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Deformation Analysis to Detect and Quantify
Active Lesions Iin Three-Dimensional
Medical Image Sequences

Jean-Philippe Thirion* and Guillaume Calmon

Abstract—Evaluating precisely the temporal variations of lesion lesion in two volumetric images of the patient at two different
volumes is very important for at least three types of prac- time pointst; andt, which gives two volumed; = V(¢;)

tical applications: pharmaceutical _trials, decision ma_lking for and Vo = V(t;) to be compared. The volume variation
drug treatment or surgery, and patient follow-up. In this paper AV = Vo — Vi ind f the lesi luti

we present a volumetric analysis technique, combining precise — 2= IS an |n_ ex_o_ € lesion evoluton.

rigid registration of three-dimensional (3-D) (volumetric) med- This measurement is difficult to perform for at least two

ical images, nonrigid deformation computation, and flow-field reasons: the first is delineating in three dimensions and the
analysis. Our analysis technique has two outcomes: the detectionsecond is delineation errors. Because hundreds or thousands
of evolving lesions and the quantitative measurement of volume ¢,y ol are to be considered, (semi-) automatic segmentation
variations. The originality of our approach is that no precise | highlv desirable f . licati b h
segmentation of the lesion is needed but the approximative 100IS are highly desirable for routine applications because they
designation of a region of interest (ROI) which can be automated. can offer an automation of tedious and repetitive tasks, as well
We distinguish between tissue transformation (image intensity as providing objective measurements. Among possible auto-
changes without deformation) and expansion or contraction ef- matic segmentation tools are the mathematical morphological
fects reflecting a change of mass within the tissue. A real lesion operators (erosion, dilation, connected components analysis,

is generally the combination of both effects. The method is tested .
with synthesized volumetric image sequences and applied, in a€tC:» Of the 3-D extension of deformable models (3-D snakes,

first attempt to quantify in vivo a mass effect, to the analysis of a See [3]). In most practical cases, however, ahgiori medical

real patient case with multiple sclerosis (MS). knowledge of the physician is indispensabl. Most of these
Index Terms—Lesion, mass effect, motion field analysis, mul- Methods incorporate an interactive initialization and a final

tiple sclerosis, 3-D deformable grid, 3-D image processing, stere- interactive adjustment tool. Generally also, the accuracy of

ology, volume measurement. the delineation is not subvoxel, hence, the uncertaiftyon

the total volume measurement can be higher than the volume

variation itself (20v > AV).

_ ) _ o The main idea in this paper is to use an analysis method

HE precise evaluation of lesion-volume variations alongased on a volumetric deformation field to first detect the

time is extremely important for the following reasongctive lesions and then to evaluate their volume variations.

I. INTRODUCTION

(see, for example, _[ZOL [17]: In particular, our volume-variation measurement necessitates
+ for pharmaceutical research, to compare the effects of n@w input only the designation of a region of interest (ROI)
drugs on different populations of patients; surrounding the lesion (for example a sphere) or, when it is

+ for clinical applications, to determine the exact time whepossible, a segmentation of the lesion which is not requested
a potentially invasive drug is to be given, or surgery it be subvoxel. Because we use a precise 3-D rigid registration

to be performed; _ method, this ROI designation or rough segmentation needs to
+ for clinical follow up, to quantify the effects of the drugbe performed only in (one) of the two volumetric images or
or surgery along time. one image of the time sequence to be analyzed, rather than at

The main source ah-vivo information about lesion growth each time frame. Rather than a single valN& of volume
is volumetric medical imaging such as three-dimensionghriation, our method provides a kind of signature, or profile,
(3-D) magnetic resonance images (MRI). Classical techniquessociated to the lesion growth, from which we propose to
(see, for example [15] and [16]) consist in delineating thguantify different effects that we call the tissue transformation
and the (tissue deformation).
First we give a general description of the method and a
Manuscript received August 8, 1997; revised December 1, 1998. This waiefinition of the tissue transformation and deformation effects.
was supported in part by the Institut National de Recherche en Informati trat the d iti f the def fi
et Automatique, Sophia-Antipolis, France. The Associate Editor responsible! €N W€ concentrate on the description of the detormation-
for coordinating the review of this paper and recommending its publicatidield analysis, which is the main contribution of our paper.
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e integration of the deformation field according to concentric
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We then compute the nonrigid deformation betwédemand

T}, using the nonrigid matching method described in [19]. It is

; a 3-D deformable grid technique which is very close to optical
flow when small deformations are considered. The result is a
dense (i.e., not restricted to contour points) deformation field
f, represented by a 3-D array of displacement vectors, one for
each voxel in the imagéd;. As in many nonrigid matching
methods, the result of the motion field estimation depends on
a parametes which is a balance between the regularity of the

Rigid registration i .

