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Frequency Based Nonrigid Motion Analysis: 
Application to Four Dimensional 

Medical Images 
Chahab Nastar and Nicholas Ayache 

Abstract-We present a method for nonrigid motion analysis in time sequences of volume images (4D data). In this method, 
nonrigid motion of the deforming object contour is dynamically approximated by a physically-based deformable surface. In order to 
reduce the number of parameters describing the deformation, we make use of a modal analysis which provides a spatial smoothing 
of the surface. The deformation spectrum, which outlines the main excited modes, can be efficiently used for deformation 
comparison. Fourier analysis on time signals of the main deformation spectrum components provides a ternporal smoothing of the 
data. Thus a complex nonrigid deformation is described by only a few parameters: the main excited modes and the main Fourier 
harmonics. Therefore, 4D data can be analyzed in a very concise manner. The power and robustness of the approach is illustrated 
by various results on medical data. We believe that our method has important applications in automatic diagnosis of heart diseases 
and in motion compression. 

Index Terms-Medical image analysis, nonrigid motion, deformable models, modal analysis, Fourier analysis, compression, 
dynamic data, four-dimensional images, cardiac imagery, automatic diagnosis. 

1 INTRODUCTION 
1.1 Motivation and Organization 

N this article, we propose a unified approach for non- I rigid motion estimation from time sequences of three- 
dimensional images [5], i.e., 4D data, by taking into account 
both spatial and temporal frequencies of a deformable 
geometric model. 

Our method has important applications in automatic di- 
agnosis of heart diseases and in 4D data compression, as we 
shall see in the experimental section. Our method involves 
three steps: 
I) Recover the deformation field between each pair of 

2) Express the modal coefficients (or amplitudes) of the 

3) Express Fourier coefficients of the time-varying mo- 

The information contained in the data can then be com- 
pressed, by discarding spatial modes and/or temporal 
Fourier harmonics. 

The basic justification of the approach relies on the fol- 
lowing observations: most smoothly deforming structures 
mainly have low-frequency excited modes; this justifies 
Step 2. Furthermore, for periodic motions like heart motion, 
modal amplitudes as a function of time are periodic and 
sine-like; this justifies Step 3. 

successive 3D images, 

deformation at each time t ,  

dal amplitudes. 
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1. Note that our method is not restricted to periodic motions. For nonpe- 
riodic motions there is generally no need in performing the Fourier analysis 

For Steps 1 and 2, it is possible to constrain the modes be- 
forehand, by letting a deformable model evolve along low- 
order modes. The advantage is, of course, a reduced numerical 
complexity and a low-order smoothing of the deformation 
allowing its robust recovery. Note that Step 1 can be per- 
formed not only by our deformable model, but also by optical 
flow or any other technique providing the motion field [lo]. 

The following example can serve as a motivation to our 
work. Let us consider (Fig. I) the canine 4D heart data pro- 
vided by the dynamic spatial reconstructor (DSR, a high 
speed X-ray CT scanner). We used this data as an input to 
our method. It consists of 18 volume (or 3D) images during 
a single cardiac cycle. Each volume image has a spatial 
resolution of 98 x 100 x 110. Dye was injected into the left 
ventricle, which shows up as a light gray color. Note the 
difficulty of interpretation of such complex and huge data 
by physicians. The challenge was to analyze such a tremen- 
dous amount of information (19,404,000 bytes, with each 
voxel being coded on one byte) and supply physicians with 
a few quantitative parameters describing the motion. We 
shall see in the experimental section of this paper how we 
tried to meet these objectives. 

The article is organized as follows: 
In Section 2, we introduce our deformable model for 

nonrigid motion estimation, develop its governing equa- 
tions and outline its properties. 

In Section3, we present the modal analysis of the 
model, allowing a closed-form recovery of the motion by 
a few parameters: the modal amplitudes. We show how 
these amplitudes may be used to characterize deforma- 
tions. Section 3.2, which describes the analytic modes, may 
be required only for in depth reading. 

(step 3).  
01 62-8828/96$05.00 01996 IEEE 
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1.2 Related Work 
A lot of research work is related to our work. First of all, we 
want to mention the pioneering work of Terzopoulos et al. 
on snakes and deformable physics-based models [241, 1261, 
[42], [45]. This work was mainly dedicated to tracking and 
animation problems rather than analysis. 

A second category of research work is related to the 
analysis of deformations. Our work was initially inspired 
by the pioneering work of Pentland et al. on the use of mo- 
dal deformations to describe deformations [36], [371. The 
main differences with our approach is that our modes have 
a simpler physical meaning (they can be interpreted as the 
harmonics of the free vibrations basis of the deformable 
object) while Pentland’s modes are more dedicated to ani- 
mation [38]. Also, we have derived a method to compute 
our modes beforehand, as a function of the topology of the 
deformable object only, allowing a much faster computa- 
tion (Pentland’s modes require the knowledge of the exact 
shape of the original object and, therefore, have to be com- 
puted online). 

