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Energy-aware wireless networked control using radio-mode management in
the case of a finite horizon

Matthew Fitch, Nicolas Cardoso De Castro, Federica Garin

Abstract— Energy efficiency is one of the main issues in
wireless Networked Control Systems. The control community
has already shown large interest in the topics of intermittent
estimation and control, allowing to turn off the radio of
the nodes which is the main energy consumer. While the
existing literature only addresses policies using two radio-modes
(ON/OFF), this paper considers intermediate radio-modes (e.g.
IDLE), which consume less energy than the ON mode and offer
better reactivity than the OFF mode, but introduce transition
costs. The objective of the paper is to discuss the relevance and
benefit to use low consuming radio-modes and to propose a
mode switching policy to perform a trade-off between energy
savings and performance of the control application in the
case where we have a finite horizon. We propose two possible
algorithms which solve this using dynamic programming, and
then test them with an example of an application.

Index Terms— Networked Control Systems, radio-mode man-
agement, dynamic programming, switched systems.

I. INTRODUCTION

Networked Control Systems (NCS) are systems in which
the sensors or/and the actuators communicate with the con-
troller through a network. Energy saving and robustness to
data loss are major challenges in wireless control, addressed
by both communication and control communities. The survey
paper [3] draws the conclusion that the radio chip is the
main energy consumer in a node and that communication
and control co-design is essential to save large amounts of
energy. Authors in [8] also point out that co-design increases
control performance in delayed and lossy environments.

Deep interest has been devoted to intermittent estimation
and control, i.e. estimation or control problems where the
measurements may not be available at some undetermined
time because the sensor node switches off to save energy.
Authors in : [1], [4], [7], [5], [6], [9], [10], [11] consider such
setups. However, in some, only two modes were considered
while optimising. Others concentrate on saving energy by
turning off entire features of the node, where time is the main
issue. However, our approach consists in investigating how
to save energy at the application level, where we consider the
radio-mode transitions as instantaneous, since the transition
delays are negligible with respect to the sampling time of our
control application. Energy issue is then our main motivation.
Indeed, although intermediate modes consume less energy,
the energy needed to switch between modes may result in
more wastes than savings. Deriving a switching policy that
ensures good control performance and energy savings is not
trivial.
On the one hand, works considering mode management (e.g.
[9], [1]) do not address control problems, and on the other

hand, works dealing with intermittent control only assume
that the radio is either awake or asleep. Finally , [2] does
exactly the same as this paper except that it is done when
there are an infinite number of steps rather than a finite
number, as will be done in this paper. The main contribution
of this paper is to consider intermediate radio-modes and
their energy transition costs in a control problem which lasts
only a finite number of steps. Not only the sensor node
should decide whether transmitting or not, but also when not
transmitting, it should decide which of the low consuming
modes to switch to.

A switched linear system taking into account several radio-
modes and the control application is derived in Section II.
An optimal switching policy, computed using Dynamic Pro-
gramming, is presented in Section III. Simulation results are
provided in Section IV and Section V concludes the paper
and gives future directions.

II. PROBLEM FORMULATION
A. Setup description

We consider a wireless networked control problem
composed of two nodes, as depicted in Fig. 1 and described
hereafter. The first node is in charge of sensing the plant’s
output and deciding whether or not to send its measurement
to the second node, in charge of controlling the plant. The
aim of this paper is to save energy at the sensor’s radio
chip level when the quality of the feedback control is good
enough. The radio chip is switched to low consuming modes
(e.g. Idle, OFF) to save energy. We are not interested here
in the consumption of the second node as we assume that
it is co-located with the actuator, and then it has access to
an unlimited energy source. Also, the channel is considered
as perfect in the model, even though we show in simulation
that our solution is robust to measurement drop-outs.

We define N as the number of radio-modes. The switching
decision is denoted by vt ∈ {1, 2, · · · ,m}, where vt = i
means that the radio-mode is switched to mode i at time t.



Fig. 1. Block diagram of the problem setup. The sensor node measures the
state zt from the plant and decides whether to send it or not to the controller
node. z̄t is equal to zt when a transmission occurs, or to ∅ otherwise. The
controller is then able to determine if a transmission has occurred or not.

