
HAL Id: inria-00612413
https://hal.inria.fr/inria-00612413

Submitted on 29 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proving Computational Geometry Algorithms in TLA+2
Hui Kong, Hehua Zhang, Xiaoyu Song, Ming Gu, Jiaguang Sun

To cite this version:
Hui Kong, Hehua Zhang, Xiaoyu Song, Ming Gu, Jiaguang Sun. Proving Computational Geome-
try Algorithms in TLA+2. 5th IEEE International Conference on Theoretical Aspects of Software
Engineering(TASE 2011), Aug 2011, Xi’an, China. �inria-00612413�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49971562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00612413
https://hal.archives-ouvertes.fr

Proving Computational Geometry Algorithms in TLA+2

Hui Kong∗§¶, Hehua Zhang†§¶, Xiaoyu Song‡, Ming Gu†§¶, Jiaguang Sun†§¶
∗Dept.CST, Tsinghua Unviersity, Beijing, China

Email: kong-h08@mails.tsinghua.edu.cn
†School of Software, Tsinghua University, Beijing, China
‡Dept.ECE, Portland State University, Oregon, U.S.A

§Key Laboratory for Information System Security, Ministry of Education
¶Tsinghua National Laboratory for Information Science and Technology

Abstract—Geometric algorithms are widely used in many
scientific fields like computer vision, computer graphics. To
guarantee the correctness of these algorithms, it’s important
to apply formal method to them. In this paper, we propose an
approach to proving the correctness of geometric algorithms.
The main contribution of the paper is that a set of proof
decomposition rules is proposed which can help improve the
automation of the proof of geometric algorithms. We choose
TLA+2, a structural specification and proof language, as our
experiment environment. The case study on a classical convex
hull algorithm shows the usability of the method.

Keywords-loop invariant; algorithm verification; theorem
proving; TLA+2; geometry algorithm;

I. INTRODUCTION

Computational geometry is an important discipline in
computer science. It mainly focuses on studying algorithms
for solving geometric problems [1]. The applications of
geometric algorithms range over a variety of scientific fields
such as computer graphics, computer vision, robotics, as-
trophysics. Therefore, guaranteeing the correctness of these
algorithms is crucial, especially when they are used in
safety-critical cases.

One common feature of computational geometry algo-
rithms is their involvement in plenty of operations on large
numbers of points, lines, or planes. Consequently, array is
the most commonly-used data structure to store these geo-
metric elements. This usually means that the loop invariants
of these algorithms contain some predicates with quantifiers.
Therefore, to prove the correctness of these algorithms, we
need some approaches to proving the loop invariants of this
form.

However, currently, there are no effective automatic meth-
ods for this purpose and it mainly depends on sophisticated
researchers to do this work manually in interactive theorem
provers like Coq etc [2]. This may work well for those
illustrative simple examples, but for those complex realistic
problems such as array-based geometric algorithms, the
work will become error-prone and uncontrollable.

In this paper, we propose an approach to improving the
automation of the proof of the loop invariants of geometric

algorithms. Our interest lies in those whose loop invariants
are predicates with quantifies. The basic idea is as follows:

1) structural decomposition. Given a geometric algorithm
G and its candidate loop invariant I as well as the
proof obligation G ∧ I ⇒ I ′, by transforming G
and I into DNF(Disjunctive Normal Form) and I ′

into CNF(Conjunctive Normal Form) respectively, the
proof obligation is decomposed into a number of
simpler proof obligations such that each of them is
an implication whose precondition and consequence
are a conjunction and a disjunction respectively.

2) quantifier decomposition. Based on the result of the
previous decomposition, the consequence part of every
sub-proof obligation should be a PNF(Prenex Normal
Form) of the form Q1x1...Qnxn : x1 ∈ D′

1 ∧ ... ∧
xn ∈ D′

n ⇒ P ′(x1, ..., xn), where Qi is a universal
or existential quantifier. According to the change to
domains of quantified variables, each domain D′

i is
divided into two parts: the unchanged part and the
added part with respect to its corresponding domain
Di before the loop. Based on this division, every
sub-proof obligation is further decomposed into lots
of much simpler cases which is often obvious to
an interactive theorem prover or need a little human
intervention.