Our work can be seen as providing a coherent unifying 
framework between these first two categories of publica- 
tions, allowing to both track and analyze a deformable 3D 
motion. 

In addition to these references, we have to mention the 
work of Cootes et al. [15], [161, [17], done independently of, 
and concurrently with, ours which provides an interesting 
alternative to the solution of both the tracking and the 
analysis of the deformation. We also have to mention the 
work of Bardinet [7] and Metaxas [27], [35], among others, 
who use deformable parametric models like superquadrics 
to track and analyze deformable objects. Their work is lim- 
ited to the class of objects which can be easily represented 
by such parametric models, which include the left cardiac 
ventricle. A number of methods to track 3D data were pro- 
posed in the past few years. Duncan et al. 121, [39], 1401, and 
Benayoun et al. 191, [lo], used differential constraints; 
Goldgof [23] and Chen 1131 used a coarse-to-fine approach; 
Bookstein [12] and Szeliski and Lavallee [41] proposed en- 
ergy based methods; Creswell [18] and Amini [l] suggested 
data-dedicated methods. All these approaches can be seen 
as complementary to ours, in the sense that the tracking 
result they provide could be completed by our proposed 
analysis. It would however be interesting to compare all 
these approaches on a specific and common database. This 
could be the topic of a future work. 

Fig. 1. 4D data displaying a 3D dog ventricle in motion. Each 2D image 
is an axial slice in the x y plane. The z coordinate is along the vertical 
axis, while the tcoordinate is along the horizontal axis. 

In Section 4, we propose a Fourier analysis for the time- 
varying main modal amplitudes; this is particularly well 
suited for cyclic motions (e.g., heart motion). An example 
involving 4D medical data is presented. 

We conclude and propose future work in Section 5. 

2 A DEFORMABLE MODEL FOR MOTION ESTIMATION 
In this section, we introduce our physically based deformable 
model which we use for tracking nonrigid motion of dynamic 
structures in time sequences of 2D or 3D medical images. 

We consider both the surface and volume properties of 
the objects at hand. We restrict ourselves to elastic defor- 
mations, i.e., we assume that the object recovers its refer- 
ence configuration as soon as all applied forces causing 
deformation are removed. In general, we seek a trade off 
between precise modeling and computational efficiency. 
Therefore, simplifying assumptions will be introduced in 
the modeling. 
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2.1 Mass-Spring Meshes -4 

where K is the stiffness constant, U,(t) = MlMl(t) is the 

vector separation of nodes M ,  and M ,  at time t, and C, 
Modeling an elastic boundary can be achieved by a mesh of 
N virtual masses on the contour. Each mass is attached to 
its neighbors by perfect identical springs of stiffness K and 
natural length lo [231, [461. 

These springs achieve a polygonal approximation and 

I 

is the set of nodes connected to node Mi. 
Fluid damping force, proportional to node velocity: 

model the surface properties of the object. 
Generalizing the model to 3D contours (surfaces) is 

straightforward: We can either model ”quadrilateral” or 
”diagonal” meshe? (see Fig. 2). 

Fig. 2. “Diagonal” mesh 

If necessary, we can improve the modeling by attaching 
extra springs between non-neighbor nodes in order to 
model volume properties inside the object. These springs 
constrain the general shape of the object within its defor- 
mation, making a template shape out of it [ll], [481. 

The boundary modeled as above will also be called a 
stuucture. Such a structure can be easily deformed to match 
the contour of an object of interest, thus performing a seg- 
mentation step. If we take a series of images displaying the 
deformation of the object through time, the structure can 
achieve simultaneously both segmentation and tracking of 
the object surface through time. 

2.2 Governing Equations 
The system under study is made of the N virtual masses 
located at time t at points (Ml( t ) ,  M2(t) ,  . . ., MN(t)) .  

The fundamental equation of dynamics states that the 
vector addition of all applied forces on M, is equal to its 
mass m, multiplied by its acceleration. Let A be the origin of 
the reference system. Then: 

Let us now describe the applied forces on each node Mi: 
Elastic force between Mi and its connected nodes. 

(2 )  

f,(M,,t) = -C -AM! d -3 = -c,M, 
’ dt 

(3 )  

where c, is the damping constant. 
Image force flm(Mf, t ) .  This is the main external force 
that has the system attracted by image features. This 
force is defined in Section 2.3. 
Suppose the natural length 1, of the springs is fixed. 
Since we wish to give the system an initial equilib- 
rium configuration, we need to apply on each node a 
force balancing the action of the elastic force: 

f,,(MJ = -fe(Mz, to) (4) 

This force is similar to the force that our fingers apply 
to an elastic rubber to keep it in a specific shape. We 
assume that this force is constant over time. 

Finally, (1) yields the governing equation: 

fc(Mr, t )  + fd(Ml, t )  + & ( M I ,  t) + f,(M,) = m,M, (5) 

The governing equation, expressed for all N nodes, leads 
to a nonlinear system of coupled differential equations (for 
each node, the x, y,  and z displacements are coupled, and 
the displacement of a node depends on its neighbors dis- 
placement, as it appears clearly in (2)). 

