satisfy either [¬(i)], [(i),¬(ii)], or [(i), (ii)]. We show in Table
1 how this gets reflected on the PCA F .

Markov chain P PCA F
¬(i) ¬(i)

(i),¬(ii) ¬(i)
(i), (ii) (i), (ii)

Table 1. Finite Markov chain versus “neighborhood 0 PCA”.

Let us justify the Table. If µ is an invariant measure of P , then the product measure
µ⊗Z is an invariant measure of F . Therefore, if P has several invariant measures, the
same holds for F . Assume now that P is ergodic with unique invariant measure µ.
One proves easily that µ⊗Z is attractive, so F is ergodic. Let us concentrate now on
the intermediate case for P . If P satisfies [(i),¬(ii)] then G(P ) has a unique terminal
component which is periodic, say of period 2. Let (µ0 + µ1)/2 be the unique invariant
measure of P . Then F has an infinite number of invariant measures. Indeed, consider
any (ui)i∈Z ∈ {0, 1}Z, and let (vi)i∈Z be defined by vi = 1 − ui for all i. Then the
probability measure (⊗i∈Zµui

+⊗i∈Zµvi)/2 is clearly an invariant measure of F .

3. Statement of the main result

3.1. Model A. Consider the PCA FA on the alphabet Σ = {0, 1}, with neighborhood
V = {−1, 0}, and transition function a defined by:

a(00)(1) = 1/2, a(01)(1) = 0, a(10)(1) = 1, a(11)(1) = 1/2 .

A realization of the Markov chain is obtained as follows. Consider the function

A : {0, 1}Z × UZ → {0, 1}Z(4)

(xi)i∈Z, (ui)i∈Z 7→ (x̃i)i∈Z ,
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0 1 10 1 0 10

0 1 1 proba 1/2
0 proba 1/20 proba 1/2

1 proba 1/2

Figure 1. The transition function of the PCA FA.

with U = {↑,→}, and

x̃i =

{
0 if xi−1xi = 01 or (xi−1xi, ui) ∈

{
(00,→), (11, ↑)

}

1 if xi−1xi = 10 or (xi−1xi, ui) ∈
{
(00, ↑), (11,→)

}
.

Let U = (Ui,j)(i,j)∈Z×N be a doubly-indexed sequence of i.i.d. r.v.’s with common law

P (Ui,j =↑) = P (Ui,j =→) = 1/2,

called the update process. Set Un = (Ui,n)i∈Z. Given a {0, 1}Z-valued r.v. X0 = (Xi,0)i∈Z,

such that U ⊥ X0, define the sequence of {0, 1}Z-valued r.v.’s (Xn)n∈N as follows:

Xn+1 = A(Xn, Un).(5)

Then (Xn)n∈N is a realization of model A. The process U is used to randomly update
the value of a site, when needed, with → being interpreted as “keep” and ↑ as “switch”,
and Xi,n is the state of site i at time n, so that Xn = (Xi,n)i∈Z denotes the state of the
system at time n.

3.2. Invariant measure. Let x = (01)Z be the configuration defined by: ∀n ∈ Z,
x2n = 0, x2n+1 = 1. The configuration (10)Z is defined similarly.

Theorem 3.1. The PCA FA has a unique invariant measure which is µ = (δ(01)Z +

δ(10)Z )/2. The PCA is non-ergodic.

On configurations without 00 and 11, the PCA acts as the translation shift. Therefore
µ = (δ(01)Z + δ(10)Z)/2 is an invariant measure. Assume that it is the unique one. Then

µ is non-attractive, the situation being the same as for (3): consider ν = δ(01)Z , then
νFn

A = δ(01)Z if n is even, and νFn
A = δ(10)Z if n is odd.

The purpose of Sections 4 and 5 is to prove Theorem 3.1.

