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ABSTRACT
In this paper, we tackle the problem of efficient skycube
computation. We introduce a novel approach significantly
reducing domination tests for a given subspace and the num-
ber of subspaces searched. Technically, we identify two types
of skyline points that can be directly derived without using
any domination tests. Moreover, based on formal concept
analysis, we introduce two closure operators that enable a
concise representation of skyline cubes. We show that this
concise representation is easy to compute and develop an ef-
ficient algorithm, which only needs to search a small portion
of the huge search space. We show with empirical results the
merits of our approach.

1. INTRODUCTION
Recently, skyline analysis has attracted a lot of interest

due to its importance in multi-criteria decision making ap-
plications. In a multidimensional space where a preference
is defined for each dimension, a point a dominates another
point b if a is better (i.e., more preferred) than b on at
least one dimension, and a is not worse than b on every
dimension. For example, a customer buying flight tickets
from Singapore to Paris, France prefers a route of a low
price, short travel time and few transits. We say that a
route a dominates another route b if a.price ≤ b.price,
a.traveltime ≤ b.traveltime, a.n transits ≤ b.n transits,
and at least one strict inequality holds. Given a set of points,
the skyline set contains the points that are not dominated
by any other points.
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Traditional skyline computation has always been re-
stricted to the data embedding space of a fixed dimensional-
ity [2, 5, 11, 1]. Recently, the subspace skyline problem has
attracted a fast growing amount of interest. Given a set of
points in an n-dimensional space, users may be interested in
different skyline queries in different subspaces of different di-
mensions. In our air-ticket example, an executive user may
not care about the ticket price and thus will only focus on
the subspace containing the attributes travel time and num-
ber of transits. On the other hand, a traveler for leisure may
not have any time constraints and her/his only preference
is on ticket price. As elaborated in this simple example, to
handle various user queries in an efficient manner, a skyline
analysis system needs to store and retrieve efficiently the
skylines in the 2n−1 possible non-empty subspaces, that is,
taking into account all possible combination of attributes.
The set of all skylines in all non-empty subspaces is called
the skycube. This notion is similar to the idea of data cubes
in the domain of data warehousing and OLAP analysis.

Although many existing skyline computation methods,
such as pruning unnecessary dominance tests using spatial
relationships among points, may be extended to tackle the
skycube computation problem in one way or another, sky-
cube computation has some unique challenges. Particularly,
skycube needs to compute skyline sets in different subspaces.
Can we leverage some skyline points in various subspaces to
speed up skycube computation? This important direction
has only been explored preliminarily. The two major exist-
ing studies [15, 9], which explore various strategies to share
skyline computation in different subspaces, have a severe
common drawback: in order to build a skycube, they have
to enumerate and search skyline points over all possible sub-
spaces. This naturally leads to poor performance on high-
dimensional data sets. For example, for a 30-dimensional
data set, there are 230 − 1 non-empty subspaces.

Pei et al. [7] proposed Stellar, a skycube computation
method which avoids computing skylines in every subspace.
It first computes seed skyline groups in the full space and
then extends them to shape the final set of skyline groups
and their associated decisive subspaces. Stellar is, however,
still suffering from some drawbacks.

First, the performance of Stellar highly depends on the
number of seed skyline groups, since in order to shape the
final set of skyline groups, the seed skyline groups are tested
against each point which is not a full space skyline. Poor
performance may easily be caused by the fragmentation of
the seed skyline groups – each skyline group may contain
only very few points or even only one point in the full space.
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As highlighted by the authors in their experiment results,
this kind of artefact is very frequent for data sets with in-
dependent or anti-correlated distributions.
Second, while Stellar avoids enumerating all skyline

points in every non-empty subspace using the skyline quo-
tient lattice, it does not tackle the skyline computation in
the second step, since Stellar does not take advantage of
any properties or relationships between skyline points pro-
jected on different subspaces. These relationships may help
to directly derive the skylines without any domination tests.
In this paper, motivated by the above observations, we

study the problem of computing a skycube concise represen-
tation. We make two major contributions.
First, we significantly reduce domination tests in a given

subspace by identifying skylines that can be derived from sky-
lines in other subspaces. Skycube computation heavily relies
on result sharing techniques in order to reduce the domina-
tion tests. We study different properties and identify two
types of skylines: Type I skylines which can be entirely de-
rived with a single inference rule, and Type II skylines that
need advanced derivation rules or possibly domination tests.
Second, we significantly reduce the number of subspaces

needed to be searched. Based on Galois connections, we de-
fine two dual closure operators for a skycube. One of those
is then used to build a concise representation of the skycube.
We develop an efficient depth-first search algorithm to effi-
ciently compute the closed subspaces and effectively prune
the search space.
The rest of the paper is organized as follows. We review

the preliminaries and the problem of skycube computation
in Section 2. We discuss related work in Section 3. Sec-
tion 4 studies the different relations and inference proper-
ties between different subspaces. In Section 5, we introduce
the skycube closure operators and discuss the properties. In
Section 6, we develop our new algorithms. The experimen-
tal results are presented in Section 7. Section 8 concludes
the paper. All mathematical proofs and pseudo-codes are
provided in Appendices A and B.