One possible approach is the resolution of these complex 
equations by an iterative procedure [43]. In this paper, we 
propose to set 1, = 0. This assumption does not restrict the 
arbitrary initial configuration of the structure because of the 
equilibrium force feq. Indeed, this force keeps the structure 
inflated so that it does not shrink to a point. Thus, the natu- 
ral state of the system is its initial configuration. 

The advantage of this assumption is that our model can 
be considered within the framework of linear elasticity. As a 
consequence, we end up with a set of linear differential 
equations with node displacements decoupled in each coor- 
dinate, regardless of the magnitude of the displacements. 
Moreover, these linear equations are a prerequisite to fur- 
ther quantitative analysis of the motion (see Section 3) .  

On the other hand, our approximation is valid only if the 
spring orientations undergo small angular variations 
(typically less than 15 degrees), so that our assumption of 
constant equilibrium force f,,, holds.3 

Finally, in 3D, the deformation of the system is governed 
by the 3N-dimensional differential matrix equation: 

MU + CU + KU = F(t) (6 )  

where U is a vector storing nodal displacements M, C, and 
K are, respectively, the mass, damping, and stiffness matri- 
ces of the system, and F is the image force which has the 
object attracted by image edges. Equation (6) is the finite 
element formulation of the deformation process. Note that 
the equilibrium forces do not explicitely appear in the gov- 
erning equation. 

2 .  The shear-resisting cross springs may be useful to avoid self- 
intersection problems during the deformation of the surface. 3. Similar limitations can be found in the model described in [361, 1371 
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2.3 Image Force 
In the original formulation of the "snake," the authors pro- 
pose a convolution of the image with a smoothing filter that 
causes artificial blurring, so that the active contour can be 
attracted by the edges from a distance [24]. 

Unlike these methods, we introduce a force at each node 
M, that points to the closest boundary point Pi in the image 1141, 
[20], [22], [25] .  Several Euclidean distance algorithms can 
help us extract this force in each voxel of the image [191, 
[47]. At node M, this force is set to: 

, (7) 
fi,(M, t )  = (X M(t )P( t )  

where a is a constant scalar. This force can be seen as a 
virtual spring of natural length zero and of stiffness a join- 
ing M to P. Hence, both internal and external forces are 
elastic, making the modeling coherent. 

The advantage is that we speed up the convergence of 
the model toward image edges; one can consider edge ex- 
traction and distance computation as a data-to-force trans- 
formation which is performed as a preprocessing. 

2.4 Integration Scheme 
In 3D, the 3N-order matrix equations decouple into three 
directional matrix equations of order N: 

MU, + CU, + KUx = F,(t) 

MUz + CUz + KUz = F,(t) 
MU, + CU, + KU, = F,(t) (8) 

larger time step can be used when high-frequency compo- 
nents of the deformable model are discarded (see Section 3). 

2.5 Results on Medical Data 
We have tested our method on a set of ultrasound images 
of the left ventricle of a human heart. The tracking of the 
mitral valve is indeed a problem of major interest in medi- 
cal imaging since heart-attacks can generally be predicted 
from abnormal motion of the valve. Each image has a 
resolution of 256 x 256 pixels. First, a polar edge extraction 
is performed on the images [61. Then, for each image, the 
distance field is computed on every pixel. Thus we can 
segment the initial valve. We then add volume springs for 
making our model a template; this will make the tracking 
more robust. Finally we track the valve through time and 
display the estimated displacement field on the valve sur- 
face (Fig. 3) .  The program runs in real-time on 2D data. 

where M, C, and K are from now on N-order matrices, and 
Up and Fp (p = x, y, z) are, respectively, the N-order dis- 
placement field and image force in the ,u direction. From 
now on, we will omit the indexes, and all matrix equations 
will be of order N. It is assumed that three equations corre- 
sponding the three space directions have to be solved. 

We integrate the governing equations with an explicit 
Euler scheme: 

U(t) = M-'(F(t) - CU(t) - KU(t)) 

U(t + At) = U(t) + AtU(t + Af) 
U(t + At)  = U(t) + AfU(t) (9) I 

where At is the time step of the simulation. The initial val- 
ues of displacement and velocity are generally set to zero. 
Note that the mass matrix is diagonal and therefore its in- 
version is trivial and only has to be processed once. The 
damping constant is chosen so that the system is slightly 
overdamped [44]. Convergence is achieved once the image 
force balances the internal elastic forces. 

In any numerical integration scheme, numerical stability 
requires the time step At to be inferior to a critical value Atcr 
which is defined by the mass and stiffness properties of the 
system: 

(10) TN At 5 Atc,, = - 
Y 

where TN = * is the smallest period of the finite element 

mesh, and yis a constant depending on the scheme. The 
Euler method is conditionally stable, i.e., needs small time 
steps ( y  2 2). order to make a more accurate computa- 
tion, we decrease the time step and set y 2 10. Note that a 

ai 

Fig. 3. Initial segmentation and tracking of the mitral valve 
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Fig. 4. Convergence of an initial sphere toward the human head. 

