
HAL Id: inria-00609556
https://hal.inria.fr/inria-00609556

Submitted on 19 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query Reasoning on Trees with Types, Interleaving, and
Counting

Everardo Barcenas-Patino, Pierre Genevès, Nabil Layaïda, Alan Schmitt

To cite this version:
Everardo Barcenas-Patino, Pierre Genevès, Nabil Layaïda, Alan Schmitt. Query Reasoning on Trees
with Types, Interleaving, and Counting. 22nd International Joint Conference on Artificial Intelligence
IJCAI’2011, Jul 2011, Barcelone, Spain. �inria-00609556�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49974184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00609556
https://hal.archives-ouvertes.fr

Query Reasoning on Trees with Types, Interleaving, and Counting

Everardo Bárcenas,1 Pierre Genevès,2 Nabil Layaı̈da,1 and Alan Schmitt1

1 INRIA, France
2 CNRS, France

Abstract

A major challenge of query language design is the
combination of expressivity with effective static
analyses such as query containment. In the set-
ting of XML, documents are seen as finite trees,
whose structure may additionally be constrained by
type constraints such as those described by an XML
schema. We consider the problem of query contain-
ment in the presence of type constraints for a class
of regular path queries extended with counting and
interleaving operators. The counting operator re-
stricts the number of occurrences of children nodes
satisfying a given logical property. The interleaving
operator provides a succinct notation for describ-
ing the absence of order between nodes satisfying a
logical property. We provide a logic-based frame-
work supporting these operators, which can be used
to solve common query reasoning problems such
as satisfiability and containment of queries in ex-
ponential time.

1 Introduction

XML is a key technology for describing and exchanging
a wide variety of data on the Web. Analyses of XML
documents with complex constructions such as queries and
types has recently been studied [Genevès et al., 2007; Cal-
vanese et al., 2010]. XML documents can be seen as fi-
nite labelled trees, queries are expressed by regular paths
(XPath), and XML types (XML Schema, DTDs, RelaxNG)
are written in terms of regular tree types. The expressive
power of regular queries corresponds to first order logic
with two variables FO2 and regular types to monadic sec-
ond order logic MSO. Modal logics recently became pop-
ular in the context of XML due to their high expressive-
ness and nice computational properties [Genevès et al., 2007;
Calvanese et al., 2010]. We present in this work an analy-
sis framework, based on modal logic, for regular path queries
and types equipped with counting and interleaving.

Motivations The XPath query language is used to se-
lect nodes in documents. The entire XPath language con-
tains some constructs for counting and others for performing

equality tests on values. However, it is well-known that the
general combination of these features makes query reasoning
undecidable.

In the present work, paths are expressed in terms of a modal
tree logic equipped with converse and recursive navigation,
graded modalities (counting), and nominals. This logic is
known to be undecidable when interpreted over graphs [Bon-
atti et al., 2008]. We show that the logic is decidable in expo-
nential time when interpreted over finite trees.

Regular tree types can be seen as the arborescent version
of regular expressions over strings. A tree type specifies a
set of trees (called valid XML documents). The interleave
operator of XML schema allows one to describe a complex
combination of ordered and unordered contents in unranked
trees: e1&e2& . . .&en denotes the set of trees matching the
type expressions e1 to en regardless of their order.

Contributions and Outline We first define an extension of
the navigational core of the XPath language. The extension
consists in adding constructs for restricting the cardinality of
children paths. We also extend regular tree types with con-
structs for interleaving and counting. We proceed to develop
a tree logic equipped with recursion, backward navigation,
counting, and nominals. We also show that the logic can cap-
ture regular queries and types in a compact manner. We de-
scribe a satisfiability algorithm for the logic with exponential
time complexity resulting in an efficient reasoning framework
for regular paths and types with counting and interleaving.

2 Regular Path Queries

Navigation paths constitute the core of the XPath standard
query language. In their simplest form, XPath queries look
like directory navigation paths. For example, from a given
context node, the expression ch :: a/ac :: b navigates to the
children (ch) labelled with a, and from there it selects the an-
cestor (ac) nodes labelled with b. Qualifier (filter) expressions
may also be used. For instance the expression ch :: a[ac :: b],
selects the a children nodes with at least one ancestor node b.