1) Plant model: The plant we control is a linear unstable
discrete-time observable system, described by Eq. (1).

zt+1 = Azt +But, zt ∈ Rn, ut ∈ Rp. (1)

2) Control law: The control input applied to the plant
depends on the measurement arrivals, as described in Eq. (2).
If the sensor decides to send the plant state, then the control
law is a state feedback with gain K. This gain is chosen so
that the system zt+1 = (A − BK)zt is stable. Otherwise,
the control input is held to its previous value as long as no
new measure is received from the sensor.

ut =

{
−Kzt if zt is available,
ut−1 otherwise.

(2)

3) Radio chip model: The radio chip is characterised by
the number of radio-modes, N , and the associated costs to
stay in a given mode or to switch from a mode to another.
We do not consider mode transition delay, assuming that the
time scale of the control application is slow enough with
respect to the transition delays.

The first radio-mode (generally called the ON mode)
is the only one allowing transmission/reception, and the
most consuming one. The other modes are intermediate
modes where only some components of the radio are turned
off, consuming less energy than the ON mode. The last
radio-mode (called the OFF mode) consumes no or little
energy (less than any other mode), but more time and/or
energy are needed to switch to the ON mode from the OFF
mode than from the intermediate modes. We define θi,j as
the energy needed to switch from the ith mode to the jth

one, and θi,i as the energy to stay in the ith mode. This is
illustrated on Fig. 2 in the case where N = 3.

Fig. 2. Illustration of the transitions costs. Idle represents an intermediate
mode between ON and OFF. The θi,j represent the energy costs associated
to the transition from mode i to mode j and θi,i the cost to stay in mode
i.

The state of the radio chip is the mode at time t, vt:

vt ∈ M :=

 1︸︷︷︸
ON

, 2, · · · ,︸ ︷︷ ︸
intermediate

N︸︷︷︸
OFF

 ,

and we define M∗ := {2, 3, · · · , N} .

The consumption of the radio chip at each sampling time
depends on the previous radio-mode vt−1 and on the switch-
ing decision vt. The amount of energy E consumed since the
commissioning (where E0 = 0) can be computed as follows:

Et+1 = Et + θvt,vt+1 .

4) Sensor model: The sensor node embeds a switching
policy η (whose design is the goal of this paper) to assign
the radio-mode. The decision to switch between modes is
based on the actual plant output zt, the last control input
ut−1, the previous mode vt−1 and the time t: the switching
decision is vt = η(zt, ut−1, vt−1, t).
Note that the sensor node must have access to the last control
input. One way to achieve this, as depicted in Fig. 1, is to
embed in the sensor node the control law, which will then
be sent to controller (if we have indeed decided to send the
information).

B. Switched system formulation and optimisation problem

We formulate the evolution of the plant under the different
choices of radio-modes as a switched linear system, with as
many systems as the number of modes N . The evolution
of the switched system depends on zt, the state of the
plant, on ut−1, the last applied control input, and on
vt−1 the previous mode of the radio chip. We define ζ

t
as the plant state augmented with the control memory:

ζ
t
=

[
zt

ut−1

]
∈ Rn+p. The state of the switched system is

then (ζ
t
, vt−1, t) ∈ Rn+p ×M× N.

The evolution of the plant given in Eq. (1) and the
control law described in Eq. (2), together with the radio-
mode update law η, give rise to the following switched
system:

ζ
t+1

= fvt(ζt)

vt = η(ζ
t
, vt−1, t), (3)



where the function fv is defined as:

fvt(ζt) =


ϕζ

t
=

[
A−BK 0

−K 0

]
ζ
t

if vt = 1

ϕ′ζ
t
=

[
A B
0 I

]
ζ
t

if vt ̸= 1

(4)

Our goal is to find a suitable switching policy η, in order
to obtain a good trade-off between the control performance
and the energy consumption. To this aim, we define an
optimisation problem: Find a policy η∗(ζ, v, t) such that

J(ζ
t
, vt, t, η

∗) = min
η

J(ζ
t
, vt, t, η) .

where the cost function J takes into account these two
criteria:

J(ζ
t
, vt, t, η) = uT

τ R̄uτ +
τ∑

k=t

ℓ(ζ
k
) + θvk−1,vk (5)

where vk = η(ζ, vt−1, t) and ζ
t+1

= fvt(ζt).Here ℓ(ζ
t
) is

the cost-to-go, designed as follows:

ℓ(ζ
t
) = zTt Q̄zt︸ ︷︷ ︸

performance

+uT
t−1R̄ut−1︸ ︷︷ ︸

control energy

(6)

for some symmetric, positive definite matrices Q̄ and R̄.
The optimisation problem is summarised as follows.
Problem.
Find a policy η∗(ζ, v, t) such that

J(ζ
t
, vt, t, η

∗) = min
η

J(ζ
t
, vt, t, η) .