The method has similarly been tested on a 3D Magnetic 
Resonance image of the human head, with a resolution of 
158 x 158 x 158 voxels. We make use of the 3D generaliza- 
tion of Canny's edge detector [28], 1291, then compute the 
3D distance maps and finally run the program. The conver- 
gence of an initial sphere toward the human head is shown 
in Fig. 4. It runs at interactive rates on a DEC-ALPHA work- 
station; convergence is achieved in eight seconds. Note that 
this segmentation example does not really make use of the 
power of our dynamic approach; it is provided here to 
demonstrate model properties. 

3 MODAL ANALYSIS AND APPLICATIONS 
In this section we focus on a quantitative analysis of the 
model deformation, using a frequency-based technique 
called modal analysis. 

Modal analysis is a standard engineering technique al- 
lowing more effective computations and a closed-form so- 
lution of the deformation process [8]. It was first introduced 
in computer vision by Pentland's team [361, 1371. Let us 
now explain this technique. 

3.1 General Approach 
Instead of solving directly the equilibrium equation (6), one 
can transform it by a change of basis: 

U = l% (11) 

where P is the square nonsingular transformation matrix of 
order N to be determined, and lb is referred to as the gener- 
alized displacements vector. One effective way of choosing P 
is setting it to @, a matrix whose entries are the eigenvectors 
of the generalized eigenproblenc 

KQ= w2MQ (12) 

N 

u(t) = @tj = C.",(t)$b, (13) 
I = 1  

Equation (13) is referred to as the modal superposition 
equation. is the ith mode, iiiits amplitude, and q its fre- 
quency. Fig. 5 displays a sample of six frequency-increasing 
modes of a cylinder, all of them having the same amplitude. 

Fig. 5. A sample of frequency-increasing modes of a cylinder (constant 
amplitude). 

Note that the modes of a generalized eigenproblem in- 
volving real symmetric matrices can be chosen to be or- 
thonormal vectors [8]. The new modal basis simultaneously 
diagonalizes M and K, and provided that matrix = QTC@ 
is diagonal as well,4 the governing matrix-form equations 
decouple into N scalar equations: 

ii,(t) + q g t )  + w: u",(t) = I ( t )  (14) 

The amplitudes ( Z l ( t ) ) l z l ,  ,N, are obtained by solving these 

equations at time t, and the displacement of the structure 
nodes is obtained by the modal superposition equation. 

In practice, we wish to approximate nodal displacements 
U(t) by u( t ) ,  the truncated addition of the p low-frequency 
modes, where p < N. 

(15) 

Vectors (@Jixl,. ..,i) form the ueduced modal basis of the system. This 
is the major advantage of modal analysis: It allows a closed-form 
solution by selecting a few number of low-frequency modes [8], 
1311, 1321. Therefore a compact description of the motion is pro- 
vided by spatial smoothing. Fig. 6 illustrates modal superposition 
on the real example of the mitral valve. 

4. This condition, called the Rayleigh condition, is satisfied as soon as the 
damping matrix C is a linear combination of the mass and stiffness matri- 
ces. Rayleigh damping is generally assumed for any standard engineering 
problem 181. 
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initially a sphere, one can observe that the error is more 
important in the regions that need a locally important de- 
formation of the sphere (nose, eyes, ears), while more 
spherical regions (top of the head) are better approximated, 
as expected. Note however that the level of accuracy can be 
easily controlled, at the expense of additional modes. 

3.2 Analytic Modal Analysis 

Fig, 6. Nine low-order amplitude-moderated eigenmodes describing 
the motion of the valve; their superposition (bottom-right) is a good 
approximation of valve motion. 

Note that superimposing p low-frequency equations of 
the type (14) allows the time step to be larger; we choose: 

?r 

2z  
whereT = - B T, . As a consequence, the convergence of 

the model is numerically much faster with modal analysis 
than with direct integration of the governing equations. 

Due to orthonormality of the modes, the approximation 
error is: 

(1 7)  

This means that the approximation error is a rapidly de- 
creasing function of the truncation frequency p .  

a b 

C. d 

Fig. 7. Approximation error distribution for the low-order deformation of 
a sphere into the human head. Darker regions indicate more important 
errors, while lighter regions represent best-recovered ones. a. Com- 
putation using 60 modes. b. 243 modes. c. 468 modes. d. 2790 modes. 
(Exact computation needs 37,683 modes). 