We extend path queries with numerical constraints on chil-
dren nodes. We support for instance expressions like ac ::
a[ch::b ≤ 5]. This expression selects a ancestors with less
than 5 children labelled b. Formally, the syntax of a path
query P is defined as follows.

a :=ch | fs | pn | ps | ds | ac

P ′ :=⊤ | a | p | a ::p | P ′/P ′ | P ′[Q]

Q :=P | ¬Q | Q ∨Q | C

C :=ch ::p > k | ch > k | ch ::p[Q] > k | ch[Q] > k

P :=P ′ | /P ′ | P ∪ P | P ∩ P | P \ P

Relations between nodes are expressed with axes: ch stands
for children, fs for following siblings, pn for parent, ps for
previous sibling, ds for descendants, and ac for ancestors. In
its basic form, a path P consists of a step a ::p, which selects
the nodes reachable by the axis a and labelled with p. Steps
without restrictions on the labeling are written a. The label
of the current node is simply written p. The composition of
paths is written P1/P2. A qualified path P [Q] selects the
nodes in the path P that satisfy the boolean condition over
paths denoted by the qualifier Q. In addition, the number of
children satisfying a qualifier can be bounded: ch :: p > k is
true if and only if the number of p children is greater than the
natural number k; ¬(ch :: p > k) holds iff the number of p
children is less or equal than k. Numerical restrictions can
also be imposed on children nodes regardless of their label:
ch > k. Finally, /P denotes the nodes that are reachable by
P starting from the root. Intersection and union of paths are
interpreted as set intersection and union. P1 \ P2 denotes the
nodes in P1 that are not in P2. We refer the reader to [Genevès
et al., 2007] for a formal semantics of XPath node-selection.

3 Regular Tree Types

Regular tree types describe structural constraints for un-
ranked trees (XML documents). They encompass most of
the features found in schemas such as DTDs, XML Schemas,
and RelaxNGs except interleaving and counting. Interleaving
is however a common construct in formal languages. The ex-
pression e1&e2 interleaves the words (or trees) denoted by e1
and e2 in every possible way. It is inductively defined:

e&ǫ = ǫ&e = e

p1e1&p2e2 = p1(e1&p2e2) + p2(p1e1&e2)

where ǫ is denotes the empty word (or tree), pi are proposi-
tions and ei and e can be any expression. + stands for dis-
junction (alternation) and concatenation is expressed as usual.

The interleave operator is in general exponentially more
succinct that its full expansion [Gelade, 2010]. For instance:

p1p2 & p3p4 =p1p2p3p4 + p1p3p2p4 + p1p3p4p2+

p3p1p2p4 + p3p1p4p2 + p3p4p1p2

We extend regular tree types with operators for interleaving
and counting on children nodes. Specifically, the syntax of
extended regular tree types is defined as follows:

T :=ǫ | x | p [T] | T · T | T + T | let x.T in T

| p [T ′
1& . . .&T ′

n] | p
[

T >k
]

| p
[

T ≤k
]

Disjunction-free types T ′ are as follows, where the valuation
of x′ is a disjunction-free type T ′.

T ′ :=x′ | p [T] | T ′ · T ′

| p [T ′
1& . . .&T ′

n] | p
[

T >k
]

| p
[

T ≤k
]

We refer the reader to [Hosoya et al., 2005] for a denota-
tional semantics of regular tree types. We use the following
common syntactic sugar through the paper: T ? = ǫ + T ,
T ⋆ = let x.T in T x+ ǫ, and T + = T T ⋆.

Notice that expressions like p
[

p1 [ǫ]
⋆
&p2 [ǫ]

]

are not al-
lowed. This is because the Kleene star is not supported at top
level of interleaving. Notice however that recursion can be
used if it is not occurring at top level: p

[

p1
[

p3 [ǫ]
⋆]

&p2 [ǫ]
]

.

In XML schemas, counting constructors are used to im-
pose bounds on the number of occurrences of nodes matching
regular expressions. The semantics is analog to counting on

regular path queries. For instance, p0

[

p1 [ǫ]
>5

]

denotes trees

whose root is labelled with p0 has at least 6 children leaves la-
belled with p1. Notice that the children are not required to be
immediate siblings, in constrast with other forms of counting
in formal languages [Gelade, 2010].

4 XML Logic

We now present a unified reasoning framework for regular
path queries and tree types, as a modal tree logic equipped
with recursion, backward navigation, counting, and nominals.
We then show how to use the logic to efficiently encode reg-
ular queries and types with counting and interleaving.

There is a well known bijective encoding between un-
ranked trees and binary trees: one edge is interpreted as the
first child relation, and a second edge is used for the next sib-
ling relation. We therefore consider binary trees as models
for our logic, without loss of generality.