The cost is defined as

J(ζ
t
, vt, t, η

∗) = uT
T R̄uT +

τ∑
k=t

ℓ(ζ
k
) + θvk−1, vk

where vk = η(ζ
t
, vt, t), ζ

t+1
= fvt(ζt) as defined in

Eq.s (3), (4) and ℓ(ζ
t
) is the cost-to-go described by

Eq.s (5), (6)

Remarks:

• Choosing the switching policy at time t is equivalent to
choosing the radio-mode.

• We are interested in solving this problem under the
following assumptions: the plant described by Eq. (1) is
not stable, with some of the eigenvalues of A greater or
equal to 1; the initial state is not zero, z0 ̸= 0; the matrix
A−BK is not nilpotent; and transmissions have a non-
zero cost whatever the previous mode, i.e. , θi1 > 0 ∀i.

• Q̄ and R̄ are design parameters. The cost function
weights Q̄ and R̄ can be tuned to give different trade-
offs between control performance and energy consump-
tion; it is natural to take them to be a scalar value times
the identity matrix.

III. SOLUTION OF THE OPTIMISATION PROBLEM
BY DYNAMIC PROGRAMMING

A. Standard grid algorithm

The optimisation problem described in section II can be
solved by dynamic programming which is based on Belman’s
principle of optimality. This principle tells us that

J(ζ, v, t) min
w∈M

{J(fw(ζ), w, t+ 1) + θv,w + ℓ(ζ)} (7)

and that

η∗(ζ, v, t) = argmin
w∈M

{J(fw(ζ), w, t+ 1) + θv,w + ℓ(ζ)}

(8)

We will solve the problem by applying this several times
using induction while approximating each point to a point
on a grid.

We have chosen our grid to be centred and focused
around the origin: it is the set of points {ζ : ∀i ∈
{1, 2, ..., n + p}, ((abs(ζi/gridsizei))1/αisign(ζi) ∈
{(−1, (3 − gridnumberi)/(1 − gridnumberi), (5 −
gridnumberi)/(1− gridnumberi), ..., 1}} where gridsize
is the vector denoting the size of the grid in each direction
and gridnumber is vector denoting the number of points
in each direction. αi is a vector which denotes how focused
the grid is around the origin in each direction

We note that for t = τ + 1 , we have J(ζ, v, τ + 1) =
uT
τ R̄uτ .

For t ∈ {1, 2, . . . , τ}, what we do, is for our time t starting
at the end (t = τ) going backwards one step at a time until
t = 1, for every position ζ on the grid, we calculate where
we can go at each step f1(ζ), f2(ζ), ..., fm(ζ), followed by
an approximation of all these points to points on the grid.
We then get an approximation to J(fw(ζ), w, t + 1) for all
w on M 1. If there were points on the grid, we can then
find J(ζ, v, t) = minw∈M{J(fw(ζ), w, t+1)+ θv,w + ℓ(ζ)}

We continue in this manner by induction until we have
found every point on the grid for every (positive) timestep
under our maximum time τ .

Online or offline (depending on how fast you need things)
we can do exactly the same thing except that we are finding
η(ζ, v, t) instead of J(ζ, v, t) so we simply replace the min
with argmin: η∗(ζ, v, t) = argminw∈M{J(fw(ζ), w, t+1)+
θv,w+ℓ(ζ)}. If all points we can go to turn out to be outside

1if we find we are going to a value outside our grid we will ignore it as
we are supposing that are grid is large enough that going outside means the
cost will be far larger than the minimum cost. If all values are outside the
grid, we will note J(ζ, v, t) = ∞ to indicate that any moves which lead
to this position will have to eventually lead to a point outside the grid, and
are hence not minimal



the grid, we will turn the radio ON to try and get back inside
the grid. 2

B. The ’jumping’ algorithm

We propose an alternative method of solving this
problem, which also uses dynamic programming. Note that
this algorithm does require a couple of conditions on θ to
work but both are reasonable. It relies on the following
observation: if we do not pass by the mode ON in a certain
interval of time of length k, then the cost only depends on
the modes we pass by: v1, v2, ..., vk−1. Indeed, if we do not
pass by ON, then ζ

i+1
= f2(ζi) = f3(ζi) = ... = fm(ζ

i
).