The distribution of the approximation error along the 
surface for increasing values of p is shown in Fig. 7. Darker 
colors outline regions with bigger error. The model being 

Even as a precalculation, solving the generalized eigen- 
problem is very costly as soon as we consider 3D bounda- 
ries (surfaces). For instance, if we consider a mesh of 
100 x 100 nodes, a generalized eigenproblem where the size of 
the matrices is 10,000 x 10,000 has to  be solved. It is clear that 
the analytic expvession of the modes would noticeably reduce 
the computations [30]. This leads us to consider the theory 
of solid state physics, where similar problems are encoun- 
tered at a microscopic level (ionic vibrations of a crystal 
lattice). If we parameterize our deformable curves by arc 
length, and similarly our deformable surfaces by natural 
coordinates, we get periodic boundary conditions which 
depend on the surface topology. This allows the analogy 
between our deformable model and a crystal lattice. 

3.2.1 Free Vibrations of a Chain 
The classical theory of vibration of a crystal lattice is based 
on the harmonic appuoximation, a theory which assumes that 
the first non-vanishing correction to the equilibrium poten- 
tial energy is quadratic [3]: 

(18) 
1 
2 _ .  Vharm = - x u  (l’)Duv(Z - i?’)pv(Zr) 

R,R’ 
U,V 

where ~ ~ ( 2 )  is the displacement in the ,U direction of the ion 

whose mean position is R ,  and D is the Hessian matrix of 
the interaction energy. 

Consider now a set of ions distributed along a closed 
chain at points separated by a distance a, so that the lattice 
vectors are R = nu for n E (1, . . ., NI. If only neighboring ions 
interact, we may take the harmonic potential energy to 
have the form: 

n=1 

where K = v”(a) is the stiffness constant of the system, v(x) 
being the interaction energy of two ions at distance x along 
the chain. The free vibrations of the lattice are governed by: 

(20) 
dV knvm 

Mii(na) = -___ ~ - K(u((n + 1)a) + U((. - 1)a) - 2u(na)) 

These are precisely the equations that would be satisfied 
if each ion were connected to its neighbors by perfect 
massless springs of stiffness K (and equilibrium length a, 
although the equations are in fact independent of the equi- 
librium length of the spring). 

We seek solutions to (20) of the form Ae’ikna-wi). This 
yields the dispersion equation which gives the relationship 
between spatial ( k )  and temporal (U)  frequencies: 

(21) 



NASTAR AND AYACHE: FREQUENCY-BASED NONRIGID MOTION ANALYSIS: APPLICATION TO FOUR DIMENSIONAL MEDICAL IMAGES 1073 

The periodicity of the closed chain is expressed by u[(n + N)al 
= u(na). We now obtain the set of independent solutions: 

k(p)a  = __ ’r p E B ( N )  (22) 

where B(N) is the first Brillouin zone. 
B(N) is equal to {-+ t 1 ,  ...,+} for N even, and 

The general solution of the free vibrations of the closed 

{p , ..., y}  for N odd. 

chain is the linear combination of the former solutions: 

(23) 

(24) 

The case of the open chain is very similar. We sum up the 
expression of the free vibrations for both types of chains in ,_ 

Table 1. 

TABLE 1 
DISPLACEMENT OF THE NODES OF A FREE VIBRATING CHAIN 

3.2.2 Nonlinear Waves in Discrete Media 
When k is small compared with n/a (i.e., when the wave- 
length is large compared to the interparticle spacing), w is 
linear in k (from (21)): 

w = & (25) 

This is the type of behavior we are accustomed to in the 
case of light waves and ordinary sound waves. If w is linear 
in k, then the group velocity is the same as the phase veloc- 
ity (equal to c = a g ) ,  and both are independent of fre- 
quency. Note that if we approximate finite differences by 
derivatives: 

u((n + 1)a) - u(na) = adu/dx(na) 
u((n - 1)a) - u(na) = adu/dx((n - 1)a) 
u ( (n  + 1)a) - u(na) + u((n - 1)a) - tl(na) = a2~2ti /ax2 

in (20), we end up with a wave equation of velocity c: 

(26) 

- with c = a - F d 2 U  1 d2u 
ax2 c2 at2 

- -_ 

One of the characteristic features of waves in discrete me- 
dia, however, is that the nonlinearity ceases to hold at 
wavelengths short enough to be comparable with the inter- 
particle spacing. In the present case w falls below ck as k 
increases, and the group velocity drops to zero when I k I 
reaches d a .  

3.2.3 Analytic Modes for Curves 
In the more general case of damped and forced vibrations 
(which is the case of our governing equations), time de- 
pendency is not harmonic, andl has to be computed sepa- 
rately. For a closed chain, (23) becomes: 

u ( m ,  f) = c i i , ( t ) P  
P 4 N )  

(28) 

Comparing (28) with the modal superposition (13) yields 
the analytic expression of the modes for a closed chain. 
Note that since time and space dependency are separate in 
(281, modal analysis is the decomposition of the displace- 
ment in a basis of standing waues which are the vibration 
modes of the system. 

TABLE: 2 
ANALYTIC EIGENVALUES AND EIGENVECTORS 

FOR CLOSED AND OPEN CURVES 

closed 

open 

of x M/4K 

[ ..., c o s y ,  ...‘7 
px(2n - 1) 

[...,cos 2N I ...p 
Table 2 sums up the frequencies (eigenvalues) and 

modes (eigenvectors) for closed and open curves. 