4. Two auxiliary models

We now define two new PCA, that we call respectively model B and model C. For
both models, the alphabet is Σ = {◦, •} and the set of sites is Z. Given a configuration
u ∈ {◦, •}Z, the following interpretation holds: if ui = ◦, the site i is “empty”; if ui = •,
the site i contains a “particle”. At a given time step, a particle decides (independently
of the others and independently of the past) to remain at its site with probability 1/2,
or to jump to the site on the right with probability 1/2. In model B, if two particles
collide, then they annihilate. In model C, if two particles collide, they are merged into
one particle. Let us define the models more formally.
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4.1. Model B. It is the Markov chain on {◦, •}Z defined as follows. Consider the
function

B : {◦, •}Z × UZ → {◦, •}Z(6)

(yi)i∈Z, (ui)i∈Z 7→ (ỹi)i∈Z ,

with U = {↑,→}, and

ỹi =

{
• if (yi−1yi, ui−1ui) ∈ {(•◦,→ U), (◦•,U ↑), (••, ↑↑), (••,→→)}
◦ otherwise .

Let U be an update process, defined as in Section 3.1. Given a {◦, •}Z-valued r.v. Y0,
such that U ⊥ Y0, define the sequence of {◦, •}Z-valued r.v.’s (Yn)n∈N as follows:

Yn+1 = B(Yn, Un).(7)

Then (Yn)n∈N is a realization of model B.

proba 1/4

proba 1/4

proba 1/4

proba 1/4

Step n

Step n+1

Figure 2. The transition function of model B.

Remarks. In the above presentation, model B is a Markov chain with synchronous
updates and local interactions, but not stricto sensu a PCA. Indeed, if Y0 is deterministic,
then the r.v.’s Yi,1 and Yi+1,1 are not independent, since they are updated using the
non-disjoint r.v.’s {Ui−1,0, Ui,0} and {Ui,0, Ui+1,0}. However, it is possible to give a PCA

presentation of model B on a larger alphabet. Define the sequence of
(
{◦, •}×U

)Z
-valued

r.v’s (Ỹn)n∈N by Ỹn = (Yn, Un). We have:

(Ỹn+1)i =
(
B(Ỹn)i, Ui,n+1

)
.

Thus (Ỹn)n is a realization of a PCA on the alphabet {◦, •} × U , with neighborhood
V = {−1, 0}. The same remark holds for model C below.

The continuous time version of model B, with exponential holding times, is called an
annihilating random walk (cf. [6, Ch. 3, Sec. 5]).
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proba 1/4

proba 1/4

proba 1/4

proba 1/4

Step n

Step n+1

Figure 3. The transition function of model C.

4.2. Model C. It is the Markov chain on {◦, •}Z defined as follows. Consider the
function

C : {◦, •}Z × UZ → {◦, •}Z

(zi)i∈Z, (ui)i∈Z 7→ (z̃i)i∈Z ,

with

z̃i =

{
• if (zi−1zi, ui−1ui) ∈ {(•◦,→ U), (◦•,U ↑), (••, ↑↑), (••,→ U)}
◦ otherwise .

Let U be an update process. Given a {◦, •}Z-valued r.v. Z0, such that U ⊥ Z0, define
the sequence of {◦, •}Z-valued r.v’s (Zn)n∈N as follows:

Zn+1 = C(Zn, Un) .

Then (Zn)n∈N is a realization of model C.
Again, the continuous time version of model C, with exponential holding times, is

called a coalescing random walk (cf. [6, Ch. 2, Sec. 9]).

4.3. Links between models A, B, and C. One-step transition of the model B, resp.
C, defines the mapping

FB : M({◦, •}Z) −→ M({◦, •}Z)
µ 7−→ µFB ,

respectively,

FC : M({◦, •}Z) −→ M({◦, •}Z)
µ 7−→ µFC .

Define

ϕ : {0, 1}Z −→ {◦, •}Z

(xi)i∈Z 7−→ (yi)i∈Z ,
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with

yi =

{
• if xixi+1 ∈ {00, 11}
◦ if xixi+1 ∈ {01, 10}

By extension, define ϕ : M({0, 1}Z) → M({◦, •}Z).
Lemma 4.1. The diagram below is commutative:

M({0, 1}Z)
ϕ

��

FA
// M({0, 1}Z)

ϕ

��

M({◦, •}Z) FB
// M({◦, •}Z)

If (Xn)n∈N is a realization of the Markov chain A, then (ϕ(Xn))n∈N is a realization of
the Markov chain B.