R o

[Deformation field FJ deformation field and the similarity betweéf = f—*(1}) and

@ I;. It is very unlikely that this parameter, which is inherent
Deformation Analysis {§ to any nonrigid matching techn_lque, can be eliminated. For the
——— snakes methods [see [11]] it is the balance between internal

forces (regularity) and external forces (similarity).

D tion (X,¥,Z,1,... . .
[ ctec (xy )) This parameterc has some influence on the volume-

[ Quantification (dV,...)] variation analysis. It can be interpreted to some extent as
a blurring of the real deformation field, equivalent to a
. . . . 2 2
Fig. 1. The general principle of the method. convolution with the Gaussian functiert”™ /2" of the vector

field (see [2]). This value is explicitly defined in the nonrigid
isocontours. We present experimental results with synthesiz@étching method that we are using (see [19]).
images to evaluate the performance and test the robustnesphe next sections describe in detail the detection of evolving
of our method. Last, we apply our method to sequences lgkions and the quantification of volume variation. First we
volumetric images of a patient with multiple sclerosis (MSnust define precisely the effects that we want to measure.
to evidence and quantify a tissue deformation or mass effect
at the level of the plaques: an effect which, to our knowledge,

P Ill. T1SSUE DEFORMATION AND TRANSFORMATION
has never been quantified vivo before.

We distinguish between two different models of lesion
growth, real cases being generally a mix of these effects. Our

Il. GENERAL DESCRIPTION model is crude with respect to many other works existing in
The method consists of four steps (see also Fig. 1). the medical domain and concerning the biological aspects of

1) The 3-D rigid registration of the two successive image!€Sion growth (see, for example, [21] and [3]). In particular,
2) The computation of the deformation field between th&€ consider explicitly neither the elastic properties of the brain

two registered images. tissues (see [6]), nor the dynamic aspect of malignant cells
3) The detection of evolving lesions. growth, but only two fixed time frames, with no (or very few)
4) The vector field analysis at the level of each detecté¥plogicala priori knowledge. We will see, however, that even
lesion to quantify the volume variation. with crude assumptions, solving the problem is not an easy
task.

Th iginal f th k he | . o
e most original part of the present work are the fast two What changes can be observed in a medical image of a

steps: the vector field analysis for both the detection and t,we. : : . : :
e . . esion? A lesion can be the inclusion or destruction of material
guantification of evolving lesions.

For the first step, which is the computation of a rigie!wthln the tissue, or a localized change of the tissue properties,

. " or a complex combination of those cases, which might or might

transformation between two volumetric imagisand /7>, we ! . .
C . nolt have the same appearance in MR images. Basically, we

use the automatic rigid matching method based on EXtremd;f‘stinguish between deformation and transformation
points described in [18]. The accuracy of this method has '
been evaluated in [13] and is of the order ofl@Qth of a
voxel, assuming that the object which is scanned is rea
rigid. To fulfill this hypothesis, even when some part of the Some lesions can be observed by way of a large deformation
object are deformed (such as places containing lesions), tifethe tissues (mass effect) without image intensity changes.
matching method is based on feature points extraction aAdditional material is entering the tissue, but it may happen
outlier features are automatically discarded in the computatitrat the grey-level value representing the tissue in the MRI is
of the final transform. We then resample one of the twwanchanged, mainly because their proton density is the same.
images (let sayl,) into 7; to make it exactly superposableHence, the only visible effect in that case is an expansion, con-
to I; except, of course, for the regions of the brain whictraction, or deformation of the tissue, which can be perceived
have changed between the two acquisitions (that is, maimdgly due to textural information. We call this effect (diffuse)
the lesions). Note also that, for simplicity reasons, we adeformation. But it also can be the addition of new untextured
considering isotropic volumetric images. In our experimentaaterial in the central part of the lesion, which translates into
we always resample the data into isotropic volumes befamgo effects: the growing of a central spot (the lesion) and the
processing them. Typically, a 0.94 0.94 x 3.0-mm MR displacement of the surrounding tissues (the deformation). We
image is resampled into 0.94 nirbefore processing. call this model central deformation.

rﬁ, Tissue Deformation
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the vector field. In practice, different factors prevent us from
directly using this mathematically well-defined technique. We
list now some of these problems with some possible (partial)
solutions.

* The vector fieldf produced by an intensity-based non-
rigid matching is equally sensitive to a deformation or a
simple intensity change (transformation).

We can study precisely and separately ideal measure-
ment models for tissue deformation and transformation,
test these models on synthetic data, and compare the
profiles with those obtained with real data.

