
HAL Id: hal-00611379
https://hal.archives-ouvertes.fr/hal-00611379

Submitted on 26 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Multiple Feature Models to Design Applications
for Mobile Phones

Clément Quinton, Sébastien Mosser, Carlos Parra, Laurence Duchien

To cite this version:
Clément Quinton, Sébastien Mosser, Carlos Parra, Laurence Duchien. Using Multiple Feature Models
to Design Applications for Mobile Phones. MAPLE / SCALE workshop, colocated with SPLC’11,
Aug 2011, Munich, Germany. pp.1-8. �hal-00611379�

https://hal.archives-ouvertes.fr/hal-00611379
https://hal.archives-ouvertes.fr

Using Multiple Feature Models to Design Applications for
Mobile Phones

Clément Quinton
INRIA Lille - Nord Europe
LIFL UMR CNRS 8022
Université Lille 1, France

clement.quinton@inria.fr

Sébastien Mosser
INRIA Lille - Nord Europe
LIFL UMR CNRS 8022
Université Lille 1, France

sebastien.mosser@inria.fr
Carlos Parra

INRIA Lille - Nord Europe
LIFL UMR CNRS 8022
Université Lille 1, France
carlos.parra@inria.fr

Laurence Duchien
INRIA Lille - Nord Europe
LIFL UMR CNRS 8022
Université Lille 1, France

laurence.duchien@inria.fr

ABSTRACT
The design of a mobile phone application is a tedious task
according to its intrinsic variability. Software designers must
take into account in their development process the versatility
of available platforms (e.g., Android, iPhone). In addition
to this, the variety of existing devices and their divergences
(e.g., frontal camera, GPS) introduce another layer of com-
plexity in the development process. These two dimensions
can be formalized as Software Product Lines (SPL), inde-
pendently defined. In this paper, we use a dedicated meta-
model to bridge the gap between an application SPL and
a mobile device one. This meta-model is also the support
for the product derivation process. The approach is imple-
mented in a framework named ApplIDE, and is used to
successfully derive customer relationship management soft-
ware on different devices.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Methodologies,
Representation; D.2.2 [Software Engineering]: Design
Tools and Techniques—Computer-aided software engineer-
ing (CASE)

General Terms
Software Product Line, Meta–Model, Feature Model, Appli-
cation for Mobile Phones

Keywords
Smartphones, Meta–Model

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC’11 August 21-26, 2011, Munich, Germany.
Copyright 2011 ACM ISBN 978-1-4503-0789-5/11/08 ...$10.00.

Mobile phones, and smartphones in particular, are highly
versatile ubiquitous systems. To automate the software de-
velopment process for this particular subset of devices, it is
important to take into account the different variations at the
level of software, in the configuration of a mobile application
product, but also at the level of hardware, and in particular,
at the features supported by different devices running on dif-
ferent operating systems. For example, a functionality for a
given application can be implemented in several ways, and,
there can also be different mobile devices available (e.g., with
or without frontal camera, GPS sensor). This combination
of possibilities represents a major challenge for developers
that want to reach a maximum of end-users.

One way to automate this development process is to use a
Software Product Line (spl) approach. In an spl, multiple
products are derived by combining a set of different core as-
sets. One of the most important challenges of spl engineer-
ing concerns variability management, i.e., how to describe,
manage and implement the commonalities and variabilities
existing among the members of the same family of software
products. A well-known approach to variability modeling
is by means of Feature Diagrams (fd) introduced as part
of Feature Oriented Domain Analysis (FODA) [9] back in
1990. A fd typically consists of (i) a hierarchy of features,
which may be mandatory (commonality) or optional (vari-
ability), and (ii) a set of constraints expressing inter-feature
dependencies. Every feature can be realized by one or more
assets. To build a product, the assets of different features are
combined to obtain a software product. In this context, fea-
tures can be seen as a way of modularizing a software prod-
uct. Modularization, as introduced by Parnas [14], refers to
the separation and localization of concerns. Separating such
concerns helps specialists to focus on small modules of their
expertise.