Hence argminv∈M∗k−1{
∑k

i=1 ℓ(ζi) + θvi−1,vi} =

argminv∈M∗k−1{
∑k

i=1 θvi−1,vi}

Hence we propose to find for all k and v0, the minimum
of

∑k
i=1{θvi−1,vi} whilst never having vi = 1, and also the

corresponding first move. There are N possibilities for v0 so
this is fine; however, we have lots of possibilities for k so
we will require the following lemma to limit them:

Lemma 1 .
Assume:
a) cycles of more than one non-transmitting state do not help
reduce costs [ formally, θv1,v2+θv2,v3+θv3,v4+...+θvi,v1 ≥
i ∗minj≤i{θvj ,vj} ]
b) WLOG assume θN,N = mink{θk,k} [OFF Mode]. Then
for all k ̸= 1, 2 ∗ θk,k ≥ θN,k + θk,N .

Then if everything works perfectly (IE: no noise or
imprecisions), starting from v = 1, we will either pass by
v = 1 again in the next 2N − 3 steps, or we can pass by
v = N at step N − 1 while still being minimal.

Proof:

Suppose for a contradiction that we do not pass by
v = 1 or by v = N during steps 1 to 2N − 3. Then we
have 2N − 3 steps and N − 2 modes so by the pigeon hole
principle, there is a mode we pass by 3 times. Call it k.
Also call u = argmin{θi,i : we pass by mode i} .

Then consider the two sequences of modes (possibly
empty) that lie between the three times we pass by mode
k ( there are possibly more than two such sequences but
we only need two). If neither or both of them contain u,
pick one at random. Otherwise, pick the one not containing
u. The contribution from the sequence is (with v1 = k ):
θv1,v2 + θv2,v3 + θv3,v4 + ...+ θvi,v1 ≥ i ∗minj≤i{θvj ,vj} ≥
i ∗ θu,u

Hence we can delete this sequence (the start and finish are
the same so everything else is unchanged) and add in an
alternative sequence made of i ’u’s in a row at the position

2If done offline this move will again be calculated for all ζ on the grid;
otherwise it will be calculated for the ζ we have currently

where u already is.

i ≥ 1 so we thus have at least 2 modes ’u’s in a
row. Repeat this once more, and we get 3 modes ’u’s in a
row Then θu,u + θu,u ≥ θu,N + θN,u so we can replace the
u in the middle by mode N . Hence we can pass by mode
N as required.

Now we will prove that we can pass by mode N at
step N − 1. Suppose for a contradiction that we do not pass
by mode N at step N − 1, but we pass at step k > N − 1
[we must pass at some point by what we just proved]. If we
also pass before N − 1, then the sequence between the two
costs (with v1 = N ): θv1,v2 + θv2,v3 + θv3,v4 + ...+ θvi,v1 ≥
i ∗ minj≤i{θvj ,vj} ≥ i ∗ θN,N so we can suppose the
sequence stays constant at mode m and thus we pass by
mode N at step N − 1.
Otherwise, if we do not pass by mode N before the point
k, then the sequence going from 1 to N has at most N − 2
modes in at least N − 1 steps so by the pigeon hole
principle, there is a mode we go to twice. Applying the
same method as above, we can add a sequence of ’N ’s at
the end, so we can replace k by something smaller: k′ < k.
Also there will be a sequence at ’N ’s in between k and
k′. Continue by induction until k′ < N . Then we do go to
mode N at step N − 1.

If we turn OFF at a step earlier than N − 1, then it
is more than N − 1 steps before the end [since the end
takes at least 2N − 2 steps to reach] so by the same method
reflected, we also have that we turn OFF at step N − 1.

Hence, starting from mode ON, we will either pass by
mode ON again in the next 2N − 3 steps, or we can pass
by mode OFF at step N − 1 while still being minimal.

Note: we will also pass by mode N N − 1 steps before the
end by a similar proof, and in between these two points, the
sequence will be constant at mode N .