@ (®) e The estimated vector field is inevitably blurred by a

Fig. 2. Two registered slices of a patient with MS, with a two-months regularity parametes.

interval (T-weighted first echo MRI). We can quantify the effect of this blurring on ideal

models and measure it in the synthesized models to

extrapolate it to real data.
A lesion also can be detected by a change in intensity with-, A |esion can have a shape much more complicated than
out any displacement of the tissues. The molecular structure of 5 sphere.

the tissue is changing in place: the tissue itself is not displaced.  \ye can study a family of embedded closed surface

This type of lesion is, of course, much easier to delineate than o ; ; )

in theyﬁ)orevious case. The lesion volume is the area of the 15i4 € [L-- -m]} encompassing regiorR,; of volume

MR image where the tissue has a different composition and,

therefore, a different gray value. It is a known phenomenon

for the plaques inl;-weighted MR images of MS, which
corresponds to demyelination of the axons and then glyosis.

Most of the classical lesion-measurement methods are based

on this model and are using segmentation tools exclusively.

B. Tissue Transformation

V;, ranging in size from the approximate center point of
the lesion to the complete ROI. It defines a profile of
the lesion variationr{AV;,i € [1---m]}. If the lesion

can be approximately segmented, we can use a family of
embedded surfaces whose shapes are much closer to the
segmented lesion surface than spherical shells.

f is not a continuous field, but is sampled for a regular
o o 3-D grid (the voxels). It is unclear how to integrate a
C. Defining Volume-Variation Measurements discrete flow field over a sampled closed surface.

Of course, real lesions are always a complex combination We develop in this paper a stochastic method to inte-
of these effects and giving a clear definition the lesion volume grate the volume variation from a discrete deformation
or lesion growth is very difficult. If central deformation field.
and tissue transformation might present the same appearance The displacement of surrounding tissues induced by a
in the MRI within the lesion itself (i.e., translates into a  lesion evolution decreases {1/r?) outside the lesion,
contrasted central region), they have different influences on the and the vector field evaluation is inherently corrupted
nearest surrounding tissues. This leads to the idea of studying by measurement errors and discretization, hence, the

a lesion-evolution profileAV(r). A curve representing the evaluated flow becomes meaningless very rapidly when
volume-variation coefficienAV as a function of the distance we get farther from the lesion. In addition, there might
r to the approximate center of the lesidn and up to a be several active lesions, as in the case of MS disease.
limiting bounding radiusk. The spheré P, R) defines an ROI High-frequency noise is eliminated by the regulariza-
centered on the lesion. By studying the profidé’(r) outside tion of the vector field, but we must keep close to the

the lesion (but inside the ROI), we might be able to distinguish  |esion boundary for meaningful measurements.
deformation (AV(r) = AV and ||f|| ~ 1/r* outside the . Different pathologies exist, corresponding to different

lesion) from transformatioAV () = 0 and|| f|| = 0 outside models of lesions.
the lesion) wheref is the vector field corresponding to the The usefulness of the discrimination power of each
displacement of tissues. measurement has to be proved for each specific type
of disease througln vitro studies and through clinical
D. An Ideal Mathematical Solution validations (coherence of the measurements along time,
Ideally, if we define a virtually closed surfadein the image coherence with traditionql cIin_icaI tests based on external
space enclosing a regidd of volumeV we can study the flux symptoms, coherence with histology, etc.

of tissues througl§, represented by the vector figfdoroduced ~ As we can see, the problem of defining and measuring a
by the nonrigid matching step. Intuitively, the summation gfrecise lesion volume variation is much more complex than
all that goes out minus the summation of all that enters &mply counting voxels. But even if no complete mathematical
equal to the volume variation, which is a simplified version dbrmulation is at hand, the precise quantification and its impact
the Ostrogradsky theorem which states that the integral owar the development of new drugs is too important to simply
a closed surface of the flux of a vector field is equal to trebandon the effort when things become difficult. For example,
integral over the encompassed volume of the divergenceionfthe case of MS, there are hundred thousands of patients
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throughout the world and the cost of therapy basedgon
interferon is very high (today, approximately $10 000 per yed
per patient). In the following, we describe the solutions thd
we have explored to detect and quantify the evolution of sug
lesions.

IV. DETECTING EVOLVING LESIONS @) | (b)

In this section, first we present traditional methods base@. 3. Evolution of a lesion through time. The horizontal axis is a cross
on segmentation to analyze lesion evolutions and thenseggtion of a 2-D image (itself extracted from a volumetric image). The vertical

. is is time (20 different volumetric acquisitions for this subject). (a) The
more recent work based on the temporal anaIyS|s of t poral sequence without volumetric image matching. (b) The evolution after

intensity signal ([8]). Finally, we present our contributionimage matching and 3-D resampling: the evolving lesion appears as a spindle

which is based on the evaluation and analysis of deformatigtgpe. This sequence corresponds to a horizontal cross-section through the
lving lesion presented Fig. 2.

fields and present an original method which evaluate volurfi&’
variation through the integration of the deformation field
in concentric shapes, which can be concentric spheres
embedded isosurfaces.