Contrarly to frameworks (see Sec. 5) that rely on code-
driven approaches, we propose to use models as a support
for (i) product derivation and (ii) consistency reasoning.
Our approach use Model Driven Engineering (mde) and spl
to bridge the gap between business variability and device
variability. We propose to separate each domain with two
different fds. For the business domain, we define an ap-
plication dependent fd that represents the different config-
urations available for a given business. For the device do-

main, we define an application independent fd that aggre-
gates the variability of different and heterogeneous mobile
devices. Using this separation we propose a derivation pro-
cess that automates the development process through model
merging and code generation, and that additionally analyses
automatically the constraints of each product derived, with
regard to the available mobile devices.

As a result, our derivation process allows developers to
identify conflicts between a given product and the underly-
ing hardware on which products are executed. To validate
our approach, we use as a running example a Customer Rela-
tionship Management (CRM) product family, that contains
up to 360 different product configurations. Nonetheless, the
approach proposed here is not specific to CRM applications
and can cover different domains.

The remainder of this paper is organized as follows. In
Sec. 2 we present the MobiCRM example based on CRM
applications. In Sec. 3 we describe the approach and the
way mde and spl can be combined to support mobile appli-
cation derivation. Sec. 4 presents the implementation and
the results obtained from applying the approach. Finally,
Sec. 5 compares our approach with close-related approaches
in the literature and Sec. 6 concludes the paper.

2. MOTIVATION & CHALLENGES
In this section, we present a motivating example based on

a CRM system. We discuss its representation as an fd and
we describe the challenges our proposition faces.

2.1 Adaptation to heterogenous systems
In this paper, we propose a framework to manage the

variability of mobile applications and devices to make them
available to the largest number possible. To maximize the
number of reachable end-users, a smartphone application
(i.e., a product) has to be available on a maximum of mo-
bile platforms. Unfortunately, a company has to develop
concurrently several versions of the same piece of software,
or complete software, targeting the different operating sys-
tems or devices. A piece of software, or a part of application
specifications, can also be reused in another application, al-
lowing time-saving and increasing development productiv-
ity. An alternative way is to develop it on a restricted set of
platforms, accepting to lose end-users. This is not accept-
able for a company that wants its application (e.g., products
catalog, shops location) to be available for the largest set of
end-users.

2.2 Running example
To illustrate our proposition, we introduce MobiCRM,

a CRM application family for mobile devices, e.g., smart-
phones. A CRM system allows the user to have information
about the company customers, (e.g., name, address). The
main advantage of a CRM application dedicated to smart-
phones is that the information can be retrieved anywhere.
For end-users, the entry point of the application is a login
screen. There are different ways to access the user account.
In other screens, the user retrieves a local or remote cus-
tomers list depending on his/her login. He/she also interacts
with these customers (e.g., calls them, sends them emails or
SMS, takes a picture). As a result, the MobiCRM appli-
cation family presents multiple variation points enabling a
wide range for customization in order to address different
user needs.

Interact

MobiCRM

Call

Authentication

Login

CustomerDB Location

SMS

Google Remote Local

Email

Picture

Weak Strong

requires

VideoClassic

optional
mandatory

alternative
(xor)

or

Legend

Figure 1: FMMobiCRM

We formalize these variations through the definition of a
MobiCRM feature model, FMMobiCRM (Fig. 1).

The second variability dimension in mobile applications
development is in the mobile devices and systems. For ex-
ample, a MobiCRM product P1 = {Login, Remote,V ideo}
will run on iPhone 4 but won’t be able to run on older de-
vices, e.g., iPhone 3GS. This kind of device does not have a
front-facing camera to make a video call. Furthermore, even
if the camera is available, devices running the Android op-
erating system cannot provide this functionality on versions
2.3.3 and below. Being able to identify such inconsistencies
gives strong support to designers as they are able to accu-
rately know which device is able to run their software. We
formalize these variations through the definition of a mobile
device feature model, FMdevice (Fig. 2).