3.2.4 Analytic Modes for Surfaces 
The generalization to surface meshes is done by mixing all 
possible pairs of boundary conditions; it yields three differ- 
ent surface topologies: 

openandopen + torus topology, 
closed and closed plane topology, 
closed and open + cylinder topology 

The analytic expressions for these topologies are 
summed up in Table 3, where the set of variation of the 
mode parameters p and p’ is %(N) or (0, ..., N - 11, depend- 
ing on the boundary conditions. 

Note that we implicitly develop the surface expressions 
for quadrilateral meshes, and that the modes have to be 
normalized to unity. 

Finally, analytic modal analysis has both theoretical and 
practical implications. Theoretically, it shows that modal 
analysis is a specific form of Fourier decomposition of the 
deformation in a basis of standing waves (28). From a more 
practical point of view, analytic expressions of the modes 
are an efficient tool for veal time eigenvector extraction as 
soon as the surface topology and the mass and stiffness 
properties of the model are defined. 

3.2.5 Analytic Modes for Volumes 
Suppose we wish to model a deformable volume. This may 
be typically the case for nonrigid motion recovery in a 
whole 3D image [lo]. Therefore we model a volume mesh 
of size N x N’ x N”. The volume has “open” boundary con- 
ditions in all three directions. 

Thus, it is easy to generalize the results for the deform- 
able plane, defining this time the modes with three pa- 
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plane 

torus 

cylinder 

TABLE 3 
ANALYTIC EIGENVALUES AND EIGENVECTORS 

FOR DIFFERENT SURFACE TOPOLOGIES 

6P) U' x M / M  

T 
2 PZ 2 P'" pn(2n - 1) p'z(2n' - 1) 

2 P" 2 P'Z 

2 PE  2 P'" 

2" sin -+sin 2N 2N [...,cos 2N cos 

sin -+sin N N 

p 4 2 n  ~ 1)  2p'" [ ..., cos 2N sin -+sin 2N N 

rameters p ,  p', and p" varying, respectively, in (0 . . . N - 11, 
(0 ... N' -  l}, and (0 ... N" - 1). 

deformation spectrum as the set of total amplitudes of the first 
p deformable and low-frequency modes. Once the spectra are 
computed, we can define a distance measure between the 
spectra. We choose the Euclidean distance d, such that lower 

The eigenvalues are: 

2N (29) amplitudes are given less importance than higher ones: 

while the eigenvectors have the following expression: 

4 ( P r  P ' r  P") = 

(33) 

where D, and D2 are the labels of the deformations. Dis- 
(30) tance d gives a relative value of how different the two de- PZ(2fl- 1) P'Z(2n' - l) P"Z(2n" ~ 1) 

cos 2N" , . . .] 2" formations are. 
[...,cos 2N cos 

with n E (1, ..., NI, n' E (1, ..., MI, and n" E (1, ..., N"]. 3.3. I Similarity 
Fig. 8 shows two similar deformations and their spectrum; 
in this example, R is a 90-degree rotation matrix and T is 3.3 The Deformation Spectrum and Its Applications 

DEFINITION. The deformation spectrum of a motion is the graph 
representing the value of the modal amplitudes as a func- 
tion of mode rank: ct(t) = f(i) [33]. The deformation spec- 

arbitrary. 

model for segmenting the mitral valve contour in Fig. 3. 
These are the deformations of the initial deformable 

trum is initially drawn for a deformation occurring be- 
tween two image frames: I t  describes which modes are ex- 
cited, and how, in order to deform one object into another. 
It also gives an indication of the strain energy, as we have: 

1 1 N  (31) Estrain = -U'KU = - 2 c4.",' 
!=1 

2 

Note that rigid motion has zero strain energy. Let us 
now define the term similar deformations. Two deformations 
are similar when the corresponding displacement fields U, 

a rotation matrix R and a translation vector T such that: 

( 1  U1 - (RU, + 73 ( 1  < E 

and U, are similar within a rigid transform, i.e., if we can find Reference lMormsllon 

for a small value of E. 

Analytic Therefore, it is natural to state that, provided that 
the dimensionality p of the reduced modal basis is suitably 
chosen, two similar deformations have similar deformation spec- 
tra. However, we cannot compare the deformations of two 
objects placed in arbitrary configurations in the same global 
reference frame. Thus the modal computations have to be 

TABLE 3 

.L3ms- 

' I ' ~  ~ 

,:- _ya/ ,lla/ 11/10 YMX, 

developed in the object reference frame, defined by its cen- 
ter and axes of inertia. 

In the following, we get rid of the rigid modes in order to 
study exclusively the deformations. Thus we will refer to the 

Fig. 8. Similar deformations D, and D2 and their spectrum. 
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3.3.2 Robustness 
In order to test the robustness of the spectra in the presence 
of noise, we add a Gaussian noise of standard deviation o 
to the initial 3D diastole, then deform the diastole into the 
systole, draw the spectrum and compare it to the spectrum 
of the true deformation. 