As convex hulls are widely used in computational ge-
ometry, we choose a typical two dimension convex hull
algorithm-Graham’s Algorithm for our case study. We
choose TLA+2 as the algorithm specification and proof
language and TLA+ toolbox as the experiment environment.

The remainder of this paper is organized as follows.
Section II briefly introduces the preliminaries of our method.
Section III introduces the formal specification of convex hull
and the Graham’s algorithm in TLA+2. Section IV demon-
strates on how to prove a loop invariant for a geometric
algorithm. Section V explain briefly our experiment result.
Section VI introduces related work. Finally, we conclude our
work in Section VII.

II. PRELIMINARIES

TLA+2 is a formal specification and proof language based
on TLA(Temporal Logic of Actions), a logic developed by
Leslie Lamport, which combines temporal logic with a logic
of actions[3].

TLA+2 is used to describe behaviors and properties of
sequential or concurrent systems. System behaviors are
usually specified with a standard TLA+ specification:

Init ∧2[Next]vars ∧ L (II.1)

where Init is the initial predicate, Next is the next state
action, vars is the tuple of all variables, L is a temporal
formula that usually specifies a liveness constraint. Next is
a disjunction of multiple actions. An action is an expression
containing primed and non-primed variables. The meaning
of the non-primed variables is the variable’s value in current
state. The meaning of primed variables is the variable’s value
in the next state. An action expresses a transition relation.

Generally, important properties of a specification can
often be expressed as invariants. Proving that a predicate P
is an invariant of a specification means proving the formula

Init ∧2[Next]v ⇒ 2P (II.2)

It is proved by finding an appropriate state predicate Inv and
proving the following three formulae [3]:

Init⇒ Inv (II.3)
Inv ∧ [Next]v ⇒ Inv′ (II.4)
Inv ⇒ P (II.5)

III. SPECIFYING CONVEX HULL AND GEOMETRIC
ALGORITHM

A. Specifying Convex Hull

Intuitively, the convex hull of a set of points in the plane
is the shape taken by a rubber band stretched around nails
pounded into the plane at each point. Formally, we give a
slightly different definition from [2] in TLA+2: .

Definition 3.1: Let P and S be two arrays of points, we
say that S is a convex hull of P if the following predicate
holds,

IsCnvxHull(S, P) ,SubArray(S, P) ∧ Len(S) ≥ 2

∧Different(S) ∧Different(P)

∧ Inside(P, S)
(III.1)

where SubArray(S, P) is an array-based alternative repre-
sentation to subset, which is defined as follows

SubArray(S, P) ,∀i : ∃j : i ≥ 1 ∧ i ≤ Len(S) ∧ j ≥ 1

∧ j ≤ Len(P)⇒ S[i] = P [j]

Different(P) decides whether all the points in P are
different, Inside(P, S) is used to decide whether all the
points of P lies inside of the polygon formed by S,

Inside(P, S) ,∀i, j : i ≥ 1 ∧ i ≤ Len(S)− 1

∧ j ≥ 1 ∧ j ≤ Len(P)

⇒ NotAtRight(S[i + 1], S[i], P [j])

∧NotAtRight(S[1], S[Len(S)], P [j])

where NotAtRight(A,B,C) means C does not lies to the
right of the directed line from A to B.

This formal definition will be used to define the postcondi-
tion of a convex hull algorithm. Obviously, the postcondition
will consist of many predicates with quantifiers which is
exactly what we are interested in.