The syntax of logical formulas, in negation normal form,
is defined as follows:

φ :=p | ⊤ | x | ¬p | ¬⊤ | ¬〈m〉⊤ | φ ∨ φ | φ ∧ φ |

〈m〉φ | µx.φ | φ〈k〉 | φ[k]

Formulas are interpreted as sets of tree nodes. We follow
the traditional transition systems semantics of formulas in the
Kripke style but interpreted over finite tree models. A Kripke
tree K is a triple (N ,R,L), whereN is a finite set of nodes,
R : N ×M 7→ N is transition relation of nodes and modal-
ities (M is the set of modalities) forming a tree structure,
and L is a function that labels nodes with propositions. In-
formally, ⊤ denotes the full set of nodes, propositions p la-
bel nodes, and modalities m denote the transitions between
nodes, i.e., � (first child), � (next sibling), � (parent), and �

(previous sibling). A formula 〈m〉φ denotes the nodes that
can access at least one node through m such that φ holds.
Conjunction and disjunction are interpreted as set intersec-
tion and union.

A fixpoint µ is interpreted as a least fixpoint and is used for
finite recursion. The formula φ = p1∧µx.〈�〉(p0∨x)∨〈�〉x
denotes the p1 descendants of p0. We assume that variables
cannot be free and that they can only occur under the scope of
a modality or a graded operator. In order to prove correctness
of our satisfiability algorithm, we disallow variables to occur
under the scope of both a modality and its converse.

A graded formula φ〈k〉 denotes the set of nodes which have

at least k + 1 children where φ holds. φ[k] stands for the

nodes where φ holds in all but at most k children nodes. For

example, p
〈100〉
2 holds at nodes with at least 101 children p2.

Negation normal form of formulas can be obtained from
usual DeMorgan’s rules and ¬〈m〉φ = 〈m〉¬φ ∨ ¬〈m〉⊤,

¬µx.φ = µx.¬φ [x/¬x], ¬(φ
〈k〉) = (¬φ)[k], and ¬(φ[k]) =

(¬φ)〈k〉. In the sequel, we thus implicitly consider ¬φ in
negation normal form for any φ. We write φ=k instead of

φ〈k−1〉 ∧ (¬φ)[k] for k > 0.
[Bonatti et al., 2008] presented a way to encode graded for-

mulas into plain µ-calculus (without counting): p〈2〉 is equiv-
alent to 〈�〉µx1.(p ∧ 〈�〉µx2.(p ∧ 〈�〉µx3.p ∨ 〈�〉x3) ∨ 〈�
〉x2)∨〈�〉x1. However, this encoding produces exponentially
larger expressions. Since satisfiability of µ-calculus without
graded modalities is already exponential time complete, such
an encoding of graded modalities yields a doubly exponential
time decision procedure.

A nominal can be easily expressed by a constant-size log-
ical formula that explicitly enforces a proposition to occur
exactly once, as noticed in [Calvanese et al., 2010].

4.1 Query Translation

We show how regular path queries with counting operators
can be translated into logical formulas. First, notice that all
axes in regular path queries can be expressed by formulas.
The translation function F takes an axis and some context X
as input and returns the corresponding logical formula:

F (ch, X) = µx.〈�〉X ∨ 〈�〉x

F (fs, X) = µx.〈�〉X ∨ 〈�〉x

F (pn, X) = 〈�〉µx.X ∨ 〈�〉x

F (ps, X) = µx.〈�〉X ∨ 〈�〉x

F (ds, X) = µx.〈�〉(X ∨ x) ∨ 〈�〉x

F (ac, X) = 〈�〉µx.X ∨ 〈�〉x ∨ 〈�〉x

Steps are thus translated as the following conjunction: F (a ::
p,X) = F (a,X) ∧ p. For instance, given a context X , the
query ac :: p is translated into the logic as the following for-
mula: p ∧ 〈�〉µx.X ∨ 〈�〉x ∨ 〈�〉x.

For multi-step queries, the translation function is com-
posed: F (P1/P2, X) = F (P2, F (P1, X)).

Qualified query paths are expressed by the following con-
junction: F (P [Q], X) = F (P,X) ∧ F ′(Q,⊤) where F ′ is
defined below. Notice that the context is not duplicated in
this formula. Boolean combinations of qualifiers are triv-
ially translated as follows: F ′(¬Q,X) = ¬F ′(Q,X) and
F ′(Q1 ∨Q2, X) = F ′(Q1, X) ∨ F ′(Q2, X).