Functionality

Device

System

AndroidiPhone

43 2.0 3.0

Call

SMS

Email

Picture

VideoClassic

Location

StrongWeak

...

Figure 2: FMdevice (extract)

2.3 Challenges
We propose in this contribution to combine the FMdevice

with a FMapplication, whatever the application (in our case
MobiCRM), into a single solution for product derivation
that gives strong support to mobile application developers.
For this, we have to face several challenges:

C1: Supporting application variability. The essential role
played by the variability is to use it as a starting point
for deriving products. The first challenge that has
to be faced regards the definition of a process that
uses as input any configuration obtained from the fd

FMapplication and that results in a fully functional
product.

C2: Supporting device variability. To maximize the number
of reachable end–users for the different software prod-
ucts, it is necessary to identify the inconsistencies be-
tween such products and the mobile devices on which
they have to be executed. The second challenge refers
to the automatic detection of these inconsistencies, us-
ing as input the the products of the FMapplication, and
a set of mobile devices like the ones represented by the
FMdevice.

We propose the following framework to accurately address
these challenges.

3. PROPOSAL
To face these challenges, we define a model–driven frame-

work used to (i) support the derivation process and (ii) brid-
ge the gap between an application fd and the mobile device
one.

Merge

iPhone Android Windows Phone

...

Application
Conguration

Product Derivation

Analysis

Smartphone library
(products)

Figure 3: Approach overview

We propose in a first step to tackle challenge C1 by (i) as-
sociating each application–dependent feature to a fragment
of model, (ii) merge these fragments into a model that rep-
resents the expected product. In a second step, we handle
challenge C2 by checking if this model conforms to a meta–
model representing a given device. At the end, the applica-
tion is generated using classic model transformations.

3.1 AppliDE, a Model-Driven Framework
We define AppliDE as a model–driven bridge to support

the previously described approach. It models the intrinsic

variability associated to mobile phones applications. Ap-
pliDE is built upon industrial foundations, through an in-
dustrial transfer grant between INRIA Lille–Nord Europe
and the UbInnov startup company. The main idea of this
partnership is to reduce the time–to–market between the de-
sign of an application and its availability on multiple mobile
devices.

AppliDE defines a meta–model to represent mobile appli-
cations. This meta–model allows one to model such a system
in a platform independent way, which reifies smartphones
application concepts. A model that conforms to this meta–
model describes: (i) application functionalities (e.g., send-
ing an email, retrieving device’s location), (ii) data sources
used to feed the application (e.g., local file, Web service in-
vocation), and finally (iii) user–interface elements (e.g., but-
tons, inputs). A coarse–grained description of the AppliDE
meta–model, called AppliDE MM, is depicted in Fig. 4
using the class–diagram formalism. In AppliDE, an appli-
cation is the root element of the meta–model and is defined
as a set of datasources and views. DataSources can be local
(e.g., File) or remote (e.g., WebService). Views define several
graphical objects (i.e., GUIObject) that can be both view or
widget (e.g., Button, InputText). The Instruction concept
represents a functionality (e.g., SendSMS, TakePicture, Call)
that is triggered when an event occurs on a graphical ele-
ment.

3.2 Supporting Product Derivation
To tackle the first challenge, we propose to bind each

application–dependent feature to a fragment of an AppliDE
model. Thus, a feature defined in the MobiCRM feature di-
agram holds as assets its corresponding model elements, that
conforms to the AppliDE meta–model.

Modeling Assets.
Feature assets are defined in terms of model elements, with

regard to the previously defined meta–model. Each feature
is bound to fragments of model conform to the AppliDE
meta–model. Such fragments can contain both structural
(e.g., a button and its associated event) and behavioral (e.g.,
an action triggered by an event) elements.