A. Segmentation

Detecting lesions in medical images is traditionally per
formed by segmentation and, therefore, relies on the log
analysis of the intensity or texture in static images. U
fortunately, the intensity is generally not specific enoug
to automatically characterize a lesion and, in most case
several modalities must be used to image the same brain. By
combining those different images it is sometime possible to @ (b)
characterize the lesions in a more robust way, for example, Bjg- 4. (a) Subtraction image: the growing lesion appears as a white annulus.

e . b) The subtraction image [same image as (a)] is inverted and a small shrinking
a component-classification method (see [7] and [4]). Once tfégon can be seen (upper right).
lesions are characterized in each time frame, it is possible to
analyze the whole sequence of segmented images as a f@®ig: 4). When a lesion is characterized by a hypersignal, that
dimensional (4-D) image (3-B- time) and extract and analyzeijs, with an intensity locally larger than the intensity of the
the lesions as 4-D connected components (see [10] and [12])rrounding tissues, then a growing lesion appears as a white
On the one hand, this allows us to extract static as well aanulus in the difference of two consecutive images, and a
dynamic lesions. On the other hand, the motion information ghirinking lesion appears as a black annulus. Provided with an
not taken into account in the detection itself. almost perfect registration of the images, the annulus can be

In the case of MS, there are several serious drawbacksidolated more easily in a difference image than a lesion in a
using segmentation methods. Th-weighted MR images, the single static image (compare Figs. 2 and 4).
boundary of an MS plaque is fuzzy and sometimes surroundedn [8] the intensity profile of the whole sequence of reg-
by a halo. Hence, it is very difficult to segment. In [10], thigstered volumetric images is analyzed individually for each
problem is partially overcome due to masking. In additionjoxel position to characterize evolving regions. In this last
thresholding and connected component analysis tools are v@gyk, no deformation due to lesions is considered, which
unstable operators. For example, an active plague can mefgght induce interpretation problems if there is indeed a
with a neighboring passive plague during the expansion. TH&placement of the tissues.
estimated volume is suddenly and artificially increased due tolf we are looking carefully at Fig. 3 (see also Fig. 2), we can
the capture of the passive plaque or of another brain structyserceive tissue displacements: the white spindle is the evolving
This prevents us from studying precisely and automatically tiigrowing then shrinking) lesion. The first dark layer around
evolution of individual plagues with segmentation, although ihe spindle is gray matter, followed by a lighter layer which
might be possible to obtain some global measurements. Evemvhite matter, etc. As we can see, the widths of these layers
manually, segmentation is very difficult to perform in manyemain fairly constant and the layers themselves are displaced
cases. The final drawback of segmentation is that it totallyy the evolving lesion. It has no visible effects farther from the
ignores the mass effect (i.e., the effects on surrounding tissugsgion because, in 3-D, displacements due to mass effects are

decreasing very rapidly (iib/7?). Such spatial displacement is

B. Segmentation Based on Intensity Changes even more apparent in Fig. 2(b) and [8, p. 474] (same patient

A different approach is to consider a set of successi\%'t different lesion).

volumetric images of the same subject as being a temporal ) )
sequence (see Fig. 3). C. Flow-Field Analysis

A simple way to use the temporal domain is to consider the We have developed a different way to characterize evolving
difference between two consecutive volumetric images (skxsions than simply analyzing image intensity evolutions.
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Fig. 5. The 3-D deformation field measured between the two volumetr
MRI's of the same patient, at the level of the lesion (this lesion is visibl
in Fig. 2).

We analyze the deformation field computed between two
consecutive image$; and I, (see Fig. 5).f is represented
by a discrete functionf(x,y,~) where f: (u,v,w) is a 3-
D displacement vector defined at each Voé(ﬁjy, z) of I,. Fjg. 6. (a) Diﬁqrence of intensity. (b) Vector field n0!1¢1f[|. (c) Diyergence

. . .. . . div( f). (d) || fl|div( f). Each step corresponds to an image easier to segment
More precisely,f(F) being the position in/> corresponding aytomatically.

to a pointP: (z,y,z) in I, we have

(© (d)

z+u(z,y,2) We describe now the method that we have applied in our
fP) | y+olz,y,2) |. (1) experiments, which is based on the integration of the vector
z +w(x,y,z) field for a set of concentric shapes, either spherical or defined

We are interested in places presenting large deformatio%a set of isocontours.