Counting operators are translated as follows:

F ′(ch ::p > k,X) = (p ∧X)〈k〉

F ′(ch > k,X) = X〈k〉

F ′(ch ::p[Q] > k,X) = F (p[Q], X))〈k〉

F ′(ch[Q] > k,X) = F (⊤[Q], X))〈k〉

For instance, we translate ac :: p1[ch :: p2 > 5] for a given

context X as: (p1 ∧ 〈�〉µx.X ∨ 〈�〉x ∨ 〈�〉x) ∧ p
〈5〉
2 .

Paths occurring inside qualifiers cannot be translated in the
same manner than paths occurring outside. Focus on the se-
lected nodes remains outside the qualifiers:

F ′(P1/P2, X) = F ′(P1, F
′(P2, X))

F ′(P [Q], X) = F ′(P,X ∧ F (Q,⊤))

F ′(a ::p,X) = F (a,X ∧ p)

F ′(a) = F (a)

where a = a, ch = pn, fs = ps and ds = ac. For instance,
the query ch ::p1[ch ::p2] is translated, given a context X , as:
(p1 ∧ µx.〈�〉X ∨ 〈�〉x) ∧ 〈�〉µx.(p2 ∧ ⊤) ∨ 〈�〉x.

We now conclude the translation of queries: F (/P,X) =
F (P,X ∧ ¬〈�〉⊤ ∧ ¬〈�〉⊤), F (P1 ∩ P2, X) = F (P1, X) ∧
F (P2, X), F (P1 ∪ P2, X) = F (P1, X) ∨ F (P2, X) and
F (P1 \ P2, X) = F (P1, X) ∧ ¬F (P2, X).

Theorem 4.1. Regular path queries with counting operators
translate into logical formulas of linear size.

4.2 Type Translation

Regular tree types have the same expressive power than MSO
and can be linearly translated (without counting and interleav-
ing) into µ-calculus (see for instance [Genevès et al., 2007]).
We now show how graded modalities can be used to encode
the counting and interleave operators. Given a linear trans-
lation of regular tree types without counting and interleaving
operators F , we translate inductively the counting operator:

F (p
[

T >k
]

) = p ∧ F (T)〈k〉 ∧ ¬〈�〉⊤

F (p
[

T ≤k
]

) = p ∧ (¬F (T))[k] ∧ ¬〈�〉⊤

Graded formulas are now used to encode interleaving:

F (p [T1& . . .&Tn]) =p ∧
n
∧

i=1

(F (Ti) ∧@ni)
=1

∧ ⊤=k ∧ ¬〈�〉⊤

where k is the sum of the number of propositions of each
Ti. For instance, p0 [p1 [ǫ] &p2 [ǫ]] is translated as p0 ∧ (φ ∧
@n1)

=1∧(ψ∧@n2)
=1∧⊤=2∧¬〈�〉⊤, where φ = p1∧¬〈�〉⊤

and ψ = p2 ∧ ¬〈�〉⊤. The number of occurrences of p1
and p2 is set to exactly one, and there is no restriction in the
occurrence order of the labels.

A particular attention is paid to the occurrence order of la-
bels in concatenations occurring at top level of the interleave
operator. We translate these concatenations as follows:

F (T1T2) = F (T1) ∧ 〈�〉µx.F (T2) ∨ 〈�〉x

For instance, p0 [p1 [ǫ] &(p2 [ǫ] p3 [ǫ])] is translated as p0 ∧
(φ∧@n1)

=1∧(ξ∧@n2)
=1∧⊤=3∧¬〈�〉⊤, with φ as defined

above, and ξ = p2 ∧ ¬〈�〉⊤ ∧ 〈�〉µx.(p3 ∧ ¬〈�〉⊤) ∨ 〈�〉x.
The formula ξ enforces p3 to be a following sibling of p2.

Nominals are used to distinguish identical labels. For ex-
ample, p0 [p1 [ǫ] &(p2 [ǫ] p1 [ǫ])] is translated as p0 ∧ (φ ∧
@n1)

=1∧(ξ′∧@n2)
=1∧⊤=3∧¬〈�〉⊤, where ξ′ = p2∧¬〈�

〉⊤ ∧ 〈�〉µx.(p1 ∧ ¬〈�〉⊤) ∨ 〈�〉x. As the label p1 occurs in
both φ and ξ′, we distinguish nodes with the same label with
a fresh nominal.

Theorem 4.2. Regular tree types with counting and inter-
leaving translate into logical formulas whose sizes are at
most polynomial.