The main asset is associated to the MobiCRM feature and
with the mandatory features, in our case CustomerDB. It mod-
els the core of the application. It is composed by three Views,
implementing the common user–interface provided to the
user. The Authentication feature is associated to the Login-

View that hosts the Login component, used to implement the
authentication interaction. The CustomerDB feature is associ-
ated to a DataSource, which contains the customers. It also
contains graphical elements used to display these customers
and interact with them. Interact features (e.g., SendSMS)
are associated to logical elements that enrich the available
interactions with the customers.

We consider here two examples of model fragments ex-
tracted from the MobiCRM running example: (i) support-
ing customer interaction through SMS and (ii) user authen-
tication. The former is implemented through a button and
its associated event. A click on the button triggers a SMS to
be send (Fig. 5a). The latter (Login feature) is associated to
a fragment of model (depicted in Fig. 5b using UML object–
diagram syntax) that implements a Login component. This
fragment defines graphical elements (i.e.,Button and Input-

Text) used to enter login and password, embedded into a

DataSource

name : String
File

wsdl : String
WebServiceView

name : String
GUIObject

Widget

ButtonListViewBasicView InputText

name : String
Application

TouchEvent

Event

LoadEvent

Instruction

ReadDataSourceSendSMS
... ...

...

...

source
1

1..n

views events
1..n

1..n

1..ndatasources

instructions

0..n

Figure 4: The AppliDE Meta–Model (extract)

Interact

Call

Picture

Email

SMS

sms: Button

click: TouchEvent

<<listen>>

sms: Instruction

<<trigger>>

(a) The SMS feature and its asset

name:string="LoginView"
logView: BasicView

name:string="login"
login: Operator

b: Button

id: InputText

pwd: InputText <<trigger>>

click: TouchEvent

<<listen>>Authentication

LoginGoogle

(b) The Login feature and its asset

Figure 5: Features and associated model elements

view. A click on the login button triggers a call to the Web
Service login operator. We depict in Fig. 6 the running ap-
plication (in the iPhone simulator) obtained after product
derivation and model transformation.

Product derivation.
The derivation of a given product is thus supported by

usual model composition techniques. We propose to use
classical merge algorithms (e.g., Kompose [5]), denoted as
µ in this paper. The algorithm takes as input the set of
models to be merged, and produces as output the “merged”
model, i.e., the expected product. In this example, we rely
on a name–based matching mechanism, that is, the merge
algorithm identifies elements with the same name and trig-
gers their merge. We use a binding function β to asso-
ciate a given feature F and its associated model elements
{me1, . . .}. Considering a product as a set of selected fea-
tures p = {F1, . . . , Fn}, we obtain its associated model mp

Figure 6: The MobiCRM application (extract)

as the following:

mp = µ(
n⋃

i=1

β(Fi))

Let us now consider a product that includes customer in-
teraction with SMS, and authentication (Fig. 7). Thus, the
product is composed by SMS and Login features, in addition
to the application core: p1 = {Login, SMS,MobiCRM}.
The composed model (i.e., the derived product) is depicted
in Fig. 8.

Application generation.
AppliDE allows the user to generate applications source

code for several mobile devices e.g., smartphones. We rely
on model–transformation techniques to support this gener-
ative process. The AppliDE model associated to a given
product (i.e., obtained from the derivation process) is trans-
formed into its representation with regard to a given execu-
tion platform. Thus, a given model m can be transformed
into an iPhone application ai thanks to a dedicated model–
transformation τi: ai = τi(m). To support a new execution
platform pl, one defines a new transformation τpl, and adds

Interact

MobiCRM

Authentication

Login

CustomerDB

SMSRemote

requires

name:string="MobiCRM"
app : Application

name:string="LoginView"
logView: BasicView

name:string="Interact"
custView: BasicView

name:string="CustomerDB"
listView: ListView

name:string="Customer"
bo: BusinessObject

<<manipulates>>

name:string="Interact"
custView: BasicView

sms: Button

click: TouchEvent

<<listen>>

sms: Instruction

<<trigger>>

name:string="getDiary"
diaryMethod: Operator

name:string="CustomerDB"
listView: ListView

<<call>>

name:string="MobiCRM"
ws: WebService

name:string="LoginView"
logView: BasicView

name:string="login"
loginMethod: Operator

b: Button

id: InputText
pwd: InputText click: TouchEvent

<<listen>>

<<trigger>>

name:string="MobiCRM"
ws: WebService

Figure 7: Merging assets (model fragments)