Proof. Recall that A and B are defined in (4) and (6) respectively. We are going to
prove that:

(8) ϕ ◦ A = B ◦ (ϕ, Id) .
The statement of the lemma follows. Set

(xi)i, (ui)i
A7−→ (x̃i)i

ϕ7−→ (ỹi)i, (xi)i, (ui)i
ϕ,Id7−→ (yi)i, (ui)i

B7−→ (ŷi)i .

To obtain (8), it is enough to check that ỹ0 = ŷ0. This is done by systematic inspection
in Table 2. Each one of the 32 cases mimicks the commutative diagram: in the first line,
from left to right, (x−2, x−1, x0), (u−1, u0), and (x̃−1, x̃0); in the second line, from left to
right, (y−1, y0), (u−1, u0), and ỹ0 = ŷ0.

If the process X is defined by (5), relation (8) entails that the process Y , defined by
Yn = ϕ(Xn), satisfies relation (7). �

Lemma 4.2. Model B is dominated by model C: for x, u ∈ {◦, •}Z × UZ,

B(x, u) ≤ C(x, u) ,
where ≤ is the coordinate-wise product ordering on {◦, •}Z, with ◦ ≤ •.
Proof. This can be checked directly on the definitions of B and C. Intuitively, particles
are merged in model C, and annihilate in model B. �

Lemma 4.3. The following implications hold:

[C is ergodic with invariant measure δ◦Z ]

=⇒ [B is ergodic with invariant measure δ◦Z ]

⇐⇒ [A is non-ergodic with invariant measure (δ(01)Z + δ(10)Z )/2] .

Proof. This is a direct consequence of Lemmas 4.1 and 4.2. �

Therefore, in order to prove Theorem 3.1, it is sufficient to prove that model C is
ergodic with invariant measure δ◦Z . This is the purpose of next section.
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111 or 000 →→ 11 or 00 101 or 010 →→ 10 or 01
•• →→ • ◦◦ →→ ◦

111 or 000 →↑ 10 or 01 101 or 010 →↑ 10 or 01
•• →↑ ◦ ◦◦ →↑ ◦

111 or 000 ↑→ 01 or 10 101 or 010 ↑→ 10 or 01
•• ↑→ ◦ ◦◦ ↑→ ◦

111 or 000 ↑↑ 00 or 11 101 or 010 ↑↑ 10 or 01
•• ↑↑ • ◦◦ ↑↑ ◦

110 or 001 →→ 11 or 00 100 or 011 →→ 10 or 01
•◦ →→ • ◦• →→ ◦

110 or 001 →↑ 11 or 00 100 or 011 →↑ 11 or 00
•◦ →↑ • ◦• →↑ •

110 or 001 ↑→ 01 or 10 100 or 011 ↑→ 10 or 01
•◦ ↑→ ◦ ◦• ↑→ ◦

110 or 001 ↑↑ 01 or 10 100 or 011 ↑↑ 11 or 00
•◦ ↑↑ ◦ ◦• ↑↑ •

Table 2. The 32 possible cases.

5. Model C is ergodic

Lemma 5.1. Model C is monotone, that is: for z ∈ {◦, •}Z, z̃ ∈ {◦, •}Z, u ∈ UZ,

z ≤ z̃ =⇒ C(z, u) ≤ C(z̃, u) ,

where ≤ is the coordinate-wise product ordering.

Proof. It can be checked directly on the definition of C. �

With this monotonicity, to get the ergodicity, it is enough to prove that δ•ZF
n
C → δ◦Z .

Indeed, consider two realizations of model C, one, say Z = (Zn)n, that starts with all

sites occupied, the other, say Z̃ = (Z̃n)n, that starts with an arbitrary initial condition,
their evolution using the same update process U . According to Lemma 5.1, at any time
n ∈ N, Z̃n ≤ Zn.