2. PRELIMINARIES
Let D = {d1, . . . , dn} be an n-dimensional space. Con-

sider a set S of points in space D. For a point p in S, we
denote by p(di) the value of p on dimension di.
A subset U ⊆ D is a |U|-dimensional subspace of D.

Let M be a set of subspaces, i.e., M ⊆ 2D, U ∈ M is said
to be maximal in M if @V ∈M such that U ⊂ V.
In a subspace U ⊆ D, a point p is said to dominate

another point q, denoted by p ≺U q, if ∀di ∈ U , p(di) ≤ q(di)
and ∃dj ∈ U , p(dj) < q(dj). We denote by p ≺≻U q that p
and q are incomparable, that is, neither p dominates q nor
q dominates p. Two points p, q are indistinct in subspace
U if ∀di ∈ U , p(di) = q(di), denoted by p =U q.

Definition 1 (Skyline and skycube). Given a set
S of points, a point p ∈ S is a skyline point (or a skyline
for short) in a subspace U if @q ∈ S, q ≺U p. The skyline
set SKY (U) in subspace U contains all skyline points in U .
The skycube is the set of skyline sets in all non-empty

subspaces of D, that is, {SKY (U)|U ∈ 2D − ∅}.

It is easy to see that the indistinctness relation is an equiv-
alence relation (i.e., the relation is reflexive, symmetric and
transitive). Therefore, we can collect the skyline points in-
distinct from each other into a group.

Objects A B C D
o1 1 3 6 8
o2 1 3 5 8
o3 2 4 5 7
o4 4 4 4 6
o5 3 9 9 7
o6 5 8 7 7

Table 1: The running example data set S.

Definition 2 (Indistinct/incomparable skyline).
A point p ∈ SKY (U) is an indistinct skyline in subspace
U if there exists another point q ∈ SKY (U) such that p ̸= q
and p =U q. A subset X of SKY (U) is an indistinct
skyline group in U , denoted by X = {p=i }, if (1) |X| ≥ 2;
(2) for any p, q ∈ X, p =U q; and (3) for any point p ∈ X,
q′ ∈ SKY (U)−X, p ≺≻U q′.

A point p ∈ SKY (U) is called an incomparable sky-
line in space U if p does not belong to any indistinct skyline
group. In other words, p is incomparable to any other points
in SKY (U). We denote p by p≺≻.

The notions of indistinct skyline groups and incompara-
ble skylines are critical in this work. Using indistinct sky-
line groups, we remove the redundant skyline information
in a subspace. Indistinct skyline groups and incomparable
skylines represent the essential and non-redundant skyline
information in a subspace.

Definition 3 (Skyline (equivalence) class). For
subspaces U and V, SKY (U) and SKY (V) are equivalent,
denoted by SKY (U) =SKY SKY (V), if (1) the two sets
contain the same set of points; (2) p is an incomparable
skyline in SKY (U) if and only if p is an incomparable
skyline in SKY (V); and (3) a subset X ⊆ S is an indistinct
skyline group in SKY (U) if and only if X is an indistinct
skyline group in SKY (V).

A skyline (equivalence) class X ⊆ 2D − ∅ is a set of
subspaces such that ∀U ,V ∈ X , SKY (U) =SKY SKY (V)
and ∀V ′ ∈ 2D − ∅ − X , SKY (U) ̸=SKY SKY (V ′). We
denote by [U ] the skyline class that U belongs to.

The notion of skyline class captures another type of redun-
dant skyline information in multidimensional skyline analy-
sis. We can group subspaces into concise skyline classes.

Example 1 (Running example). In this paper, we
use the data set S in Table 1 containing 4 dimensions and
6 objects as the running example. The skycube contains the
skyline sets in the 15 non-empty subspaces listed in Table 2.

In our example, subspace {A} contains two indistinct sky-
line points as o1(A) = 1 = o2(A) and 1 is the minimal
value on subspace {A}. To highlight the different nature
of the skyline points, either indistinct or incomparable, the
skylines in subspace {A,D} can be written as a multiset:
{{o≺≻

3 }, {o≺≻
4 }, {o=1 , o=2 }}. Moreover, SKY ({A,D}) ̸=SKY

SKY ({B,D}), since the skyline points for {B,D} can be
represented by the multiset {{o=1 , o=2 }, {o≺≻

4 }}.