name:string="MobiCRM"
app : Application

name:string="Customer"
bo: BusinessObject

name:string="MobiCRM"
ws: WebService

name:string="LoginView"
logView: BasicView

name:string="Interact"
custView: BasicView

name:string="CustomerDB"
listView: ListView

name:string="login"
login: Operator

name:string="getDiary"
diaryMethod: Operator

<<uses>>

<<manipulates>>

b: Button id: InputText
pwd: InputText

<<call>>

sms: Button

click: TouchEvent

<<listen>>

sms: Instruction

<<trigger>>
click: TouchEvent

<<listen>>

<<trigger>>

merged element

Figure 8: A MobiCRM product

it in the framework1.

3.3 Bridging the gap
The previous subsection illustrates how features defined

in the application fd are associated to fragments of models.
To tackle challenge C2, we need to bridge the gap between
this fd and the mobile device one. Following an endogenous
approach, we rely on the AppliDE meta–model to imple-
ment such a bridge: application–dependent features holds
fragments of model as assets, and device–dependent features
are associated to meta–model concepts.

d

assets: instance

assets: type

AppliDE MM

p

Pruning

m

FM
Application

FM Device

conforms to

is
derived

into

is
product

of

is
product

 of

Smartphone
company

Smartphone
expert

Functionality
MM

Application
designer

denes

denes

us
es

congures

denes

congures

Functionality
MM

d
d

d

Figure 9: Consistency verification process overview

Fig. 9 depicts the consistency verification process used
to confront a given application to a given device. It in-
volves three actors, who interact with the defined artifacts
at different time. The smartphone expert defines both Ap-
pliDE MM (containing smartphone application concepts)
and FMdevice (holding the features corresponding to exist-
ing device configurations, i.e., the set of d configurations)
provided by smartphone companies. The application de-
signer uses the AppliDE MM to configure an application,
whatever the application (in our case MobiCRM), and de-
fine its associated features. Considering AppliDE as the
bridge that connects all the different artifacts, an applica-
tion designer benefits from the two previously described ad-
vantages: (i) automatic generation of the executable appli-
cations and (ii) device analysis.

The AppliDE MM can be pruned [16] into a new meta–
model called Functionality MM. For a given device d,
a transformation extracts all the AppliDE MM concepts
associated to the Functionality features of the device fd to
obtain the Functionality MM. If a given model m derived
from a product p conforms to the Functionality MM, then
one can say that p can be executed on d.

1We rely on usual techniques (e.g., model–to–text template
engines) to implement the model–transformation chain,
which eases the development of new ones and their adop-
tion by engineers in an industrial context.

Sketching formal analysis.
Thus, we can reduce the analysis of an application prod-

uct to a type–conformance problem. On the one hand, let
p ∈ FMMobiCRM a valid product, and mp its associated
merged model. It requires a set of functionalities (denoted
as Fp), e.g., SMS sending, GPS sensor. These functionalities
are implemented in AppliDE through the concepts defined
in the meta–model (e.g., the SendSMS instruction). Thus, one
can understand Fp as the set of concepts used by the model
elements contained by mp. On the other hand, let us con-
sider now d a given device, i.e., a product defined according
to FMdevice. According to the previously given definition,
the assets associated to each feature are concepts defined in
AppliDE. Thus, the assets Ad associated to d represent a
set of concepts that one can use in an application to safely
execute it on d (a pruned meta–model [16]). An immediate
analysis to assess if a given product can be executed in a
given device is to check if Fp ⊆ Ad. Nevertheless, as we
reduce the analysis as a type conformance problem, elabo-
rated techniques from this dedicated research field can be
used to tackle this goal.