(]| large) and, in addition, because MS plagues have gen- )

erally a rather spherical shape, places where the divergeficel "€ Method of Concentric Spheres

div(f) = Ou/dz + dv/Oy + dw/0=z is large (see Fig. 6). In  In this section we consider a family of spheressS; of
some placeg|f|| can be large anddiv(f)| low (in case of increasing radii{(P,r;),7; € [0---R]} where R is set by

a translation, for example) drdiv(f)| can be high and|f|| the user to entirely encompass the lesion and some of the
low (in noisy regions), but as the feature high magnitude higlurrounding tissues (but, hopefully, no other lesions). The aim
divergence is more specific to evolving lesions, we have testeftthe concentric spheres is to obtain a volume-variation profile
successfully the following operatdff||div(f). Besides, the and to deduce from it the volume variation, without having to
sign of div(f) characterizes growing lesions from shrinkingsegment the lesion.

lesions. This operator makes active lesions very easy to detect) Integrating the DivergenceA first idea is to compute
(see Fig. 6). In addition, in the case of MS plaques we caine integral of the divergence within each sphéte or the
use a mask representing the white matter in the brain, becaimegral of the flux on the surface of the sphere which is
most of the MS plaques appear in the white matter. Wheoretically equivalentn is the normal to the sphere)

use thresholding and connected component analysis to finally

extract automatically the centers and the approximative radii AV(r) = / f-ndS= / div(f) dV. 2)
of the active lesions. s; Vi

For a growing lesionAV (r;) must increase wher is
increased until the lesion is entirely included int®, r;).

For now, we assume that the approximate cedteand At that point, AV(r;) remains constant (for the deformation
radius R of an active lesion is determined and that we am@model only, not for pure transformation). Up to now, however,
looking for a precise volume-variation measure. We assume did not get good results in practice with such methods,
also that there is a single lesion present in the defined R@tobably because the noise in the vector field is amplified
This assumption might restrain the applicability of the methdd the computation of the divergence which necessitates a
for some pathologies. differentiation.

V. MEASURING THE VOLUME VARIATION PROFILE
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2) A Stochastic ComputationWe have then switched to a RG
. s . . Image 2 @ Image 2 Image 1
stochastic method to evaluate the volume variation which is , \
the following. |

Assume a shap#, for example, a sphere, a cube, or any ¢ y %

shape defined by a closed oriented surface in idagAssume — Sy
also a regular gridG [see Fig. 7(a)]l. The number of grid N /
nodes times the volume of a single voxEl(voxel) is an |
approximation of the total volum&(S) of S, which tends < i 1
to the exact value when the grid gets thinner. This method is G Ve F(S) VEES)-9
close to stereological methods which are used to quantify the G (b) (c)
volumes of static lesions (see [14]). Similarly, the number @fg. 7. Stochastic computation of the volume variation. The main idea is that
nodes of the regular grié' within the deformed shapﬁ—l(S) the stochastic computation of the volume of a shapé(S)'with a regular
gives an approximation OV(ffl(S)) [Fig. 7(c)]. g::g ?((52 |(sb)eqU|valent to the stochastic computationSoWith a deformed
As f~1(9) is the image inf; of the shapes in I, AV (S) = '
V(S) — V(f~1(9)) is the volume variation betweeh and
I, of the shape represented Byin I, (or by f=(S) in I,).
We could computeAV(S) by computing stochastically
V(S) and V(f~1(S)), which would necessitate the compu-
tation of the deformed shap&(S). However, we note that

i

computing the number of nodes 6 within the deformed Gaussian
shape f~1(S) is equivalent to computing the number of filiering

nodes of the deformed grig(G) within the original shape
S [Fig. 7(b)], which is computationally much easier because
the deformationf is sampled for each node 6f and there is
no need to compute the deformed shgpe (.5). (@) (b)

_ T_h_e method that we propose is fairly simple, but Countegry g Automatic computation of embedded surfaces from an approximative
intuitive. Compute the numbeWs(G) of nodes ofGG within  segmentation of the lesion.

S and the numbeVs(f(G)) of nodes of f(G) also within
S. The volume variationAV(S) for the shapeS in I
is approximatelyNs(G) — Ns(f(G)). This approximation  The computational complexity of the arraysV/F.: €
tends to the exact value when the grid gets thinner. If the---m—1]} and{A;“ i € [0---m—1]} is O(n), as for the
volume variation is requested for a regular shape within derivation of{ ¢} and {N/‘®} from {ME} and{a/ 9},
instead of within I, it suffices to use the same methoghence, the whole computation of the volume-variation profile
with the inverted transformatiorf—! obtained, for example, {AV;,i € [0---m — 1]} is linear (O(n)).
by the exchange of; and I, within the nonrigid matching — \we shall note that this computation can also be performed
algorithm. , ) , with random positiong”; throughout the ROI instead of with
3) Practical Computation of the ProfileSuppose now that the nodes of a regular grid.
we ?ave a farrlnly 0]; emlbed](c:ied hsha;%,?z € [Oh. -~m] such 4) Computation of a Single Value of Volume Variatiofor
as, for exampie, a family ot sp erg .’”) W't INCIEAsING e deformation modelAV,; must remain constant and equal
radii ;. We propose an optimal algorithm (i.e., with a Imea{o the searched\V’ as soon as; is larger than the maximal
complexity) to compute the volume-variation profile. Suppose ‘