3. RELATED WORK
There is a rich body of literature on skyline computation.

Kung et al. [5] studied the Pareto frontier for a finite set of
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Subspace Skyline Subspace Skyline

A,B,C,D o≺≻
2 , o≺≻

3 , o≺≻
4 B,C o≺≻

2 , o≺≻
4

A,B,C o≺≻
2 , o≺≻

4 B,D o=1 , o
=
2 , o

≺≻
4

A,B,D o=1 , o
=
2 , o

≺≻
3 , o≺≻

4 C,D o≺≻
4

A,C,D o≺≻
2 , o≺≻

3 , o≺≻
4 A o=1 , o

=
2

B,C,D o≺≻
2 , o≺≻

4 B o=1 , o
=
2

A,B o=1 , o
=
2 C o≺≻

4

A,C o≺≻
2 , o≺≻

4 D o≺≻
4

A,D o=1 , o
=
2 , o

≺≻
3 , o≺≻

4

Table 2: The skycube of the data set S in Table 1.

vector. Börzsönyi et al. [2] introduced skyline queries into
the database community. Since then, many methods have
been developed for answering skyline queries, possibly with
various constraints or in different computational environ-
ment. An extensive survey on skyline computation methods
is interesting, but far beyond the capacity of this paper.
Until recently, most of the existing studies compute sky-

lines in a given space. Moreover, as domination tests are the
major cost in skyline computation, those methods explore
various ways to avoid or speed up domination tests.
Recently, Yuan et al. [15] computed skylines in all non-

empty subspaces in a batch and introduced the notion of
skyline cube. Simultaneously, Pei et al. [9] introduced the
notion of skycube semantics based on skyline groups and
their associated decisive subspaces. The two groups collab-
oratively integrated the two methods [10]. Moreover, Xia
and Zhang [14] studied the incremental maintenance of sky-
line cubes.
As discussed in Section 1, two new challenges emerge in

skyline cube computation. First, we need to compute sky-
lines in many subspaces. Second, it is non-trivial to develop
pruning techniques to reduce domination tests using sky-
lines crossing subspaces. Only very limited effort has been
pursued to tackle those challenges. Specifically, the first
approaches for skyline cube computation [15, 9, 10] need
to examine the skylines in every possible subspace, which
is costly when the dimensionality is high. Recently, Pei et
al. [7] proposed a new algorithm to compute skyline groups
and decisive subspaces without enumerating all the possi-
ble subspaces. Still, as analyzed in Section 1, the method
in [7] does not explore domination test reduction crossing
subspaces. Tao et al. [12] developed a filtering technique to
reduce candidates in subspace skyline queries. However, the
method is not set for skyline cube computation, and has to
be applied to subspaces one by one.
Our study is also related to formal concept analysis [3].

Although formal concept analysis has been used in many
data analysis and data mining aspects, such as mining fre-
quent closed itemsets [6], its application in skyline cube com-
putation has only been explored to a limited extent [9, 7].
Critically different from [9, 7], this study pursues a more
thorough investigation on using equivalent classes of objects
as well as of subspaces to compute and compress skylines.

4. SKYLINES DERIVATION
Domination tests, which assess whether a point is domi-

nated by some other points in the data set, contribute to the
major cost in skyline computation. This cost may become
even more severe in skycube computation since we have to

∅

B DC

A,B A,C B,C

A,B,C

A 

A,D B,D C,D

A,B,D A,C,D B,C,D

A,B,C,D

Type I Skylines

Type II Skylines

Figure 1: The border between type I and type II
skylines for the toy data set.

compute skylines in many subspaces. Orthogonal to many
techniques speeding up domination tests, a fundamental the-
oretical question is whether a skyline in a subspace can be
derived without domination tests.

Pei et al. [9] pointed out that the skyline membership
monotonicity does not hold in general. Even if an object
p belongs to SKY (U) and SKY (W) such that U ⊂ W, p
may not belong to SKY (V) where U ⊂ V ⊂ W. In this
section, we observe some interesting monotonic properties
of skyline membership which can be applied to efficiently
compute a skycube. The key idea is to carefully categorize
skyline points into indistinct skyline points and incompara-
ble skyline points, and use them in inferences.

4.1 Derivation Rules

Theorem 1 (Skyline union derivation). For sub-
spaces U and V, if p ∈ SKY (U) and p ∈ SKY (V), then
p ∈ SKY (U ∪ V).

Corollary 1. For subspaces U and V,

SKY (U) ∩ SKY (V) ⊆ SKY (U ∪ V).

Example 2. In our running example (Table 1), o1 is a
skyline in subspaces {A} and {B}. Thus, by theorem 1, o1
is a skyline in subspace {A,B}. Furthermore, object o2 is
a skyline point in subspaces {A,C} and {B}. Using Corol-
lary 1, we have {o2} ⊂ SKY ({A,B,C}).

Theorem 1 and Corollary 1 show that it is feasible to
efficiently derive some skyline points in a subspace without
any domination tests. When Theorem 1 and Corollary 1
are applicable, only simple set intersection operations are
needed to derive those skyline points.

Under what conditions, can we derive the complete skyline
set in a subspace without domination tests?

Definition 4 (Types of subspaces). A subspace U
is called a type I subspace if all points in SKY (U) are
indistinct from each other, that is, ∀p, q ∈ SKY (U), p =U q.

A subspace is of type II if it is not of type I.

Theorem 2. For subspaces U and V such that SKY (U)∩
SKY (V) ̸= ∅, if U and V are type I subspaces, then U ∪V is
a type I subspace, and SKY (U)∩ SKY (V) = SKY (U ∪ V).