Since the logic is closed under negation, we are able
to formulate several typical query reasoning problems into
the logic. For instance, consider two queries P1 and P2,
and two types T1 and T2. If the formula F (P1, F (T1)) ∧
¬F (P2, F (T2)) is unsatisfiable, then all nodes selected by
P1 under type constraint T1 are also selected by P2 under
T2. For solving such reasoning problems, we now present a
satisfiability-testing algorithm for formulas of the logic.

5 Satisfiability

We introduce a satisfiability algorithm à la Fischer-Ladner for
the logic, in the style of [Genevès et al., 2007; Demri and
Lugiez, 2010]. This is done in two steps: we first define the
nodes of tree models, then we show how the algorithm builds
the candidate tree models. We also show that the algorithm is
correct and that its complexity is exponential time.

5.1 Nodes and Trees

During the construction of candidate trees, we use counters of
children nodes in order to test graded formulas. We assume
that numbers occurring in graded formulas are coded in bi-
nary. We then define the counters in a binary form. A binary
number is written as a boolean combination of atomic propo-
sitions. For instance, 1 is written p0 ∧ ¬p1 ∧ . . . ∧ ¬pn, the
number 5 (101 in binary) is written p3∧p1∧¬p2∧ . . .∧¬pn,
for some bound n.

We define the following constant which is a bound for the
counters. Given a formula φ, we define C = n(k + 1), where

n is the number of subformulas ψ〈k′〉 occurring in φ, and k is

the greatest number occurring in the subformulas ψ〈k′〉.
Intuitively, the nodes of a given formula φ are defined as

sets of subformulas of φ, such that a formula holds at a node
iff such formula is contained in the node. In order to test
graded formulas, we use counters to verify the number of
children nodes. A bound for the sizes of the counters (number
of children) in now introduced.

Theorem 5.1. If a formula φ is satisfiable, then there is a
model of φ where each node has at most C children.

For the proof, we follow the construction of [Bonatti et al.,
2008], where the bound is proven for possibly infinite models.

The Fischer-Ladner closure of a given formula is the set of
its subformulas and their negation normal form, such that the
fixpoints are expanded once, and a counter for each graded
subformula is considered. Before defining the closure, con-
sider the following relation for i = 1, 2:

Rfl(φ1 ∧ φ2, φi) Rfl(φ1 ∨ φ2, φi) Rfl(〈m〉ψ, ψ)

Rfl
(

µx.ψ, ψ
[

µx.ψ/x
])

Rfl(ψ,¬ψ)

For graded formulas, we also consider the fixpoint formulas
that verify the existence of children nodes, and counters for
each graded subformula:

Rfl(ψ〈k〉, 〈�〉µx.ψ ∨ 〈�〉x) Rfl(ψ〈k〉, ψk
′

)

Rfl(ψ[k], 〈�〉µx.ψ ∨ 〈�〉x) Rfl(ψ[k], ψk
′

) Rfl(ψ[k],¬ψk
′

)

where k′ = 0, . . . , C. ψk
′

is a corresponding counter for each
graded formula, that is, it is the number k′ coded in binary, as
defined above with a set of fresh propositions.

For a given formula φ, the Fischer-Ladner closure FL(φ)
is defined as FL(φ) = FL(φ)n, such that k is the smallest
integer satisfying FL(φ)n+1 = FL(φ)n, where:

FL(φ)0 = {φ}

FL(φ)i+1 = FL(φ)i ∪ {ψ | R
fl(ξ, ψ), ξ ∈ FL(φ)i}.

We are now ready to define the lean set, which contains the
formulas forming the tree nodes. Consider a formula φ and a
proposition σ not occurring in φ. Given that i = 1, . . . , C, we
define the lean set of φ as follows:

lean(φ)={p, 〈m〉ψ,ψ〈k〉, ψ[k], ψk∈FL(φ)}∪{σ, 〈m〉⊤,⊤i}

We now show that the size of the lean is not significantly in-
creased w.r.t. to the formula. The size of a formula is defined
inductively in the standard way.

Lemma 5.1. Given a formula φ, the cardinality of lean(φ)
is at most polynomial w.r.t. the size of φ.

A φ-node of a formula φ, written nφ, is defined as a subset
of lean(φ), such that: at least one proposition (different than
the ones used for counters) is present; at least one counter is
present; when 〈m〉ψ occurs, also does 〈m〉⊤; and 〈�〉⊤ and
〈�〉⊤ cannot occur simultaneously. Nφ denotes the set of
φ-nodes. In the sequel, we call a φ-node simply a node.