The results are very promising (Fig. 9): For o = 0.1 the 
difference between the original spectrum and the corrupted 
one is almost invisible (d = 0.01); for g =  1 very slight differ- 
ences appear (d = 0.10); for G =  5 the main excited modes 
are still the same (d = 0.44). 

Note the very chaotic visual representations of the cor- 
rupted shapes, while the modal spectra still succeed in ex- 
tracting the significant deformation information. 

3.3.3 Classification 
In order to test the matching of a specific deformation to a 
group of predefined deformations, we can consider several 
admissible deformation? X, of a reference shape like the 
valve (Fig. 10). Under the assumption of Gaussian distribu- 
tion, we can then classify a test deformation Y as belonging 
or not to the set D = {. . ., X,, . . . J by using the Makalanobis 
distance [41,[211: 

dL(Y,'Z)) = (Y -X)'W-l(Y -x) (34) 

where W is the covariance matrix of the admissible defor- 
mations D, and x the mean admissible deformation. 

By comparing with a x table of q degrees of freedom, 
where 9 is the rank of the covariance matrix,' we can de- 
termine a confidence measure for acceptation ( d i ( Y , D )  < E )  

or rejection of the test deformation as being part of the pre- 
defined admissible deformations. Fig. 11 shows the classifi- 
cation of four deformations. The confidence that we have in 
our classification (derived from the x' table) is also indi- 
cated. Note that visually, we would classify the four defor- 
mations the way the system has done it (that is, reject the 
first three deformations, and accept the fourth). Note finally 
that though this set of deformations has been artificially 
generated, the application of the method to a clinically- 
significant case is straightforward. 

2 

4 TIME EVOLUTION OF THlE 
MAIN MODAL AMPLITUDES 

A single deformation spectrum gives a static information 
about the spatial frequencies of the motion, whereas the 
time parameter t is not really taken into account. 

However, temporal evolution is really what we are inter- 
ested in. A dynamic deformation process can be much better 
described and interpreted if we have a time sequence of im- 
ages. Therefore, we can draw T consecutive deformation 
spectra for T + 1 frames of images showing the temporal evo- 
lution of the deformation process. For a chosen mode i, we are 
interested in the time signals: G l ( t )  for different values of i. 

5. By deformation we mean the vector of total modal amplitudes, in other 

6. If 9 < p then W - 1 is the pscudo-inverse of W. 
terms the deformation spectrum. 

I-- 

I 4 x e -  

._4 - 
-. 

I I / , I /  
m a m  _a m m  ,mm 

I- " 

Fig. 9. Corrupted initial diastole deformed to the systole (not shown here), 
and its spectrum, for different values of noise D(G= 0.1, o= 1, o= 5). 

Fig. 10. Ten admissible deformations of the valve. 

Reject(99.g%) Rcject(99.9%) Reject(sO%) Accept(97.5%) 

Fig. 11. Classification of four deformations, with the confidence values. 

Let us track the moving ventricle (cf. Fig. 1) through all 
image frames. We wish to find a minimum number of 
parameters describing this sequence. Can we compress 
the 4D data information for its further analysis, storage, or 
transmission? 
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Let us denote by (Po, . . ., Pr)  the positions of this surface 
during the T + 1 frames of the cardiac cycle. Therefore, 
3 N x  (T + 1) parameters describe the 4D data (i.e., 345,600 
parameters with N = 6,400 and T = 17). 

Let us now track the ventricle in the reduced modal 
space. We obtain T truncated spectra that store the low- 
frequency modal amplitudes through the cycle. 4D data is 
now stored in 3N + T x p parameters (i.e., 20,985 parameters 
with p = 105). The numerical value of p is chosen so that 
each truncated spectrum has 90% of the energy of the corre- 
sponding non-truncated spectrum. 

We wish to discard as many modes as possible. There- 
fore we define a criterion for keeping only the most excited 
modes among the p low-frequency modes. We compute the 
energy of an amplitude through the cycle: 

T 
L2(i) = I, ;r,( t)*dt (35) 

The larger L2, the more important the contribution of the 
corresponding amplitude. In our experiment with this data, 
the first nine values of L2 were much larger than the other 
ones. q = 9 was then an obvious threshold for us to choose. 

Let us draw the temporal evolution of the q selected mo- 
dal amplitudes. They are represented by groups of three in 
Fig. 12. 

These curves have, globally, a single period sine shape, 
which is an expectable result for low-frequency modes 
during a cardiac cycle. Their shape is quite like the ventricle 
volume curve as a function of time during a cardiac cycle. 
The shape of these curves encourage us to perform a fast 
Fourier Transform: Most probably only a few Fourier har- 
monics will describe the time evolution of the curves. 