Theorem 2 states that the skyline set in a type I subspace
may be efficiently computed using set intersection opera-
tions. Obviously, every one dimensional subspace is a type I
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subspace. The skyline set in a one dimensional subspace can
be obtained by a single scan of the data set even without
any index. Thus, we can extract the skyline sets in type I
subspaces in a bottom-up manner without any domination
tests. Figure 1 shows the border between the two different
types of subspaces in our running example data set.
We can also use incomparable skylines to derive some sky-

lines in a type II subspace.

Theorem 3 (Incomparability rule). If p is an in-
comparable skyline in subspace U , then for any subspace V
such that U ⊆ V, p ∈ SKY (V).

Theorem 3 can be regarded as a corollary of Theorem 1
in [9]. Our new contribution here is that Theorem 3 can be
used to derive skylines in type II subspaces directly.

Example 3. In our running example, SKY ({A,C}) =
{o≺≻

2 , o≺≻
4 }, that is, points o2 and o4 are incomparable

skyline points in subspace {A,C}. Using Theorem 3,
we know that o2 and o4 also belong to SKY ({A,B,C}),
SKY ({A,C,D}) and SKY ({A,B,C,D}).

In Table 3, we list the types and skylines of the subspaces
in our running example. Theorems 2 and 3 are effective
and efficient in deriving skylines in different subspaces in a
bottom-up manner. Only a small number of skylines need to
be computed using techniques other than the two theorems
(the rightmost column in the table).

4.2 Computing Skylines by Domination Tests
Let us discuss the two cases where domination tests are

needed.

Indistinct skylines
When we try to infer the skylines in a subspace W from
the skylines in a subspace U (U ⊂ W), SKY (U) may con-
tain indistinct skyline points (i.e., ∃p, q ∈ SKY (U), p =U
q). Those indistinct skyline points make the incomparable
derivation rule not applicable. In this case, the following
rule apply.

Theorem 4. For subspaces U and W such that U ⊂ W,
a point p ∈ SKY (U) is a skyline point in W if and only if
̸ ∃q such that q =U p, q ≺W−U p.

In order to conduct the domination tests in Theorem 4, a
block-nested-loop approach similar to BNL [2] can be used.
Critically, in the block-nested-loop, we only need to compare
in subspace W − U the indistinct skylines in subspace U .
This rule reduces significantly the size of the input and thus
the number of domination tests comparing to a thorough
search in subspace W.

New Incomparable Skylines
So far, we only try to derive skylines in a space from sky-
lines in subspaces. However, not all skylines in a space are
skylines in some subspaces.

Example 4. In our running example, SKY ({A,D}) =
{o=1 , o=2 , o≺≻

3 , o≺≻
4 } but SKY ({A}) = {o=1 , o=2 } and

SKY ({D}) = {o≺≻
4 }. Point o3 is a skyline point in sub-

space {A,D}, though it is not a skyline in either A or D.
This type of skyline points cannot be inferred by the previous
derivation rules.

We call a point p a new incomparable point in sub-
space W if p is incomparable with any skyline points in any
subspace U ⊂ W. Some new incomparable points may be
skyline points. We identify the subset of new incomparable
points which may be skyline points as follows.

Definition 5 (Entailed candidate). A point p is
an entailed candidate in a subspace U if ∀di ∈
U , minSKY (U)(di) ≤ p(di) ≤ maxSKY (U)(di), where
minSKY (U)(di) (respectively maxSKY (U)(di)) is the mini-
mum (respectively the maximum) value on dimension di of
all the skyline points in subspace U obtained by applying the
derivation rules and the indistinct skylines.

We have the following rule.

Theorem 5. In a subspace U , if a point p is not a sky-
line point obtained by applying the derivation rules and the
indistinct skylines, and is not an entailed candidate, p is not
a skyline.

Theorem 5 enables the construction of a reduced set of
skyline candidates L whose dimension values are entailed
by the previously computed skyline points. This entailment
property, which can be seen as a pruning technique, enables
the reduction of the input size (which otherwise would be
the set of all data points) and can be efficiently implemented
using an index such as B+-Trees.

Example 5. In our running example, for subspace W =
{A,D}, using the incomparability rule (Theorem 3), we de-
rive from SKY ({D}) = {o4} that o4 ∈ SKY (W). The
indistinct skylines o1, o2 from subspace {A} are also skyline
points in W. In order to find incomparable skylines candi-
dates, we must extract all points p such that: 1 ≤ p(A) ≤ 4
and 6 ≤ p(D) ≤ 8. The candidates set is L = {o3, o5}. Fur-
thermore, o3 ≺U o5, thus, SKY (W) = {o=1 , o=2 , o≺≻

3 , o≺≻
4 }.

5. CONCISE REPRESENTATION FOR
SKYCUBES

All the previous approaches on skycube computation ex-
cept for [7] have to process all possible subspaces, and thus
are unscalable when coping with high-dimensional data sets.
For example, to process a 30-dimensional data set, classical
algorithms have to process 230 − 1 subspaces.

Here we propose to reduce the number of subspaces to
be processed using notions from formal concept analysis [4],
which provides an elegant mathematical framework for a
concise skycube representation based on closure operators.