: If for all i,j, max{θi,i, θi,i} ≥ θi,j ≥ min{θi,i, θi,i}, then
conditions a) and b) hold so the lemma holds. Proof:
a) θv1,v2+θv2,v3+θv3,v4+...+θvi,v1 ≥ min{θv1,v1 , θv2,v2}+
min{θv2,v2 , θv3,v3} + min{θv3,v3 , θv4,v4} + ... +
min{θvi,vi , θv1,v1} ≥ i ∗minj≤i{θvj ,vj}
b) θk,k ≥ θk,N ≥ θN,N since θk,k ≥ θN,N . Similarly,
θk,k ≥ θN,k ≥ θN,N . Hence 2 ∗ θk,k ≥ θN,k + θk,N .

Also note that if θN,N ̸= 0, if we replace θi,j with
θi.j − θN,N , we will have changed the cost at each step
by θN,N so the total cost at the end will be modified by
T ∗ θN,N . This is independent of our choices for η so this
does not change η∗ so this is allowed.



2) Computation

This method is quite similar to the first. An obvious
change is that with this algorithm, we will only have to
store values of J(ζ, 1, t) and J(ζ,N, t) instead of J(ζ, v, t)
for all v.

First, we calculate for all v0 ∈ M and for all
k ∈ {1, ..., 2N − 2} the minimum cost of going from
the mode v0 to the mode ON in exactly k steps, and
the corresponding first move. Since we cannot have any
influence on ζ by choosing these vi, we can ignore ζ. We
do so by simple dynamic programming similar to part A:
For k = 1, mincost(v, 1) = θv,1 since we must go directly
to the mode ON. Also, minmove(v, 1) = 1 since we
decided we would turn ON.
For k going from 2 to 2N − 2, for all v, we know that
mincost(v, k) = minw∈M∗{mincost(w, k − 1) + θv,w}.
Hence we can calculate this and find mincost
everywhere we are interested in. minmove(v, k) =
argminw∈M∗{mincost(w, k − 1) + θv,w}.

If k is smaller than N − 1, we also calculate the minimal
cost and corresponding first move for going to the end in
exactly k moves starting from mode v0; this is exactly
the same computation except that the same method except
that the start is at k = 0, and it is mincostend(v, 0) = 0
; minmoveend is not important at k = 0 and is hence
ignored at this stage.

Now we have the following equation for t far enough
from the end:

J(ζ, v, t) = min
k

{

J(ϕ∗(ϕ′)k−1∗ζ, 1, t−k)+
k−1∑
i=0

, ℓ((ϕ′)i∗ζ)+mincost(v, k)}

(9)

We now note that if k ≥ 2N − 2, then by our
lemma, we will pass by mode OFF after N − 1 moves.
By Belman’s principle of optimality, the cost of going
from ON to OFF in N − 1 moves [ignoring ζ] is thus
mincost(1, 2N − 2)−mincost(N,N − 1).
Hence mink>=2N−2{J(ϕ ∗ (ϕ′)k−1 ∗ ζ, 1, t −
k) +

∑k−1
i=0 , ℓ((ϕ

′)i ∗ ζ) + mincost(v, k)} =

J((ϕ′)k−1,m, t − N + 1) +
∑N−2

i=0 ℓ((ϕ′)i ∗ ζ) +
mincost(1, 2N − 2) − mincost(N,N − 1) and η(ζ, v, t)
will be minmove(v, 2N − 2) if the minimum does indeed
have k ≥ 2N − 2.

Therefore, we need only compare values of k between 1 and
2N − 3, and then to compare with any k larger, we simply
use the value of J((ϕ′)N−1 ∗ ζ,N, t − N + 1) . Hence
we can find both the minimum cost and the corresponding

move when far away from the end.

J(ζ, v, t) = min
k≤2N−3

{

J(ϕ∗(ϕ′)k−1 ∗ζ, 1, t−k)+
k−1∑
i=0

ℓ((ϕ′)i ∗ζ)+mincost(v, k),

J((ϕ′)N−1, N, t−N+1)+
N−2∑
i=0

ℓ((ϕ′)i∗ζ)+mincost(1, 2N−2)

−mincost(N,N − 1)} (10)

If we are close to the end (ie: within 2N − 3), then things
go sightly differently: as well as comparing the values of k
going from 1 to τ − t, we must also consider the possibility
of not going to the end without passing by ON. We see
that the minimum cost of this is J((ϕ′)τ−t ∗ ζ,N, τ) +∑τ−t−1

i=0 l((ϕ′)i∗ζ)+mincostend(v, τ−t) 3 The correspond-
ing move is minmoveend(v, τ − t). We can then compare
this to the values we already have and pick it if it is smaller.