, m a  - V 

In order to illustrate this point, let us choose one among 
these q = 9 spectral components (or modal amplitudes). 
Fig. 12 (bottom right) shows the time evolution of this par- 
ticular amplitude. Fig. 13 displays the real (top left) and 
imaginary (top right) parts of the corresponding Fourier 
Transform; we observe that indeed only low-frequency 
Fourier harmonics are excited. Therefore we keep the har- 
monics of rank 0, 1, and 2 of the Fourier spectra (thus, with 
symmetry considerations, a total of H = 5 harmonics, see 
Fig. 13 bottom left and bottom right); we then reconstruct 
the time signal in Fig. 14. 

nul p r t  1m.Zlmry par, 

Fig. 13. Fourier (top) and Truncated Fourier (bottom) spectra of the 
modal amplitude displayed in Fig. 12, bottom-right. 

Modal Amplitude vs. Time 
Y 

1 
- 

I I I '8' 
?OW - 
MOO - 

SOW - 

40W- 

,om- ..-\ / c--hT 

I 
-20.110 zj/ l0Ul- - 

-40.m - 
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-6003 - 
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Fig. 12. Top-left, top-right and bottom-left: Each figure displays the time 
evolution of three main modal amplitudes through a cardiac cycle. In 
total, the nine main amplitudes are displayed. Bottom right: time evolu- 
tion of a particular modal amplitude. 

Fig. 14. Reconstruction of the time evolution of the modal amplitude in 
Fig. 12 bottom-right from truncated Fourier spectra. 
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Fig. 15. Space-time evolution of the left ventricle model. In each row: 
Left: Finite element formulation. Center: Modal recovery. Right: Modal 
plus Fourier recovery. 

As for motion compression, instead of keeping a whole 
3D image at every frame (that makes t, t, t, =1,078,000 pa- 
rameters per frame) we now keep only H x q/ (T  + l) = 2.5 
parameters per frame. This compression of 4D data is im- 
pressive: It means that, provided that we keep the first 
shape, we are able to synthesize the motion with 2.5 pa- 
rameters per frame. This 4D data is then described by 3N + 
H x q = 19,245 parameters instead of (T + 1) x t, t t = 

y 2 3  19,404,000, which makes a compression of more than 1 0 ,  
for a cardiac cycle whose duration is approximately one 
second. If the analysis was extended over a much longer 
period (e.g., 10 minutes), the Compression rate would con- 
tinuously increase toward the asymptotic value of 
1,078,000/2.5, i.e., approximately 4.10 per pame. If we com- 
pare the total compression with the transmission of all the 
3D images over the 10 minutes, we would get an asymp- 
totic compression factor superior to 10 . 

On the top of the compression ability, the synthetic in- 
formation that our spatiotemporal processing provides al- 
lows comparison of nonrigid motion by comparing very 
few parameters. The method is indeed useful not only for 
compression, but also for analysis of dynamic motion for 
diagnosis purposes. 

The evolution of the left ventricle model over a cardiac 
cycle is displayed in Fig. 15. In each row, we observe: Left, 
the evolution of the model in the real space (6); center, the 
approximation with 9 = 9 modes (spatial smoothing); right, 
spatiotemporal processing with nine modes and five 
Fourier harmonics. 

Finally, Fig. 16 displays the mean Euclidean error be- 
tween the real-space mesh (complete computation) and 
respectively spatial smoothing (modal recovery) and spa- 
tiotemporal smoothing (modal and Fourier recovery). Note 
that this error (in voxels) is extremely small. The position of 
the two peaks indicate that the error is maximum in the 
middle of diastolic and systolic shapes: This is because the 
change in the overall shape is maximum in those frames. 
An interesting topic would be the study of the error range, 
and its relationship with the number of modes and Fourier 
harmonics. 

5 

9 

X 

Fig. 16. Evolution of the approximation error (in voxels) during a car- 
diac cycle, for modal recovery (solid line) and modal plus Fourier re- 
covery (dotted line). 
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5 CONCLUSION 
In this article, we presented a frequency-based analysis of 
nonrigid motion by coupling modal analysis (outlining the 
main spatial frequencies of the motion), and Fourier analy- 
sis (outlining the main temporal frequencies, mainly for 
cyclic motions). 

Nonrigid motion is first estimated by a physically based 
deformable model. 

The modal decomposition of the deformation, made 
real-time and precise by using the analytic expressions of 
the modes, leads to the definition of the deformation spec- 
trum, which is a compact description of the deformation 
allowing its straightforward comparison and classification 
(identifying pathologic and normal deformations). 

We then introduced a temporal analysis of nonrigid mo- 
tion from 4D data by recovering the temporal evolution of 
the main modal amplitudes by a Fourier analysis. 

The method provides a very nice description of 4D data 
by very few parameters (a few modal amplitudes and a few 
Fourier harmonics). It has important applications in medi- 
cal analyis of nonrigid motion (mainly for automatic diag- 
nosis purposes), and also provides a tremendous compres- 
sion of multidimensional nonrigid motion, mainly for stor- 
age or transmission purposes. 

Our future work will focus on the clinical use and vali- 
dation of this framework, and its transfer toward concrete 
medical applications, in particular in the cardiology field. 
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