Formally, let O = S ×{≺≻,=} be the space of indistinct-
ness/incomparableness annotations of all objects in space D.
A skyline context is a triplet (O, 2D, R), where R ⊆ O× 2D

represents the skylines in subspaces. A tuple (p,U) ∈ R
means that the object p is a skyline in the subspace U .
Apparently, a skyline context can be represented in a 2-
dimensional table where each row represents a unique ob-
ject and each column represents a unique subspace. Table 4
illustrates the skyline context in our running example.

To apply formal concept analysis, we build a Galois con-
nection on the skyline context (i.e., a particular correspon-
dence between the two partially ordered sets 2O and 2D).
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Type I subspace Type II subspace
subspaces Derived from Theorem 2 Derived from Theorem 3 Others
{A,B} o1, o2 − −

{A,C}, {B,C} − o4 o2
{A,D} − o4 o1, o2, o3
{B,D} − o4 o1, o2
{C,D} o4 − −

{A,B,C}, {B,C,D} − o2, o4 −
{A,B,D} − o3, o4 o1, o2

{A,C,D}, {A,B,C,D} − o2, o3, o4 −

Table 3: The skyline points in the running example data set based on their types.

Objects A B C D A,B A,C A,D B,C B,D C,D A,B,C A,B,D A,C,D B,C,D A,B,C,D
o=1 × × × × × ×
o≺≻
1

o=2 × × × × × ×
o≺≻
2 × × × × × ×
o=3
o≺≻
3 × × × ×
o=4
o≺≻
4 × × × × × × × × × × × ×

Table 4: The skyline context in our running example.

Definition 6. For a set of objects O ⊆ O, define
α : 2O → 2D as follows, which returns the set of maxi-
mal subspaces where only the objects in O are skylines:

α(O) = { U ∈ 2D | SKY (U) = O, U is maximal } (1)

For a set of subspaces M ⊆ 2D, define β : 2D → 2O

as follows, which returns the set of objects which are the
skylines in each of the subspaces in M :

β(M) = { o ∈ O | o ∈ SKY (U), ∀U ∈M } =
∩

U∈M

SKY (U)

(2)

Example 6. Consider the skyline context in Table 4. Let
O = {o≺≻

2 , o≺≻
4 }, α(O) = { {A,B,C}, {B,C,D} }. There

are some other subspaces where o2 and o4 are unique incom-
parable skylines, such as {A,C} and {B,C}. Those sub-
spaces, however, are not maximal.
Let M = { {A}, {A,D} }, β(M) = {o=1 , o=2 }, which is

the intersection of the sets of skylines in subspaces {A} and
{A,D}.

Property 1. The pair (α, β) is a Galois connection be-
tween the two posets (2O,⊆) and (2D,⊆).

The two operators α and β are said to be dually adjoint.
Apparently, the following holds.

O ⊆ β(M)⇐⇒M ⊆ α(O) (3)

Based on the previous Galois connection properties we can
build two closure operators h∗ = α · β and h∗ = β · α. In
fact, in this work we are interested in only one of them: h∗.

Theorem 6. h∗ and h∗ are closure operators.

The closure h∗(M) of a set of subspaces M ⊆ 2D returns
the maximal subspaces U having the same skylines as M .

∅

B DC

A,B A,C B,C

A,B,C

A 

A,D B,D C,D

A,B,D A,C,D B,C,D

A,B,C,D

Figure 2: The different skyline equivalence classes
based on the closure operator h∗ in the running ex-
ample.

Obviously, this closure operator induces a partitioning of the
skycube based on the skylines in subspaces.

Definition 7. Closed subspaces and generators. For
a set of subspaces M ⊆ 2D, if h∗(M) = M , every subspace
in M is called closed. A subspace U is a generator if no
proper subspace of U is in the same equivalence class [U ].

Example 7. The equivalence classes in the running ex-
ample are illustrated in Figure 2. An equivalence class may
have multiple closed subspaces and generators. For example,
[{A,B,C}] has closed subspaces {A,B,C} and {B,C,D},
and generators {A,C} and {B,C}.

Lemma 1. For a subspace U and any subspace M ∈
h∗({U}), SKY (U) = SKY (M).

The collection of closed subspaces and the generators of
all equivalence classes are sufficient to represent a skycube –
the skylines in any subspaces can be inferred from the closed
subspaces and its associated generators.
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6. ALGORITHMS
In this section, we introduce three different algorithms

based on the theoretical results in Sections 4 and 5. Orion
is a breadth-first search algorithm that enumerates all sub-
spaces and uses all derivation rules to minimize domination
tests. Its variant, the Orion-tail algorithm, uses the entail-
ment property in order to reduce the number of candidates
for the non-trivial skylines that cannot be derived using
the skyline inference rules. The last algorithm, Orion-clos,
makes use of the collection of closed subspaces and the gener-
ators, and follows the popular divide-and-conquer paradigm
in a depth-first search to compute and store closed subspaces
and their associated skylines. Our algorithms share some
similarities with the frequent closed itemset mining algo-
rithms, like CLOSET and CLOSET+ [8, 13]. To tackle
the presence of multiple closed subspaces in a skyline equiv-
alence class, we introduce a new strategy for pruning the
search space.
To enumerate subspaces, all our algorithms use a prefix-