We define an entailment relation between nodes and for-
mulas (in negation normal form) as follows:

n ⊢ ⊤

φ ∈ n

n ⊢ φ

φ 6∈ n

n ⊢ ¬φ

n ⊢ φ n ⊢ ψ

n ⊢ φ ∧ ψ

n ⊢ φ

n ⊢ φ ∨ ψ

n ⊢ ψ

n ⊢ φ ∨ ψ

n ⊢ φ
[

µx.φ/x
]

n ⊢ µx.φ

A tree is inductively defined as: the empty set ∅; or a triple
(n,X1, X2), where n is a node and X1 and X2 are trees. The
root of a non-empty tree (n,X1, X2) is n.

The notion of entailment is extended to trees: a tree X
entails a formula φ, written X φ, iff there is a node n in
X such that n ⊢ φ and there are no pending modalities, that
is, formulas 〈�〉ψ or 〈�〉ψ are not contained in the root of X .
We write X 6 φ when X does not entail φ.

5.2 The Algorithm

The algorithm builds consistent candidate trees in a bottom-
up manner. At each step, it checks whether one of the newly
built trees satisfies the formula. For a given formula φ, the
algorithm is as follows:

Y ← Nφ

X ← Leaves(Y)
X0 ← ∅
while X 6 φ or X 6= X0 do
X0 ← X
(X,Y)← Update(X,Y)

end while
if X φ then

return φ is satisfiable

end if
return φ is not satisfiable

Initially tested nodes are leaves. Given a set of nodes X , a
node is a leaf n ∈ Leaves(X) iff n ∈ X , formulas 〈�〉ψ or
〈�〉ψ do not occur in n, and the counters are initialized, that
is, for every ψk ∈ X we have that ψ0 ∈ n and n ⊢ ¬ψ, or
ψ1 ∈ n and n ⊢ ψ.

At each step of the algorithm, if newly considered nodes
do not satisfy the formula, then new candidate trees are built
recursively by adding consistent parents to previously built
trees. This process is achieved by the Update function. In
order to define this function, we first define auxiliary notions.

Given a formula φ and two nodes n1 and n2, we say
that the nodes are modally consistent for m ∈ {�,�}, writ-
ten ∆m(n1, n2) , if and only if, for all 〈m〉ψ and 〈m〉ψ in
lean(φ), we have 〈m〉ψ ∈ n1 ⇔ n2 ⊢ ψ, and 〈m〉ψ ∈ n2 ⇔
n1 ⊢ ψ.

Given a formula φ, and two nodes n1 and n2, we define
the counter consistency of the nodes as follows: #�(n1, n2)
holds iff

• for all ψ〈k〉 ∈ lean(φ), we have that ψ〈k〉 ∈ n1 iff ψk
′

∈
n2 and k < k′; and

• for all ψ[k] ∈ lean(φ), we have that ψ[k] ∈ n1 iff
⊤k0 , ψk1 , (¬ψ)k2 ∈ n2, k0 = k1 + k2, and k2 ≤ k.

#�(n1, n2) holds iff

• for all ψk ∈ lean(φ), we have that ψk ∈ n1 and n1 ⊢ ψ
iff ψk−1 ∈ n2, or

• ψk ∈ n1 and n1 ⊢ ¬ψ iff ψk ∈ n2.

The update function is in charge of checking that the newly
formed triples are modally consistent, and that the counters
are also consistent. Given the set X of triples and the set
Y of nodes, we define Update(X,Y) as the pair (X ′, Y ′):
X ′ is a set of triples (n,X1, X2) and Y ′ is the set con-
taining the nodes in Y except n, such that X1, X2 ∈ X ,
∆�(n, n1),∆�(n, n2), and #�(n, n1),#�(n, n2).

5.3 Correctness and Complexity

Termination of the algorithm is straightforward since the set
of nodes is finite and the update function is monotone. We
now show that the algorithm is sound and complete.

Theorem 5.2 (Soundness). If the algorithm returns that φ is
satisfiable, then there is a Kripke tree structure satisfying φ.

Proof sketch. Assume the algorithm builds a triple X such
that X φ, then we build a Kripke tree structure K =
(N ,R,L) from X , such that K satisfies φ.
N is the set of nodes of X . For every triple in (n,X1, X2)

in X , we have that R(n, �) = n1 and R(n,�) = n2, where
ni is the root of the non empty triplesXi (i = 1, 2). For every
p ∈ lean(φ), if p ∈ n, then L(n) = p.

We now show K satisfies φ by induction on the structure
of φ. All cases are immediate by induction and by relying
on the fact that fixpoints have an equivalent finite unfolding
(

µx.ψ ≡ ψ
[

µx.ψ/x
])

.