that we have defined a RQIP, R) containingn grid nodes extent Of_ the Ie5|on. Howe_zver, because of the noisd;
of . moves with a Brownian motion around the trd@” (each new

error increments or decrements the estimated value randomly),

+ We define two arrays of numbefs/“1} and {Mif(G)}. which means in practice thatV; oscillates around\V with
initialized to zero. larger and larger amplitudes whets increased. To avoid this

* For each node’;: (z,y,z) of G (out of then nodes), phenomenon, we remove from the computation the effect of
we determine the index of the shell corresponding very small displacements (whe}y|| < threshold we impose
to the spheregP,r;) and (P,r41) which containsP;  f — (). With this constraint, the noise is reduced hi;
(respectively, f(P;)). ¢ can be obtained in constantiends artificially to zero when; becomes large, even for
time with the distancel(Z;, ) and a lookup table. For ihe geformation model, which is one of the reason which
each P; we mcregnent the corresponding buckit” prevent us from directly using the volume profile to distinguish
(respectively, M), between transformation and deformation.

« Once the array§ M} and {M/'“} are computed, we  In order to get a single value of volume variation, we
compute incrementally the array§® = ¥,_% MS and compute the maximal value\V of {AV;,i € [0---m —
N/ = sl M 1]}, which approximates the realV. We have extensively

* At last, we compute the volume-variation profie}; = validated this method with synthesized data, which constitutes
(NS — N/ Dy x V(vowel) an important part of the present paper.
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B. ComputingAV; with Isointensity Surfaces

The advantage of using concentric spheres is that it doesn’t
necessitate any kind of segmentation and hence can be applie
to invisible lesions (invisible meaning undetectable in a single
frame). However, it can be improved seriously if we can take
into account an approximate shape of the lesion by replacing
concentric spheres by concentric shapes closer to the actua .

) Tissues
shape of the lesion. / \/ transformation

If the lesion is sufficiently contrasted, it can be segmented lesion a
as a set of labeled voxel® in image I,. In the previous texture
algorithm we have replaced the sphe(é%r;) with a family @ (b)
of embedded closed surfacgsi € [0---m]. A simple way to Fig. 9. Tissue transformation: intensity change without tissue displacement.
obtain this family of surfaces is to consider a digital volumetric
imagelr where the voxels are labeled zero if they are outsidg

the intensity I(F;) of Ir at a pointP; directly gives the
index ¢ of the shell[S;, S;41], which containsP;. Another @ (b) (© (d)
equivalent solution is to precompute a 3-D distance map frogy. 10. (a) Original image. (b) Synthesized lesion with radius (11 ).
R using, for example, the chamfer distance (see [1]). Tl Synthesized lesion with radius; (I2). (d) Subtractionz — I.
rest of the algorithm is exactly similar to the case of the

embedded spheres and therefore the whole algorithm still has TABLE |

a Iinear(O(n)) complexity (a few seconds of computation on EXPERIMENTS FOR INFLAMMATION : F\y’EAL VOLUME VARIATIONS

a workstation). (AVinh), SPHERESMETHOD (AViphere), 1SO-SURFACES

. o . METHOD (AViso), AND SEGMENTATION (AVseg).
The segmentation oR should be distinguished from the

: : Lo R Ry | AVy, | AV, AV, AV
precise segmentation used to evaluate the volume variation in A A e T 1 et
traditional methods. It can be much less precise (because itis 397 | 5 262 295 333 270
then blurred) and, in addition, it must be performed only in one 5 1630 524 623 679 597
of the two images. If the lesion is well contrasted, using shells E",';‘? ;"?,}) _552;4 ;558’}9 —6;22 —ﬁéfo
around a segmented lesion rather than simple spheres gives ¢30 | 5 594 —624 _681 | —597
more reliable results because of the fast decreage?) of 5 | 397 | —262 —294 -336x | —270
the deformation magnitude. Of course, a better segmentation 397 | 0 | —-262 | —176 ~268 | —214

leads to a better deformation analysis. We have verified this
assumption with synthetic data.