For instance, consider the following configurations:
p1 = {SMS,Email}
p2 = {SMS, V ideo}
d1 = {iPhone 3, SMS,Email,Call Classic}
d2 = {iPhone 4, SMS,Email,Call V ideo}.

Using d1 in our transformation, the Functionality MM
(called MMFunc1) obtained after pruning holds SMS, Email
and Call Classic as concepts. Using d2, it (MMFunc2) holds
SMS, Email and Call Video concepts. Let m1 the model de-
rived from p1 and m2 the model derived from p2. m1 con-
forms to MMFunc1 and MMFunc2 while m1 conforms only
to MMFunc2 We can deduce that the application associated
to the p1 configuration can be executed on d1 and d2 while
the one associated to the p2 configuration can only be exe-
cuted on d2.

This analysis allows us to determine on which device(s)
a MobiCRM product is able to run. Assuming the avail-
ability of a device catalog (expressed using FMdevice), the
result of such analysis gives to the designers the set of device
products a given MobiCRM application is consistent with
and consequently a set of ”real” devices that can execute the
application. Thus, one can immediately know the market
share reachable by his/her current product.

4. VALIDATION
In this section we present the results obtained from the

experimentation, as well as the implementation details of
AppliDE.

4.1 Experimentation
As stated before, the MobiCRM fd represents 360 dif-

ferent product configurations. To validate our approach, we
have used these configurations as input in our derivation
process. In each case, we successfully obtain a complete
product, and additionally, depending on the case, we verify
if the product can be executed on a given device.

Consider the products we have presented in Sec. 3.3. For
the product p1, after the merging and the generation of code,
we obtain a fully functional software product of around 1500
lines of code. The analysis shows that this product is com-
patible with the devices d1 and d2. For the product p2 we

also obtain a fully functional software product with a num-
ber of lines of code similar to p1. However, in this case, we
find an inconsistency with the specified device. The video
calling feature can only be used on devices with a front-
facing camera. The functional meta–model obtained after
the pruning process does not contain the meta-classes for
video calling. This product however, can be executed in de-
vices that support such functionality like the iPhone 4 and
several Android smartphones. In total, 120 out of the 360
configurations cannot be executed in the iPhone 3 (device
d1).

4.2 Implementation
Regarding the implementation, the AppliDE framework

relies on Eclipse Modeling Framework (EMF) [17] meta–
models, which is one of the most widely accepted meta–
modeling technologies. The EMF provides code generation
facilities for building tools and other applications based on a
structured data model. The XMI format is used to support
model persistence.

The feature diagrams for both MobiCRM and the mobile
devices have been described using the FAMILIAR environ-
ment [1] (Fig. 10). We also used the FAMILIAR tools to
compute the number of available configurations.

FM(MobiCRM:
[Authentication] CustomerDB

[Interact] [Location];
Authentication: (Google | Password);
CustomerDB: (Local | Remote);
Interact: (SMS|Email|Call|Picture)+;
Location: (Weak | Strong);
Remote -> Authentication;)

Figure 10: MobiCRM fd defined with FAMILIAR

From a model specification described in XMI, AppliDE is
able to generate source code files. The source code genera-
tors for Android and iPhone have been developed as Acceleo
templates, each model element being associated to code tem-
plates. iPhone template sample is depicted in (Fig. 11). The
entry point of the generators is the Application root element.

Figure 11: The Android template associated to the
SMS feature

This choice brings high flexibility to the AppliDE frame-
work. Indeed, one can target a new platform by adding cor-
responding source code generator templates (e.g., for Win-
dows Phone).

5. RELATED WORKS
Multi–view modeling approaches are used to support the

design of complex systems, based on different points of views.
In Ram (Reusable Aspect Models [12]), one can use both

class diagrams and sequence diagrams to design a system.
The approach supports the concurrent weaving of these two
kinds of artifacts, and maintains consistency. The class
diagrams are merged according to [15], and sequence dia-
grams according to Klein’s method [11]. The Theme/Uml
approach [3, 6] are another interesting multi–view modeling
approach [2], very similar to Ram. Our proposition is clearly
complementary with these ones, as we bring to the model–
composition universe the architectural knowledge that a fea-
ture diagram reifies. Moreover, these powerful mechanisms
can be reused in our approach, as we are based on the same
approach of name-matching mechanism for the underlying
composition.