B. Specifying Graham’s Algorithm
The pseudo code of Graham’s Scan can be found in [4].

We specify it in TLA+2 as follows. Remark that we omit
the sort operation in this specification and assume that P
is already sorted, which means that all the points appear
strictly counterclockwise around the point P [1] in the order
in which they appear in P . S is a stack used to store the
resulting convex hull.
VARIABLES i, P, S, pc
vars == << i, P, S, pc >>
Init == /\i = 3/\S = <<P[2],P[1]>>/\pc = "Lbl_1"
Lbl_1 == /\ pc = "Lbl_1"

/\ IF (i <= Len(P))
THEN /\IF(LeftOf(S[2],S[1],P[i]))

THEN /\ S’ = Push(S,P[i])
/\ i’ = i + 1

ELSE /\ S’ = Pop(S)
/\ UNCHANGED i

/\ pc’ = "Lbl_1"
ELSE /\ pc’ = "Done"

/\ UNCHANGED << i, S >>
/\ UNCHANGED << P >>

Next == Lbl_1 \/ (pc = "Done" /\ UNCHANGED vars)
Spec == Init /\ [][Next]_vars
PostCondition == IsCnvxHull(S,P)

According to the specification, the verification goal "when
the algorithm terminates, the point array S is the convex hull
of P " can be formalized in TLA+2 as:

Prop , pc = ”Done”⇒ IsCnvxHull(S, P)

It is regarded as an invariant that should always hold for
the specification. As a result, we obtain the final Verification
Condition(VC) of the algorithm that corresponds to formula
(II.2).

V C , Init ∧2[Next]vars ⇒ 2Prop (III.2)

As explained in Section II, to prove this formula, we need
to find and prove an inductive loop invariant that implies
this one. Finding a loop invariant is out of the scope of
this paper. In the following section, we focus on how to
prove a complex inductive loop invariant by the proposed
decomposition rules.

IV. PROVING GEOMETRIC ALGORITHMS

In this section, we take Graham’s algorithm as example to
demonstrate on how to prove the correctness of a geometric
algorithm. Given a geometric algorithm, we follow the
paradigm described by the formulae (II.3), (II.4), (II.5) to
perform the proof procedure.

A. Establishing the Loop Invariant
A standard method to obtain a candidate loop invari-

ant is replace constants occurring in the postcondition
by some variables involved in the loop and then re-
vise the candidate loop invariant according to the failed
proof attempt [5]. Inspired by the standard method, we
obtain heuristically the initial candidate loop invariant
IsCnvxHull(S, F irst(P, i − 1)) from the postcondition
IsCnvxHull(S, P), where First(P, i − 1) means <
P [1], ..., P [i−1] >. Through multiple times of proof attempt
and revision, we reach the final loop invariant.

I ,∀j : j ≥ 2 ∧ j ≤ i− 1

⇒ (P [j] = S[1]⇒ IsCnvxHull(S, F irst(P, j)))

∧ ∀j, k : j ≥ 2 ∧ j ≤ i− 1 ∧ k ≥ j + 1 ∧ k ≤ i− 1

⇒ (P [j] = S[1]⇒ ¬LeftOf(S[1], P [k], P [i]))

∧ i ≤ Len(P) + 1

∧ i = Len(P) + 1⇒ S[1] = P [Len(P)]

∧ pc = ”Done”⇒ i = Len(P) + 1

(IV.1)

According to Definition 3.1, the expansion of the formula
(IV.1) consists of a number of predicates with quantifiers.
This is a typical form for most geometric algorithms. In
the following subsection, we introduce how to prove a loop
invariant of this form.

B. Decompose Proof Obligation

According to the paradigm introduced in Section II, the
proof of the formula (III.2) is transformed into the proof of
the following three formulae (II.3), (II.4) and (II.5).

Init⇒ I (IV.2)
[Next]vars ∧ I ⇒ I ′ (IV.3)
I ⇒ Prop (IV.4)

where Init and Next are defined in the Graham’s algorithm
specification. The proofs of formula (IV.2) and (IV.4) are
relatively intuitive, we don’t bother to detail on them.
We lay the emphasis on the proof of the formula (IV.3)
which is much more complicated due to the existence of
numbers of predicates with quantifiers. Regarding this kind
of proof obligation, we propose a structure decomposition
rule and a quantifier decomposition rule correspondingly for
the overall proof structure and the predicates, both of which
can be implemented on computer to break a monolithic proof
obligation into many simpler cases.