J(ζ, v, t) = min
k≤τ−t

{

J(ϕ ∗ (ϕ′)k−1ζ, 1, t− k) +
k−1∑
i=0

ℓ((ϕ′)iζ) +mincost(v, k),

J((ϕ′)τ−tζ,N, τ)+

τ−t−1∑
i=0

, f((ϕ′)iζ)+mincostend(v, τ−t)}

(11)

Note: if τ − t ≥ 2N − 3, then we will either pass by ON or
by OFF in the intervening time by our lemma.

The finished algorithm goes like this:

- First of all, set J(ζ
τ+1

, 1, τ + 1) = J(ζ
τ+1

, N, τ + 1) =

uT
τ R̄uτ

- For t going from τ to 1, for all ζ, we can find J(ζ, 1, t)
and J(ζ,N, t) by doing a minimisation on number of
possibilities smaller than 2N − 2, using solely values of
J(ζ ′, 1, t + k) and J(ζ ′, N, t + k). Hence by induction, we
can find the cost for all ζ,t of J(ζ, 1, t) and J(ζ,N, t).
When online, for any position mode and time, you can do a
similar minimisation using J(ζ ′, 1, t+k) and J(ζ ′, N, t+k),
except that you output the mode required to do so instead
of the cost.

Notes:
- as in the first algorithm, we use a grid to approximate
points whenever we want to check the value of J(ζ, v, t).
Whenever we are heading outside the grid, the cost will be
marked as ∞ so as to try and prevent this from happening,
as in the first algorithm.
- Although

∑k−1
i=0 {ℓ((ϕ′)i ∗ ζ)}seems like it will take a

long time to calculate, this can be sped up considerably

3the N can in fact be replaced by any mode since the cost at time T is
independent of the previous mode. N was chosen arbitrarily



by keeping the previous values of
∑k−2

i=0 {ℓ((ϕ′)i ∗ ζ) and
(ϕ′)k−2∗ζ in memory (we calculated them the previous step).

IV. SIMULATION RESULTS

A. the plant

We will test our optimal mode management on an
inverted pendulum on a track. We aim to keep the pendulum
upright or near upright for a given length of time. We can
act on the system by exerting a force on the bottom of the
pendulum which goes along the tracks. The variables are
thus: x the position of the bottom of the pendulum, ρ the
angle of the pendulum, ẋ the velocity of the bottom of the
pendulum, and ρ̇, the derivative of the angle with respect to
time. Our control, u, is the force we exert on the bottom
of the pendulum. We take g = 9.81m.s−1, the mass of the
base of the pendulum to be 2kg, the mass at the end of the
pendulum to be 0.1kg and the length of the pendulum to be
0.5m.

About the equilibrium point, we have thus z = [x; ρ; ẋ; ρ̇]
and

ż =


0 0 1 0
0 0 0 1
0 −0.49 0 0
0 21 0 0

 z +


0
0
0.5
−1

u

By discretising this equation, we get:

zt+δ = (I + δĀ)zt + δB̄ut

where Ā and B̄ are the matrices above, and δ is a small
time. Hence A = (I + δĀ) and B = δB̄.

The radio we will use has N = 3 main modes and
the following transition costs:

θ =

897 97.75 ∞
110 96 0.024
∞ 98.97 0.024


with ∞ meaning the transition is impossible. The time δ
will be 20ms

Our cost functions will be chosen to be R̄ = 5 and

Q̄ =


0 0 0 0
0 1000 0 0
0 0 1 0
0 0 0 0


B. Comparison of both algorithms

We set gridnumber = [2; 31; 5; 31; 31] and
gridsize = [10000; 4; 50; 20; 1000] so as to ignore
position, and get more accurate readings on the others. The
simulation runs for 5 seconds, and starts at ζ = [0; 1; 0; 0; 0],
v = 2 (IDLE). Also, we set α = [2; 2; 2; 2; 2].