tree which stores additional information for each subspace.
Each node stores the identity of the subspace it represents,
the type of the subspace (i.e., I or II), and a set of skyline
points. In this skyline set, each point is marked as either
incomparable or indistinct. In addition to the prefix-tree,
the Orion-tail variant also uses B+-Trees, one for each di-
mension, in order to speed up the interval queries needed
for the selection of entailment candidates. The Orion-clos
algorithm also maintains a list (implemented as a hash list)
of closed subspaces and the associated skyline points. The
prefix-tree structure for our running example is shown in
Figure 3, where each node is labeled by the new dimension
added at the node, and the space represented by the node
is the collection of dimensions from the root to the node.
Algorithms Orion and Orion-tail are simple level-wise

search algorithms. They enumerate iteratively the skycube
lattice, starting from the simple 1-dimensional subspaces
and stopping after processing the maximum space D. At
each iteration, the algorithms check if the current subspace
is of Type I or II, apply the corresponding inference rules,
and conduct, if necessary, classical domination tests. In the
Orion-tail algorithm, the last step of the classical domina-
tion tests comes after generating and pruning an entailed
candidate in order to reduce the number of domination tests.
The pseudo-codes are given in Algorithm 1 in Appendix B.
Orion-clos uses a divide-and-conquer strategy and is

based on a recursive function depthF irstSkyComputation()
which explores the skycube lattice in a depth-first manner.
Each call to the function only considers a portion of the
search space corresponding to the superspaces of current
subspace at the search frontier.

At the first step, the skylines in the 1-dimensional sub-
spaces are computed and inserted into the prefix-tree as the
children of the root node. At the same time, the skyline
points in the full space are computed, since the full space
is always a closed subspace. Then, each of the new child
nodes are processed. The Orion-clos algorithm follows the
same reasoning as in algorithm Orion and relies heavily on
the derivation rules to reduce domination tests. Thus, for
each node processed in a depth-first manner, the algorithm
checks if the subspace is of Type I, and thus the skylines
are computed only using Theorem 2. If the subspace is of
Type II, then some of the skyline points are derived using
the incomparability rule (directly copying the incomparable
points from the direct parent node, and copying the incom-
parable points from the level 1 node having the same label)
and with an indistinct skylines comparison on the newly
added dimension. After this step, a classical domination
test (the BNL function) is applied to discover the remain-
ing non-derivable skyline points. In the depth-first search
space traversal, the selection of entailment candidates can-
not be applied since the pruning technique requires that all
subspaces must be already processed.

Thanks to the properties of the closed subspaces and their
generators, some parts or even entire branches (i.e., those
subspaces with the same closed subspaces) do not need to
be processed as they are already included in a skyline equiv-
alence class. In order to decide whether we can prune a sub-
space on a branch, the current node representing the cur-
rent processed subspace is compared with the closed sub-
spaces in the list LC. This step is similar in spirit to the
closed frequent itemset mining. However, for any itemset,
there exists only a unique closed itemset. In our case this
is not true since there may be more than one closed sub-
space in an equivalence class. Consequently, the Orion-clos
algorithm determines, for each nodeW, which sub-branches
may contain potential subspaces not covered by any of
the previously discovered closed subspaces, and prunes the
other sub-branches by simply applying the set difference
D\

∪
{ all subspaces U in closed subspaces sets s.t W ⊂ C}.

This operation is implemented using bitmap vectors for ef-
ficiency reasons. Finally, if a subspace W is not covered by
any of the closed subspaces and is maximal, it is added to the
list of closed subspaces. The pseudocode of the algorithm is
given in Algorithm 2 in Appendix B.

Example 8 (Orion-clos). In our running example, we
start from node A’s branch. The node B representing sub-
space {A,B} is generated and processed. The subspace is
in type I because SKY ({A}) ∩ SKY ({B}) = {o=1 , o=2 } ̸= ∅.
No more operations are needed for this subspace. Subspace
{A,B} is not covered by any of the closed subspaces in
the list LC = {{A,B,C,D}}, since SKY ({A,B,C,D}) ̸=
SKY ({A,B}) (recall that the full space skyline is computed
and introduced as a closed subspace at the beginning of the
algorithm). Hence, the algorithm continues to the branch in
a depth-first fashion.

The subspace {A,B,C} is in Type II, since
SKY ({A,B}) ∩ SKY ({C}) = ∅. The algorithm thus
uses the incomparability rule and copies the incomparable
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Figure 5: Scalability w.r.t. dimensionality.

A

B

B

root

C D

Skyline:

Type : I

o
1

Skyline:

Type : I

o
4

Skyline:

Type : II

C

=

<>

<>o
4

<>o
2

copy

o
2

=

Distinct skyline

computed

 through BNL

Figure 4: The computation of subspace {A,B,C}.