a0 400.0

——— Isosurfaces Method

——~ Syrthelical cata
—— Spheses Mathod
——- Syntheical data

8
3
s

VI. SYNTHETIC EXPERIMENTS

volume (mma)

ohume (mms3)
3
H
a

g
° g
° S

A. Tissue Transformation

We suppose (see Fig. 9) that the lesion evolution is sim-
ply a change of intensity without tissue displacement. An-
other assumption is that the image intensity saturates at the

. ) . Co : @ (b)
level of the lesion, that is, textural information is lost in_ o ofA T for . - i ombedded sof
those regions. Fig. 11. Profile ofAV; for tissue transformation: (a) with embedded spheres

. . and (b) with isosurfaces .
To produce a synthetic lesion, we have measured the av-

erage intensity of plaques in a real MRI, selected a region

where the white matter of the brain is homogeneous, afgfd connected component analysis within an ROI defined
implanted spherical synthetic lesions of known radii in it (seley the user.

Fig. 10). The boundaries of the synthetic lesions are blurredThe profile AV; for the sphere and for the isosurface
to give a realistic appearance to the false MS plaque. method is presented in Fig. 11. Note that;, which should
this model, the deformation field measured by our methd® zero outsidgR,, R.], is in fact nonzero because of the
is strictly due to intensity changes and not to tissue meegularization of the vector field. The measure which is finally
tion. We have compared the volume variation obtained Wgtained is the maximum akV;, which in that case is a slight
our deformation-field analysis method based on embeddederestimation of the real valuAV. Segmentation seems to
spheres, embedded isosurfaces, and also with segmentapieriorm slightly better than deformation-field analysis in that
(see Table I). The segmentation used is based on thresholdiage (see Table I).
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(a) (b) (©) (d)
y ; Fig. 13. (a) Original image. (b) Synthesized central spat). (c) Synthe-
lesion \/ sized deformation is applie2). (d) Subtraction/o — I.
texturc
TABLE I

@) (b)

Fig. 12. Central deformation: addition of new material in the center of the _
lesion. The dashed lines in (b) represent the earlier positions of the lesion Jacobian | A(vhp | A(¥)sphere | A(Wiso | A(V)seg
and textured tissues. 0.5 —262 —253 —239 —258
1.5 262 267 255 200

SYNTHETIC EXPERIMENTS FOR CENTRAL DEFORMATION

2 524 499 485 410
B. Mathematical Model of the Expansion Field 3 1047 989 974 872

We now suppose that the lesion is growing in a limited

spherical region of radiuglggjon, Which means that inside

this region the Jacobian determinahbf the deformation field o
f is larger than one. We suppose also that the surrounding
tissues are incompressible, which is reasonable for the brain§
hence, the Jacobian determinant is one outside the lesion
(J = 1). With this model, the expression of the synthetic .
deformation field is o

vy 10000

—— Syrthetical dta
— =~ Isosurtaces Method

Volume (mm3)
8
3
5

—— Synthetical data.
——- Spheres Mathod

50 100 o0 02 04 06 o8 10
radius (mm) Intensity

(\3/7 -1 r-m, if 7 < Rjasion @ ()

_ 3 23 ). if .
(f/(‘] 1)Rlesion+7 7) n, if 7 >R|GSIOI’I Fig. 14. Profile of AV; for central deformation: (a) embedded spheres
(3) method and (b) isosurfaces method. The upper curves are obtained with the
synthetic deformation field and the lower curves with the retrieved deformation
field and show a slight underestimation.

flx,y,2)=

The theoretical volume variation is then

4 3
(/= D37 Eiesion ) Riegion and, finally, applied this field to the first image with

The invert field (contraction) can be computed from thig resampling algorithm (see Fig. 13). In the difference image
expression by replacing/ with 1/J and Rjesion With we note a small motion at the boundary of the brain due to
V/J Rjgsjon This computation is valid only in dimension three_th_ehe}(]pansmn. fThr:S is the only ?oncea}ble visible d'ﬁgrencleo
The norm of the vector fielfl f|| is mathematically equivalent With the case of the tissue transformation (compare Figs.
to 1/r? outside ¥/JRjegjony It Should be noticed that in a@nd 13). _ .
two-dimensional (2-D) world, this field would only decrease Table Il presents experimental results comparing real and
in 1/r, which can can be counterintuitive when looking at S1€asured variations with embedded spheres, embedded iso-
2-D slice of a volumetric image. We must also remember ths¢rfaces, and segmentation. The segmentation underestimates

we choose to keep the Jacobian constant inside the lesion, Bt velume variation because the synthetic lesion is fuzzy and
in real cases, the Jacobian could have a complicated proffl€ intensity of its boundary is very similar to the one of the

J(r) with respect tor and can be specific to each pathology‘.mde”ying image. In that case, the deformation-field method
gives slightly better results than segmentation. Fig. 14 presents