From now on, we focus on the process Z. Recall that for each n, Zn = (Zk,n)k∈Z is the
state of the system at time n. The process Zn is stationary, i.e. invariant by translation,
since Z0, U , and C are invariant too. Define

(9) dn = P (Zk,n = •) = P (Z0,n = •) .

This is the density of particles at time n. The density dn can also be viewed as an evalu-
ation of the distance between Zn and δ◦Z . Indeed, for any finite subset E of Z, consider
the Hamming distance on {◦, •}E , and denote by WH the corresponding Wasserstein
distance on M({◦, •}E ). Setting ZE,n = (Zk,n)k∈E, we have: WH (ZE,n, δ◦E ) = |E| dn.
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Theorem 5.2. Let T be the time that a simple symmetric random walk on Z needs to
reach 2, starting from 0. We have

dn = P (T > 2n)(10)

= 4−n

(
2n+ 1

n

)
.(11)

In particular, dn ∼ 2/
√
π n, hence converges to 0 as n grows.

In continuous time, when the particles perform a simple symmetric random walk,
Bramson & Griffeath [3] obtain the same asymptotic behavior for dn, up to a scaling
factor, as expected.

Corollary 5.3. Model C is ergodic with unique invariant measure δ◦Z .

Proof. We first prove (11), assuming (10). Let S = (Sk)k∈N be a realization of the simple
symmetric random walk on Z, starting from 0. Define Mk = max{Si, 0 ≤ i ≤ k}, the
maximum of the random walk at time k. Recall that T = inf{i ≥ 0 | Si = 2}. We have

P (T > 2n) = P (M2n ≤ 1) = 1− P (M2n ≥ 2)

= 1−
∑

ℓ∈Z

P (M2n ≥ 2, S2n = ℓ)

= 1− P (S2n ≥ 2)−
∑

ℓ≤1

P (M2n ≥ 2, S2n = ℓ)

According to the reflection principle, for ℓ ≤ 1, P (M2n ≥ 2, S2n = ℓ) = P (S2n = 4− ℓ).
Therefore,

P (T > 2n) = 1− P (S2n ≥ 2)− P (S2n ≥ 3)

= 1− P (S2n ≤ −2)− P (S2n ≥ 3)

= P (S2n ∈ {0, 2})

= 4−n

((
2n

n

)
+

(
2n

n+ 1

))
= 4−n

(
2n + 1

n

)
.

Using Stirling’s formula, we get

4−n

(
2n + 1

n

)
∼ 2√

πn
.

Now let us prove (10). Recall that Z = (Zn)n∈N is a realization of model C with
Z0 = •Z. One can extend the definition of Z via coupling from the past. Consider the
i.i.d. r.v.’s (Uk,n)(k,n)∈Z×Z with P (Ui,j =↑) = P (Ui,j =→) = 1/2. For each s ∈ Z, define

Z(s) = (Z
(s)
n )n≥s by

Z(s)
s = •Z, ∀n ≥ s, Z

(s)
n+1 = C(Z(s)

n , (Uk,n)k∈Z) .

The starting time of Z(s) is s, but, besides that, the dynamic is the same as that of
process Z. Observe that Z(0) = Z. More generally, Z(s) has the same distribution as
(Z−s+n)n≥s. Thus, we have

dn = P

(
Z

(−n)
0,0 = •

)
.
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a. b. c. d.

Figure 4. a. The updating (Uk,n)(k,n)∈[[−9,0]]×[[−6,0]]. b. The process

Z(−3) during the span [[−3, 0]]. c. The process Z(−5) during the span
[[−5, 0]]. d. The merging of particles.

In Figure 4, we have represented space-time diagrams for the model. The point of
coordinate (k, n) corresponds to site k at step n. We have also represented the updating
variables with the following convention: at the point (k, n), there is an arrow pointing
north if Uk,n =↑ and an arrow pointing north-east if Uk,n =→. This allows to visualize

the evolution of particles in the processes Z(s). In Figures 4.b and 4.c, the processes Z(−3)

and Z(−5) are represented; the grey nodes are the ones whose color depend on updating
variables outside of the represented window. In Figure 4.d, the particles painted in
orange (gray) are those that merged into the particle present at time 0 and site 0.