Data set Objects Dimensions
NBA 20493 17
MBL 92797 18

IPUMS 75836 10

Table 5: Summary of real-world data sets.

skyline points from the parent node {A,B} (no incom-
parable point) and from node {C} (point o4). The other
possible skyline points, in this case, o2, are then computed
using a classical domination test, as shown in Figure
4. Because SKY ({A,B,C}) ̸= SKY ({A,B,C,D}), the
algorithm detects that {A,B,C} is a closed subspace of a
new equivalence class. The subspace is added to the list LC.
In our running example, only 7 nodes are needed to rep-

resent the entire skycube and only 9 skyline points out of 28
need to be computed using domination tests, the rest being
inferred. This demonstrates the saving in Orion-clos.

7. EXPERIMENTS
In this section, we report an extensive experimental eval-

uation of our algorithms, using real data sets. All the algo-
rithms were implemented in C/C++ and the experiments
were performed on an 8-core Intel Xeon CPU 3.00GHz ma-
chine running Linux 2.6.31 operating system.
We compared the performance of our three algorithms

with the state-of-the-art skycube algorithms: Stellar [7] and
Skyey [9]. The real data sets used include the NBA table,

which represents NBA’s players statistics, the MLB’s base-
ball players statistics table, and a sample from the IPUMS
USA 2008 census data representing different households at-
tributes. These data sets are summarized in Table 5.

Scalability. Figure 6 shows the scalability with respect
to dimensionality. Orion, Orion-tail and Orion-clos are al-
ways faster than Skyey and Stellar on the three data sets.
Skyey and Stellar are unable to complete the skycube com-
putation for the MBL and IPUMS data sets when the dimen-
sionality are greater than six. We terminated the programs
after 48 hours.

Skyline derivations. One major contribution in this
paper is our new techniques to infer skylines without domi-
nation tests. Figure 7 shows the number of skylines derived
using our rules against the total number of skylines. Our
derivation rules are very efficient. For instance, all the sky-
lines in the NBA data set can be derived by the type I rule
and the incomparable skylines rule. This explains in part the
very short runtime of our methods on the 17-dimensional ta-
ble. The similar observation is obtained from the MBL data
set. In such cases, very few dominance tests are required
during the skycube construction. However, in the IPUMS
data set, only a small percentage of the skylines can be in-
ferred directly, which explains the longer runtime by the
Orion algorithms.

Skycube concise representation. Figure 7 compares
the number of equivalent classes (“closed nodes” in the fig-
ure) in our methods against the number of skylines. The
number of equivalent classes is dramatically less than the
number of skylines. This clearly shows the effectiveness of
the skyline concise representation. We also plot the number
of subspace skylines processed in our methods. For instance,
instead of computing the 217 possible subspaces in the NBA
data set, our methods need to process only 26, 924 subspace
skylines, store only 5, 304 closed subspaces as the concise
representation of the whole skycube. In other words, only
4% of the subspace skylines are needed to present a lossless
compression of the skycube. This explains the efficiency of
our methods in both space and time.

8. CONCLUSIONS
In this paper, we proposed new efficient methods to com-

pute skyline cubes. Our approaches significantly reduce
domination tests for subspaces and the number of subspaces
searched. Theoretically, we studied two types of skyline
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Figure 6: Skylines inferences w.r.t. dimensionality.
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Figure 7: The number of equivalent classes w.r.t. dimensionality.

points that can be easily and directly derived without any
domination tests. Moreover, based on formal concept anal-
ysis, we introduced closure operators that enable a concise
representation for skyline cubes. Our empirical study re-
sults clearly demonstrated the merits of our approach in
efficiency, scalability and conciseness.
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APPENDIX
A. MATHEMATICAL PROOFS

Proof of Theorem 1. (By contradiction). Assume p ∈
SKY (U) and p ∈ SKY (V), but p ̸∈ SKY (U∪V). According
to the definition of domination, there exists a point p′ such
that ∀di ∈ U

∪
V, p′(di) ≤ p(di) and there exists at least

a dimension dj ∈ U
∪
V such that p′(dj) < p(dj). Thus,

∀dk ∈ U , p′(dk) ≤ p(dk). This leads to a contradiction to
the assumption p ∈ SKY (U).

Proof of Theorem 2. (By contradiction). Let W =
U ∪ V. Suppose that SKY (U) ∩ SKY (V) ̸= ∅ and W is
a type II subspace. By Corollary 1, there exist at least
two points p, q in the skyline set of subspace W such that
p ≺≻W q and they are also elements of the skyline set of
subspaces U and V. This leads to a contradiction to the
assumption that U and V are type I subspaces such that
p =U q and p =V q hold.

Proof of Theorem 3. (By contradiction) Assume that
point p is an incomparable skyline in subspace U , but in a
subspace V such that U ⊂ V, p ̸∈ SKY (V).
By definition of skyline domination, there exists a point

p′ such that ∀di ∈ V, p′(di) ≤ p(di) and there exists at least
a dimension dj ∈ V such that p′(dj) < p(dj). Two cases
arise:

1. ∃dk ∈ U , p′(dk) < p(dk). This leads to a contradiction
to the assumption that p ∈ SKY (U).

2. ∀dk ∈ U , p′(dk) = p(dk), and ∃dl ∈ V \ U , p′(dl) <
p(dl). This leads to a contradiction to the assumption
that p is an incomparable skyline in U .