Rule 4.1: Structure Decomposition Rule(SDR). For a
given a geometric algorithm, let Next be the next state
action and Inv be the candidate loop invariant. Suppose

Next has the following DNF and Inv has the following
DNF and CNF respectively:

Next , A1 ∨A2 ∨ ... ∨Ap

Inv , B1 ∨B2 ∨ ... ∨Bq , C1 ∧ C2 ∧ ... ∧ Cr

then the proof obligation [Next]vars ∧ Inv ⇒ Inv′ is
equivalent to the following formula:

∀j, k, l :j ≥ 1 ∧ j ≤ p ∧ k ≥ 1 ∧ k ≤ q

∧ l ≥ 1 ∧ l ≤ r ⇒ (Aj ∧Bk ⇒ C ′
l)

(IV.5)

According to the rule SDR, by computing the correspond-
ing DNF and CNF of the specification and the loop invariant,
a monolithic proof obligation can be broken into p× q × r
simpler proof obligations, where p, q and r are decided by
the depth of the expansion of the predicates. In order to
control the scale of the generated subproof obligations, the
expansion should be performed case by case and layer by
layer according to the result of each subproof attempt.

Based on this method, for example, the DNF of Graham’s
algorithm specification consists of 4 conjunctions (refer to
the TLA+2 specification of the algorithm in Section III-B):

1) A1 , pc = ”Lbl1” ∧ i ≤ Len(P) ∧ LeftOf(S[2], S[1], P [i]) ∧
S′ = Push(S, P [i]) ∧ i′ = i+ 1 ∧ pc′ = ”Lbl1”

2) A2 , pc = ”Lbl1”∧i ≤ Len(P)∧¬LeftOf(S[2], S[1], P [i])∧
S′ = Pop(S) ∧ i′ = i ∧ pc′ = ”Lbl1”

3) A3 , pc = ”Lbl1” ∧ ¬(i ≤ Len(P)) ∧ i′ = i ∧ S′ = S ∧ pc′ =
”Done”

4) A4 , pc = ”Done” ∧ UNCHANGED vars

As for the loop invariant I , the DNF has 1 conjunctions
and the CNF has 5 disjunctions in the case of non-expansion.
According to the SDR rule, the number of the resulting
sub-proof obligations is 20. Among of these subproof obli-
gations, some are fairly trivial and hence can be proved
automatically, some need to be further decomposed.

In the following part, we introduce another rule-quantifier
decomposition rule. The idea is based on the observation that
every combination of the partitions of the domains of the
quantified variables reflects a different geometric situation
that may require different geometric theorems to prove.

Suppose C is a formula with the following PNF:

C , Γ ~s : ~s ∈ ~S ⇒ P (~s) (IV.6)

where

Γ , (Q1, Q2, ..., Qn), Qi ∈ {∀,∃}, ~s , (s1, s2, ..., sn)

Γ ~s , Q1s1 : Q2s2 : ... : Qnsn

~S , S1 × S2 × . . .× Sn (i.e. =

n∏
i=1

Si)

Under this definition, the n-dimension space ~S′ can be
represented as the union of 2n n-dimension subspaces,
which can be written as:

~S′ =

Ŝi∈{Si,S
∗
i }⊔

i=1...n

(

n∏
j=1

Ŝj) (IV.7)

where Si , Si ∩ S′i, S∗i , S′i − Si ∩ S′i.
Consider that the predicates with universal quantifiers

have different decomposition paradigm from the predicates
with existential quantifiers, we divide Si into two groups by
the quantifier Qi, represented as:

S∀ , {i|Qi = ∀}, S∃ , {i|Qi = ∃}

Rule 4.2: Quantifier Decomposition Rule(QDR). Sup-
pose A is an action of the algorithm specification, B is
a conjunction of the DNF of the loop invariant, C is a
disjunction of the CNF of the loop invariant, which has the
PNF expressed as the formula (IV.6). For a given subproof
obligation A ∧ B ⇒ C ′, it’s equivalent to the following
formula:
Ŝi∈{Si,S

∗
i }∧

i∈S∀

(

Ŝj∈ {Sj ,S
∗
j }∨

j∈S∃

A ∧B ⇒ (Γ~s : ~s ∈
n∏

k=1

Ŝk ⇒ P ′(~s)))

(IV.8)

According to the rule QDR, a subproof obligation is
decomposed into 2|S∀| disjunctions.