Code-driven approaches, such as Rhomobile, PhoneGap,
TitaniumMobile or MoSync translate HTML and JavaScript
code into iPhone or Android source code. Contrarily to these
syntactically-driven approaches, we propose to use models
as a reasoning support. Our meta–model bridge the gap be-
tween two software product lines, thus ensuring their con-
sistency and co-evolution. Dhungana et al. [4] support evo-
lution of complex systems by defining model fragments rep-
resenting subsystem parts and checking their consistency.
The complete model is then obtained by merging fragments.
In our approach, we systematically bind a model fragment
to a given feature, introducing feature expressiveness into
these artifacts. The originality is to ensure product (merged
model) consistency according to two dimensions: applica-
tion and mobile device variability.

With regard to derivation safety, the Mata approach [18]
supports the weaving of models aspects using a graph–based
approach. This approach supports powerful conflict detec-
tion mechanisms, used to support the “safe” composition
of models [13]. The underlying formal model associated to
this detection is based on critical pair analysis [7]. Initially
defined for term rewriting system and then generalized to
graph rewriting systems, critical pairs formalize the idea of a
minimal example of a potentially conflicting situation. This
notion supports the development of rule–based system, iden-
tifying conflicting situations such as “the rule r will delete
an element matched by the rule r′” or “the rule r gener-
ates a structure which is prohibited according to the exist-
ing preconditions”. These mechanisms were demonstrated
as relevant to identify composition conflicts in the software
product line domain [8]. Unlike these approaches, in our case
we do not focus on the derivation safety of a given product
configuration. We rather aim at identifying the compatibil-
ity between a given software product and a set of available
mobile devices. This is done by specifying separately the ap-
plication and device variability, and pruning the application
meta–model with regard to each specific device configura-
tion.

6. CONCLUSION & FUTUREWORKS
In this paper, we have presented a model-driven approach

that supports mobile application development, ensuring ap-
plication products to be platform independent. We start
with a product family represented through a fd. For every
feature in the fd, we define an associated model fragment
defining an architectural element. We use the AppliDE
framework and in particular, the meta–model to bridge the
gap between the software spl and the device one. The func-
tionality features of the device fd are associated to meta–
model concepts. If the merge of fragments model conforms

to the meta–model we can deduce which device is able to
run the application.

Our approach faces the challenges identified in Section 2.
For the first challenge regarding the variability of the ap-
plication, we have presented the merging of fragments as
well as the generation of code for different mobile platforms.
For the second challenge, regarding the device variability,
we have defined a pruning process that creates a reduced
version of our application meta–model. This meta–model is
used to check if the product being derived can be executed
in a given hardware. To validate the approach, we have used
it to develop the MobiCRM product family. The results of
our experimentation show that our approach helps to deal
with the variability of a MobiCRM product (360 different
configurations) and the intrinsic variability of mobile phone
devices. Furthermore, using the model–driven process pro-
vided by the AppliDE framework, we are able to generate
fully functional software products on two different mobile
platforms.

For future work, we think that our approach can be ex-
tended to face the challenge of inconsistency resolving, help-
ing the developer to reach the maximum of end-users. Some
decision rules could be added to the framework and pro-
posed to the developer, such as remove a feature that is
only available on a few systems in order to reach a bigger
number of end-users (e.g., if one removes the Video feature
from an iPhone 4 application, one will reach all the iPhone
3 owners).

Acknowledgments
This work is supported by Ministry of Higher Education and
Research, Nord–Pas de Calais Regional Council and FEDER
through the Contrat de Projets Etat Region Campus Intel-
ligence Ambiante (CPER CIA) 2007-2013.