Proof of Theorem 4. The only-if direction is obvious.
We prove by contradiction the if direction.
Assume that there is a point q ≺W p so that p ̸∈

SKY (W). Since p ∈ SKY (U), q(di) ≤ p(di) for any dimen-
sion di ∈ U . Since q ≺W p, q(di) ≥ p(di) for any dimension
di ∈ U . Thus, q(di) = p(di) for any dimension di ∈ U , that
is, q =U p. Since q ≺W p, q(dj) ≥ p(dj) for any dimension
dj ∈ W − U , and there must be one dimension d ∈ W − U
such that q(d) > p(d). In other words, p ≻W−U , a contra-
diction to the condition p ̸≻W−U q.

Proof of Theorem 5. Consider a point p to be incom-
parable over a subspace U , by definition, this means that
∀oi ∈ SKY (U) p ≺≻U oi, hence the following two cases
need not happen:

1. p must not be smaller than the skyline points minimal
value over any dimension di (because in this case it will
dominate at least a skyline point q, p(di) < q(di))

2. p must not be bigger than the skyline points maximal
value over any dimension di (because in this case it
will be dominated by at least a skyline point q, q(di) <
p(di)).

By combining these two conditions, the result follows.

Proof of Property 1. We only need to prove that the
following properties hold. For a set of objects O ⊆ O and
a set of subspaces M ⊆ 2D, α and β are both monotonic.
Moreover, for a set of objects O1 ⊆ O and a set of subspaces
M1 ⊆ 2D,

O1 ⊆ β(α(O1)),M1 ⊆ α(β(M1)) (4)

Let O1, O2 ⊆ O be two sets of objects such that O1 ⊆ O2,
and M1,M2 ⊆ P(D) be two sets of subspaces such that
M1 ⊆M2.

1. (Monotonicity). For any U ∈ α(O2) and o2 ∈ O2,
o2 ∈ SKY (U). Since O1 ⊆ O2, for any o1 ∈ O1,
o1 ∈ SKY (U). Thus, every U ∈ α(O2) is also an ele-
ment of α(O1), which means α(O2) ⊆ α(O1).

According to Equation (2), since M1 ⊆ M2, β(M2) =
β(M1)

∩
β(M2 \M1). Thus, β(M2) ⊆ β(M1).

2. ∀o ∈ O1, we have o ∈ SKY (U) for every subspace
U ∈ α(O1). Thus, O1 ⊆ β(α(O1)). The same reasoning
applies to the dual in Equation 4.

Proof of Theorem 6. The theorem proof follows di-
rectly from the properties of the Galois connections.

• Monotonicity: M ⊆M ′ ⇒ h∗(M) ⊆ h∗(M
′).

• Idempotency: h∗(h∗(M)) = h∗(M).

• Extensivity: M ⊆ h∗(M).
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B. ALGORITHM PSEUDOCODE

Algorithm 1: Orion algorithm and its variant Orion-
tail based on derivation rules
Data: Data set S defined on space D
Result: The entire skycube
begin

O ← All Objects of data set S;
if Orion-tail variant then

Generate B+-Trees for each dimension;

while T ← SubspaceGeneration() ̸= ∅ do
foreach node representing subspace W ∈ T do

if W.father is a type I then
/* Theorem 2 derivation rule */
Choose U ,V ⊂ W s.t. |U| = |V| = |W| − 1;
SKY (W)← SKY (U) ∩ SKY (V);
if SKY (W) ̸= ∅ then

Set W as a type I subspace;

else
Set W as a type II subspace;

if W is a type II subspace then
foreach U ⊂ W s.t. |U| = |W| − 1 do

/* Incomparable skylines derivation
rule */

Copy all incomparable skylines from U ;
/* Process the indistinct skylines

based on dominations tests */

BNL(indistinct skylines of subspace U);
/* Process the new incomparable

skylines */

if Orion-tail variant then
L ← Process entailment candidates;
SKY (W)← BNL(L);

else
SKY (W)← BNL(O − SKY (W));

return SKY (W);
end

Algorithm 2: The Orion-clos algorithm

Data: A data set D
Result: The collection LC of closed subspaces sets

LC ← ∅;
Generate first level of prefix-tree P ;
Compute the fullspace skyline;
foreach root’s child node p from prefix-tree P do

DepthFirstGeneration(p,LC);
end
return LC;

Procedure DepthFirstGeneration

Data: A node p, the collection of closed subspaces sets
LC

foreach child node n of p do
if n.father is of type I then

Do intersection on parents nodes;
Adjust type (I or II) for n;

end
if n is of type II then

Copy incomparable skylines from parent nodes;
Find non-distinct skylines;
Complete with BNL over remaining points;

end
if n is covered by a closed subspaces set in LC then

if D \
∪
{ all subspaces U in LC s.t. W ⊂ C} =

B = ∅ then
Delete n from P ;

end
else

/* Develop only on non-covered

subbranches B of n */

DepthFirstGeneration(n, C);
if n is representing or part of a closed subspaces
set then

Update LC with this new subspace;

end

end
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