Usually, proving every conjunct of the above formula
requires different proof strategy depending on the essence of
the combination of the partitions. In fact, proving the loop
invariant thoroughly involves several important geometric
theorems and plenty of human intervention, decomposition
provides an automatic mechanism to separate the geometric
situations in which different geometric theorems apply.

V. EXPERIMENT

In this proving practice of Graham’s algorithm, we wrote
more than 800 lines of proof codes in the integrated devel-
opment environment TLA+ toolbox with the version 1.2.1.
We ran it on a laptop with an Intel Core I3-370 2.4G CPU
and 4G memory space. It took the computer 4.5 minutes to
finish all the proofs.

VI. RELATED WORK

The application of formal method to computational ge-
ometry problem is not pervasive. In 1992, Knuth designed
a counter-clockwise(CC) system by an axiomatic approach
in his book Axioms and Hulls [6] to formalize geometric
problem. Based on the geometric axioms presented by
Knuth, Pichardie and Bertot proved the correctness of an
incremental algorithm and a package wrapping algorithm
with the theorem prover Coq[2]. Chou [7] uses algebraic
method to automatically prove theorems about figures like
straight lines, triangles, and circles, geometric algorithms are
out of their scope.

Verifying an algorithm by verifying its loop invariant by
the theory of Floyd-Hoare logic is one of the main methods.
Denmat et al and Ponsini et al proposed constraint-based
reasoning approach to prove the loop invariant [8], [9]. Some
heuristic methods about finding loop invariant are proposed
in [5], [10], [9].

VII. CONCLUSION

In this paper, we propose an approach to proving the
correctness of geometric algorithms. Focusing on the loop
invariants consisting of some predicates with quantifiers, we
propose two proof obligation decomposition rules to trans-
form a monolithic proof obligation into numbers of simpler
subproof obligations, which can implemented to improve
the automation of the proof procedure. By taking Graham’s
algorithm as example, we demonstrate the application of the
decomposition rules. The result shows that the approach is
practical in computational geometry field.

In the future work, we will try to improve the automation
extent of the approach and implement it in tools.

ACKNOWLEDGMENT

This research is supported in part by NSFC Pro-
grams (No.91018015,No.60811130468) and 973 Program
(No.2010CB328003) of China and system@tic-Ile de France
Region-CSDL.

REFERENCES

[1] F. Preparata and M. Shamos, Computational geometry: an
introduction. Springer, 1985.

[2] D. Pichardie and Y. Bertot, “Formalizing convex hull algo-
rithms,” Theorem Proving in Higher Order Logics, pp. 346–
361, 2001.

[3] L. Lamport, Specifying systems: The TLA+ language and
tools for hardware and software engineers. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2002.

[4] J. O’rourke, “Computational geometry,” ACM SIGACT News,
vol. 25, no. 1, pp. 31–33, 1994.

[5] J. Stark and A. Ireland, “Invariant discovery via failed proof
attempts,” Logic-Based Program Synthesis and Transforma-
tion, pp. 271–288, 1999.

[6] D. Knuth, “Axioms and Hulls, volume 606 of Lecture Notes
Comput. Sci,” 1992.

[7] S. Chou, X. Gao, and J. Zhang, Machine proofs in geometry.
World Scientific Singapore, 1994.

[8] T. Denmat, A. Gotlieb, and M. Ducassé, “Proving or disprov-
ing likely invariants with constraint reasoning,” Arxiv preprint
cs/0508108, 2005.

[9] O. Ponsini, H. Collavizza, C. Fédèle, C. Michel, and M. Rue-
her, “Automatic verification of loop invariants,” in Software
Maintenance (ICSM), 2010 IEEE International Conference
on. IEEE, 2010, pp. 1–5.

[10] S. Kauer and J. Winkler, “Mechanical inference of invariants
for FOR-loops,” Journal of Symbolic Computation, 2009.