Let In, n ≥ 0, be the set of indices of particles present at time −n in Z(−n) that merge

into particle 0 at time 0. Either In = [[an, bn]], an ≤ bn, in which case Z
(−n)
0,0 = •, or

In = ∅, in which case Z
(−n)
0,0 = ◦. We focus on |In|. For instance, in Figure 4.d, we have

(|In|)n∈[[0,6]] = (1, 2, 1, 2, 3, 4, 3). Observe that

(12) dn = P

(
Z

(−n)
0,0 = •

)
= P (|In| ≥ 1) .

We have a0 = b0 = 0, and |I0| = 1. Define

ρ =
1

4
δ−1 +

1

2
δ0 +

1

4
δ1 .

We check the following:

• Assume that an < bn. Then,

an+1 =

{
an − 1 if Uan−1,−n−1 =→
an if Uan−1,−n−1 =↑ , bn+1 =

{
bn − 1 if Ubn,−n−1 =→
bn if Ubn,−n−1 =↑ .

Thus, |In+1| − |In| ∈ {0,±1}, and the conditional law of |In+1| − |In| is ρ.
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• Assume that an = bn. Then

In+1 =





∅ if (Uan−1,−n−1, Uan,−n−1) = (↑,→)

[[an − 1, an − 1]] if (Uan−1,−n−1, Uan,−n−1) = (→,→)

[[an − 1, an]] if (Uan−1,−n−1, Uan,−n−1) = (→, ↑)
[[an, an]] if (Uan−1,−n−1, Uan,−n−1) = (↑, ↑) .

For instance, the third case appears between lines −3 and −2 in Figure 4.d. Here
again, the conditional distribution of |In+1| − |In| is ρ.

• If In = ∅, then In+1 = ∅.

Consequently (|In|)n∈N is a random walk with step ρ, starting from 1, and killed when
it reaches 0. Using (12), we obtain (10). �

6. Speed of convergence for models A and B

Let (An)n∈N be a realization of model A, with A0 ∼ µ, µ ∈ M({0, 1}Z). The possible
limits for weakly-converging subsequences of (An)n∈N are of the form pδ(01)Z+(1−p)δ(10)Z
for p ∈ [0, 1]. An evaluation of the distance to the limits is given by

P (A0,nA1,n ∈ {00, 11}) .

Since model A is not monotone, we do not know for which initial measure µ this distance
will be maximized. Hence we evaluate the “speed of convergence” for model A by the
quantity:

dAn = max
µ∈M({0,1}Z)

P (A0,nA1,n ∈ {00, 11}) .

The quantity dAn is also the speed of convergence to δ◦Z for model B. Indeed we have
P (A0,nA1,n ∈ {00, 11}) = P (ϕ(An)0 = •), which implies that

dAn = max
ν∈M({◦,•}Z)

P (B0,n = •) ,

where (Bn)n denotes a realization of model B and ν denotes its initial distribution
(B0 ∼ ν).

Recall that dn = 4−n
(2n+1

n

)
is the speed of convergence for model C, see (9) and

Theorem 5.2.

Proposition 6.1. We have
1

2
dn−1 ≤ dAn ≤ dn .

Let (An)n be a realization of model A, with A0 ∼ µ. If µ is the uniform distribu-
tion on {0, 1}Z, i.e. the r.v.’s Ai,0 are i.i.d. with P (A0,0 = 0) = P (A0,0 = 1) = 1/2,
then we shall see that P (A0,nA1,n ∈ {00, 11}) = dn/2. If µ = δ1Z , then we have
P (A0,nA1,n ∈ {00, 11}) = dn−1/2, which is larger than dn/2. The results can be trans-
lated to model B: the density of particles at step n is dn/2 if the initial distribution is
uniform, and it is dn−1/2 if the initial distribution is δ•Z .

The end of the section is devoted to the proof of Prop. 6.1, through the study of
model A with the two initial distribution mentioned previously.
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Figure 5. A realization of process D (gray for g(reen), black for b(lue)).