Theorem 5.3 (Completeness). If a formula φ is satisfiable,
then the algorithm returns that φ is satisfiable.

Proof sketch. We first build a triple X from the smallest sat-
isfying Kripke structure K, such that X φ. We then show
the algorithm can build X .

X is defined homomorphic to K, such that its nodes con-
tain the lean formulas satisfied by the corresponding nodes of
K. More precisely, for R(n, �) = n1 and R(n,�) = n2,
there is a triple in X such that (n,X1, X2) and ni is the root
of Xi. For every node n in K, we have that ψ ∈ nφ for every
ψ ∈ lean(φ), such that nφ in X is the corresponding node
of n in K. We proceed to add the counters to each node: for
every non empty sequence of sibling nodes n1, . . . , nk in K,
such that ni+1 is the following sibling of ni, and for every
counter ψk ∈ lean(φ), if ψ is satisfied at k nodes of the se-

quence, then ψk ∈ nφ1 , where nφ1 is the corresponding node
of ni.

It is now shown that X entails φ. We proceed by induction
on the structure of φ. Most cases are immediate by the con-
struction of X and by induction. For the fixpoint case µx.ψ,
we test the equivalent formula ψ

[

µx.ψ/x
]

and proceed again
by structural induction. This is also immediate since vari-
ables, and then unfolded fixpoints, can only occur under the
scope of a modality or a graded formula.

We now show the algorithm builds X by induction on the
height of K. The base case is when K is a leaf, and it is im-
mediate. For the induction step, first notice that the transition
relationR is consistent with ∆m. We know by induction that
the left and right subtrees of X have been already produced
by the algorithm. The root of X is still available in Y for
the algorithm. This is because counters distinguish identical
nodes, and we have a consistent bound for the counters (The-
orem 5.1). We then conclude X is built by the algorithm.

Theorem 5.4 (Complexity of satisfiability). Satisfiability for
the logic is EXPTIME-hard.

Proof sketch. First recall the cardinality of the lean is at most
polynomial w.r.t. to the formula size (Lemma 5.1). We then
show the algorithm is exponential w.r.t. the lean size.

The cardinality of Nφ is exponential w.r.t. the lean size.
Then the number of steps of the algorithm is bounded by 2m,
wherem is the lean size. The cost of Leaves(Nφ) relies on a
traversal on Nφ, and hence it is also exponential. Computing
each relation and 6 costs at most an exponential, since one
traversal of the nodes of X is performed and the cost of com-
puting the relation ⊢ is linear w.r.t. to the node size. The cost
of computing the Update function consists in: the searches
required to form triples (n,X1, X2), and the functions ∆ and
#. The searches are done on Y and X, each of them having
exponential size. The cost of ∆ and # relies on the one of
the relation ⊢, which is linear. Hence, each step of the itera-
tion costs at most an exponential time. Other set operations
on X and Y can be done in linear time. Therefore, the total
complexity is in EXPTIME. In addition, since the logic can
encode all finite tree automata and is closed under negation,
satisfiability for the logic is hard for EXPTIME.

Corollary 5.1. Reasoning (entailment, containment, equiv-
alence) on regular path queries and regular tree types, with
counting and interleaving, is decidable in EXPTIME.

6 Related Work

Recent research has focused on expressing counting on chil-
dren nodes only [Dal-Zilio et al., 2004; Seidl et al., 2004;
Demri and Lugiez, 2010]. In these works, modal tree logics
are equipped with Presburger arithmetic in order to express
cardinality constraints. However, all these approaches do not
support converse navigation and cannot fully support the nav-
igation core of XPath. The approach presented here allows
the multi-directional and recursive navigation required for the
full navigation core of XPath. In addition, we also support
counting constraints on children w.r.t. a constant.

The sheaves automata were introduced in [Dal-Zilio and
Lugiez, 2003] to study the relationship of counting and inter-
leaving in order to solve the entailment (satisfiability) prob-
lem of tree types. For that purpose, Presburger arithmetic for-
mulas are used to model the interleave operator. However, the
use of type constructs at top level of the interleave operator is
not allowed. The logic introduced here has a less restrictive
use of interleaving on regular tree types, since concatenation
can be used at top level. [Colazzo et al., 2009] identified
fragments of tree types supporting interleaving with linear
time complexity for containment. This came at the cost of
drastic restrictions on the occurrence of identical labels. The
approach presented here can support counting constructs for
regular tree types in addition to interleaving.