The offline calculation took about 4800 seconds for
the normal algorithm, but only 1900 for the ’jumping’
algorithm. The online results for the normal algorithm were:

Fig. 3. State of the system; yellow is position of the base, blue is velocity
of the base, pink is angle and red is the angle’s derivative.

Fig. 4. The force on the base of the pendulum

Fig. 5. Which mode the radio is in

This achieved a total cost of 13608 at the end. The
online results for the ’jumping algorithm were:



Fig. 6. State of the system; yellow is position of the base, blue is velocity
of the base, pink is angle and red is the angle’s derivative.

Fig. 7. The force on the base of the pendulum

Fig. 8. Which mode the radio is in

This achieved a total cost of 10742 at the end. This
is 80 % of the cost the normal algorithm got, and
furthermore it got it 2.5 times faster. If we compare the
two, we should theoretically get a time difference of O(N )
in favour of the jumping algorithm, so with more than 3
modes, the jumping algorithm will get even better compared
to the normal algorithm. We can also see that in both cases,

the radio spends most of its time in OFF mode, only turning
ON to do minor adjustments (going via IDLE mode each
time). If it needs to be ON for a longer time, it tends to
oscillate between IDLE and ON instead (since it is indeed
far cheaper). In both cases, the angle is stable near 0 for
most of the duration, although at the end the radio switches
itself OFF until the end, while the angle starts moving away
from equilibrium.

C. Resistance to data loss

Note: for the rest of this paper, we will be using the
’jumping algorithm’ since it appears to be better.
We introduce a probability of 30 % that the data sent to the
controller will get lost along the way. The results we get
are:

Fig. 9. state of the system; same colours as before; green indicates data
loss

Fig. 10. Which mode the radio is in; green means failure to send

We can see that even with data loss, the pendulum
remains near 0. After suffering data loss, the radio usually
either stays in ON or switches rapidly to IDLE before going
back ON (to not use up the large amount of energy required
to stay ON).



D. Resistance to noise

We introduce some independent Gaussian noise, which
for each variable, has variance 1 tenth of the maximum that
that variable reaches. The results we get are:

Fig. 11. state of the system; same colours as before

Fig. 12. Which mode the radio is in

We can see that the output remains near 0 and the controller
still spends quite a bit of time in OFF mode. It occasionally
makes the mistake of going to IDLE and then OFF again,
presumably because it was mistaken as to the state of the
pendulum.

V. CONCLUSION AND POSSIBLE FUTURE WORK

In this paper, we have studied the optimal management of
the radio-chip mode of wireless sensor in a network control
problem. Indeed, a rich literature from the communications
community indicates that, in order to reduce the energy
consumption, it is essential to wisely choose the mode of the
radio chip between ON, OFF and some intermediate modes.
The novelty of this paper is that we consider the case of a
finite horizon rather than an infinite one. We have considered
a simple application of this with the inverted pendulum, with

a single sensor whose transmissions to the controller have to
be performed with an optimal choice of radio mode. For this
problem, we have defined a suitable cost function, which
describes the trade off between the control performance
and the energy consumption, and whose minimum can be
computed using dynamic programming. Although we don’t
have proof that it is stable with data loss or with noise, in
the simulations done it was quite robust.
We have considered two ways of implementing this: one
by directly applying the rules of dynamic programming, the
other (the ’jumping algorithm’) does similarly but manages
to skip a few steps at a time instead of 1 step at a time. We
have tested both these algorithms on a real life example (the
inverted pendulum) and found that the ’jumping’ algorithm
is far superior, both in terms of results, and in terms of
computing time needed.
This work is the first step in the direction of understanding
the advantages of radio-mode management in more general
networked control problems. A natural extension of this work
is to consider an optimisation that involves not only the radio
mode, but also the feedback control law for those times
where the sensor is transmitting.
A much more challenging goal will be the extension to
sensors/controllers networks with more than two nodes. The
general scenario is of great interest for applications, but
requires a whole new theory to be developed: on the one
hand, even with only two radio-modes there isn’t yet a clear
notion of optimal event based sampling for a distributed
multi-sensor multi-controller network; on the other hand, the
coordination of multiple sensors might require them to be
on an active ON mode also with the purpose of receiving
messages in addition to sending them, and this should also be
taken into account when computing the energy consumption,
thus complicating the picture.
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