We define a new PCA, called model D, which is a coupling of models B and C. The
alphabet is {◦, b, g} and the set of sites is Z. Given a configuration u ∈ {◦, b, g}Z, the
interpretation is as follows: if ui = ◦ then site i is empty; if ui = b then site i contains a
blue particle; if ui = g then site i contains a green particle. Particles move as in models
B and C. When two particles collide, they get merged into one particle as in model
C. In absence of collision, particles keep their color. In case of a collision, the merged
particle is colored according to the rules:

(13) b+ b → g, g + g → g, b+ g → b, g + b → b .

We have represented a realization of model D on Figure 5. The “question mark” nodes
are the ones whose color depend on updating variables outside of the represented window.
Define

πB :{◦, b, g} −→ {◦, •}, πB(◦) = ◦, πB(b) = •, πB(g) = ◦ ,
πC :{◦, b, g} −→ {◦, •}, πC(◦) = ◦, πC(b) = •, πC(g) = • .

We keep the same notations for the product applications: πB : {◦, b, g}Z → {◦, •}Z, (ui)i 7→
(πB(ui))i, and πC : {◦, b, g}Z → {◦, •}Z, (ui)i 7→ (πC(ui))i.

Lemma 6.2. If (Dn)n is a realization of model D, then (πB(Dn))n is a realization of
model B, and (πC(Dn))n is a realization of model C. As consequences, model D is
ergodic with unique invariant measure δ◦Z , and dAn ≤ dn.

Let (Dn)n be a realization of model D with D0 being defined as follows: the r.v.’s
Di,0 are i.i.d. with P (D0,0 = b) = P (D0,0 = g) = 1/2. At step n, the colors of the
remaining particles are still i.i.d. and uniform : whatever the shape of the binary tree
of coalescences leading to the presence of a particle at a given position at time n (see
Figure 5 for an example), if the colors of the initial particles are independent and if one
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of these particle’s color is uniform, then, due to (13), the resulting color will still be
uniformly distributed. Therefore we have
(14)

P (πB(D0,n) = •) = P (D0,n = b) =
1

2
P (D0,n ∈ {b, g}) = 1

2
P (πC(D0,n) = •) = 1

2
dn ,

where the last equality follows from Theorem 5.2.

Now let (D̃n)n be a realization of model D with D̃0 = bZ. Define E = (Ei)i by

Ei =

{
b if D̃i,1 = b

g if D̃i,1 = ◦ or g
.

The r.v.’s (Ei)i are i.i.d. with P (E0 = b) = P (E0 = g) = 1/2. Let us justify this
point. The state at time 1 of a realization of model A that starts from 0Z is uniformly
distributed by definition. Hence, the state at time 1 of a realization of model B that
starts from •Z is uniformly distributed. And E has the same law as the latter up to the
transformation b ↔ •, g ↔ ◦.

So we have E ∼ D0. Observe also that πB(D̃1) = πB(E). We deduce that, for all

n ≥ 1, we have πB(D̃n) ∼ πB(Dn−1). In particular, using (14),

P

(
πB(D̃0,n) = •

)
= P

(
D̃0,n = b

)
= P (D0,n−1 = b) = dn−1/2 .

This completes the proof of Prop. 6.1.

Conclusion. The following question remains: does there exist a positive-rates PCA
which is non-ergodic with a unique invariant measure?

Let us provide some context. By definition, a PCA has positive-rates if all its prob-
ability transitions are different from 0 and 1 (more formally, if f : ΣV → M(Σ) is the
transition function, then ∀u ∈ ΣV ,∀v ∈ Σ, f(u)(v) ∈ (0, 1)). It had been a long standing
conjecture that all 1-dimensional positive-rates PCA are ergodic. In [5], Gács disproved
the conjecture by exhibiting a complex counter-example with several invariant measures.
The existence of the intermediate case (unique but non-attractive invariant measure) re-
mains open. A priori, it is not possible to perturbate model A to get a positive rates
example.
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