Finally, from a general perspective, we recall that when-
ever adding a useful shorthand increasing the succinctness of
a given logic, one must consider the impact to the complex-
ity of the decision procedure of the original logic itself, but
also, as importantly, consider the complexity of the transla-
tion of the added feature in terms of the original logic. The
term “combined complexity” encompasses the two. We are
notably interested in the combined complexity of deciding a
µ-calculus for finite trees with backward modalities, nomi-
nals, and counting operators.

Similar logics but without a counting operator were con-
sidered in [Vardi, 1998] and [Calvanese et al., 2009]. A µ-
calculus with inverse plus counting operators is considered
in [Barceló and Libkin, 2005]. However, a naı̈ve transla-
tion of this logic in terms of µ-calculus with inverse without
counting operators (such as the one of [Vardi, 1998]) would
be exponential. The goal of the present paper is precisely to
show how this blowup can be avoided. Furthermore, the best
known complexity of the decision procedure for the logic in

[Vardi, 1998] is 2O(n4∗log(n)) [Grädel et al., 2002] whereas
our decision procedure operates in 2O(n) w.r.t. formula size
n. In addition, for translating the interleave operator, we use
nominals, which are not supported in [Vardi, 1998]. We recall
that the µ-calculus of [Vardi, 1998] extended with counting,
backward modalities, and nominals is undecidable (see [Bon-
atti et al., 2008]). The reason why the combination of these
features remains decidable in our case is that we restrict our-
selves to finite trees.

7 Conclusion

We introduced a modal tree logic equipped with recursive
and converse navigation, and counting operators on children
nodes. We also presented a satisfiability-testing algorithm for

the logic with exponential time complexity. The logic cap-
tures regular tree types and query languages with counting
restrictions on children nodes. An extension of regular tree
languages with the interleave operator whose operands are
disjunction-free can also be described by the logic. The logic
is closed under negation and can be used to decide typical
reasoning problems on XML trees in exponential time: en-
tailment, containment, and equivalence.

References

[Barceló and Libkin, 2005] Pablo Barceló and Leonid
Libkin. Temporal logics over unranked trees. In LICS,
pages 31–40. IEEE Computer Society, 2005.

[Bonatti et al., 2008] P. Bonatti, C. Lutz, A. Murano, and
M. Vardi. The complexity of enriched mu-calculi. Log-
ical Methods in Computer Science, 4(3), 2008.

[Calvanese et al., 2009] Diego Calvanese, Giuseppe De Gi-
acomo, Maurizio Lenzerini, and Moshe Y. Vardi. An
automata-theoretic approach to regular XPath. In DBPL,
pages 18–35, 2009.

[Calvanese et al., 2010] D. Calvanese, G. De Giacomo,
M. Lenzerini, and M. Vardi. Node selection query lan-
guages for trees. In AAAI, 2010.

[Colazzo et al., 2009] D. Colazzo, G. Ghelli, L. Pardini, and
C. Sartiani. Linear inclusion for XML regular expression
types. In CIKM, 2009.

[Dal-Zilio and Lugiez, 2003] S. Dal-Zilio and D. Lugiez.
XML schema, tree logic and sheaves automata. In RTA,
2003.

[Dal-Zilio et al., 2004] S. Dal-Zilio, D. Lugiez, and
C. Meyssonnier. A logic you can count on. In POPL,
2004.

[Demri and Lugiez, 2010] S. Demri and D. Lugiez. Com-
plexity of modal logics with Presburger constraints. J. Ap-
plied Logic, 8(3), 2010.

[Gelade, 2010] W. Gelade. Succinctness of regular expres-
sions with interleaving, intersection and counting. Theor.
Comput. Sci., 411(31-33), 2010.

[Genevès et al., 2007] P. Genevès, N. Layaı̈da, and
A. Schmitt. Efficient static analysis of XML paths
and types. In PLDI, 2007.

[Grädel et al., 2002] Erich Grädel, Wolfgang Thomas, and
Thomas Wilke, editors. Automata logics, and infinite
games: a guide to current research. Springer-Verlag,
2002.

[Hosoya et al., 2005] H. Hosoya, J. Vouillon, and B. Pierce.
Regular expression types for XML. ACM Trans. Program.
Lang. Syst., 27(1), 2005.

[Seidl et al., 2004] H. Seidl, T. Schwentick, A. Muscholl,
and P. Habermehl. Counting in trees for free. In ICALP,
2004.

[Vardi, 1998] Moshe Y. Vardi. Reasoning about the past with
two-way automata. In ICALP, pages 628–641, 1998.