7. REFERENCES
[1] M. Acher, P. Collet, P. Lahire, and R. France. A

domain-specific language for managing feature models.
In Symposium on Applied Computing (SAC).
Programming Languages Track, March 2011.

[2] O. Barais, J. Klein, B. Baudry, A. Jackson, and
S. Clarke. Composing Multi-View Aspect Models. In
ICCBSS, pages 43–52. IEEE Computer Society, 2008.

[3] A. Carton, C. Driver, A. Jackson, and S. Clarke.
Model-Driven Theme/UML. In T. Aspect-Oriented
Software Development VI [10], pages 238–266.

[4] D. Dhungana, P. Grünbacher, R. Rabiser, and
T. Neumayer. Structuring the modeling space and
supporting evolution in software product line
engineering. Journal of Systems and Software,
83(7):1108–1122, 2010.

[5] F. Fleurey, B. Baudry, R. France, and S. Ghosh. A
Generic Approach For Automatic Model Composition.
In Aspect Oriented Modelling workshop at MoDELS,
2007.

[6] H. Gomaa and M. E. Shin. A multiple-view
meta-modeling approach for variability management in
software product lines. In ICSR, pages 274–285, 2004.

[7] R. Heckel, J. M. Küster, and G. Taentzer. Confluence
of Typed Attributed Graph Transformation Systems.
In ICGT ’02: Proceedings of the First International

Conference on Graph Transformation, pages 161–176,
London, UK, 2002. Springer-Verlag.

[8] P. K. Jayaraman, J. Whittle, A. M. Elkhodary, and
H. Gomaa. Model Composition in Product Lines and
Feature Interaction Detection Using Critical Pair
Analysis. In G. Engels, B. Opdyke, D. C. Schmidt,
and F. Weil, editors, MoDELS, volume 4735 of Lecture
Notes in Computer Science, pages 151–165. Springer,
2007.

[9] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain
Analysis (FODA) - Feasibility Study. Technical
report, The Software Engineering Institute, 1990.

[10] S. Katz, H. Ossher, R. France, and J.-M. Jézéquel,
editors. Transactions on Aspect-Oriented Software
Development VI, Special Issue on Aspects and
Model-Driven Engineering, volume 5560 of Lecture
Notes in Computer Science. Springer, 2009.

[11] J. Kienzle, W. Al Abed, and J. Klein. Aspect-Oriented
Multi-View Modeling. In AOSD ’09: Proceedings of
the 8th ACM international conference on
Aspect-oriented software development, pages 87–98,
New York, NY, USA, 2009. ACM.

[12] J. Klein and J. Kienzle. Reusable Aspect Models. In
11th Workshop on Aspect-Oriented Modeling, AOM at
Models’07,, 2007.

[13] G. Mussbacher, J. Whittle, and D. Amyot.
Semantic-Based Interaction Detection in
Aspect-Oriented Scenarios. In RE, pages 203–212.
IEEE Computer Society, 2009.

[14] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, 15(12):1053–1058, December 1972.

[15] Y. Reddy, S. Ghosh, R. France, G. Straw, J. Bieman,
N. McEachen, E. Song, and G. Georg. Directives for
Composing Aspect-Oriented Design Class Models. In
Transactions on Aspect-Oriented Software
Development I, pages 75–105, 2006.

[16] S. Sen, N. Moha, B. Baudry, and J.-M. Jézéquel.
Meta-model pruning. In A. Schürr and B. Selic,
editors, MoDELS, volume 5795 of Lecture Notes in
Computer Science, pages 32–46. Springer, 2009.

[17] D. Steinberg, et al. EMF: Eclipse Modeling Framework
(2nd Edition). 2nd revised edition (rev). edition, 2009.

[18] J. Whittle, P. K. Jayaraman, A. M. Elkhodary,
A. Moreira, and J. Araújo. MATA: A Unified
Approach for Composing UML Aspect Models Based
on Graph Transformation. In T. Aspect-Oriented
Software Development VI [10], pages 191–237.