C. Central Deformation an example of measured profile.

Here we suppose that the lesion evolution is the addition of
untextured extra material to the disk of the lesion (see Fig. 18, Diffuse Deformation
therefore, in contrast to tissue transformation, the lesion isin this last case, we apply a synthetic deformation field
pushing the surrounding tissues. in a region of the image which does not present a particular
To generate synthetic data we have inlayed a synthetic lesjatensity (see Fig. 15). No segmentation method can be applied
in the first image (central spot of radiugggjopy), cOmputed at all: the lesion is invisible, even in the subtraction image.
a synthetic deformation field with a known Jacobian withi@nly a slight displacement at the boundary of the brain can be
LIn the brain, the ventricles can compensate for volume variations inducefpserved (see Fig. 16). This small shift is the only evidence
by tumors or lesions, except when they are totally compressed or when @fean deformation of the tissue which, as we can see, can be

ducts are obstructed. As long as they can compensate, there is no increa ﬁa"y retrieved thanks to the motion field analysis.

the intracranial pressure and, therefore, the compression of the brain tis: uei. ble Il h h h ith h
is fairly reduced. For preliminary works about the study of the biomechanical aple shows that the measurements wit the

properties of the brain, one can refer too [9]. deformation-field techniques, although underestimating
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diffuse
expansion

@ (b)

©

‘\/,

lesion Fig. 18. ||f||div(f) computed from the deformation fields. (a) Synthesized
texture field. (b) Retrieved from central deformation images. (c) Retrieved from
@) (b) diffuse deformation images. Motion field analysis makes diffuse deformation
clearly visible.
Fig. 15. Diffuse deformation: deformation of the tissues without intensity
changes.
TABLE IV
ROBUSTNESS WITHRESPECT TO THEDISPLACEMENT d OF THE CENTER
Distance d (mm) | A(v)tn A(")sphere
0.5 524 454
1 524 440
1.5 524 416
2 524 432
2.5 524 410
3 524 414
(€Y (b) (© (d)
Fig. 16. (a) Original imagel1). (b) Synthesized deformatiofz). (c)
Subtraction/z — I7. (d) A detection of the lesion is possible thanks to the TABLE V
operator|| f||div( f). ROBUSTNESS WITHRESPECT TO SHAPE
Rz, Ry (mm) | R, (mm) | A(v)sn A(")sphere Aw)iso
TABLE 111 4.368 6.552 524 393 451
SYNTHETIC EXPERIMENTS FOR DIFFUSE DEFORMATION 3.969 7.937 524 402 484
3.684 9.210 524 343 469
Jacobean | A(v)ih A(v)sphere A)iso | Av)seg
0.5 —262 —84 —63 0
155 2‘2"3 ;33 ;‘2’?, g deformation. The results are degraded progressively, but the
3 1047 711 714 0 volume-variation measurement is still valuable (see Table 1V).
F. Robustness with Respect to Shape
LON PN onnn [ It is not an easy task to derive the theoretical deformation

10000 /

» . —— Synthatical data
B L — =~ Isasudncas Method
- ~a .
s b £ .
S 5000 ~
, N
\
’ —— Synthetical dutn h
<

~— - Spheres Method -
S - Thearatical varistion N\

field of complex shapes. We have performed experiments
with only ellipsoidal lesions and for central deformation, with
volumeV = 4/37R, R, R.. In that case, the results are much
better for the isosurface technique than for the spheres, as one
ey would expect (see Table V).

Volutne (mm3)]
volume (mma)

(@) (b) G. Conclusion on Synthetic Experiments

Fig. 17. Profile ofAV; for diffuse deformation. (a) Spheres. (b) Isosurfaces. Segmentation is probably best suited for pure tissue trans-
formation, that is, when the tissues are not displaced. However,

the real volume variation, are interesting indexes to evidentis model is unlikely to be realistic for actual lesions. When
this type of deformation which is otherwise invisible. Fig. 171€re is & deformation, we can have a continuous variation of
shows the associated profile and Fig. 18 presents the retrieG8g€S in between central and diffuse deformation. For central

deformation fields for both central and diffuse deformation, 9&formation, our method relying on deformation field and a
segmentation method can give comparable results. However,

the deformation-field method becomes much better when the
deformation is more important than the intensity changes.
For the deformation model, a very interesting feature of the that case, segmentation underestimates much more the
spheres method is that it is not very sensitive to the precigelume variation than the deformation-field method, up to the
location of the centeP’ because once the sphere is larger thgwint when segmentation cannot be used anymore (no visible
the lesion, the valu&\V; is theoretically constant (but moreintensity changes).
and more noisy in practice). We have shifted the ceftem Again, segmentation is operating on single frames and is
to a three-voxels distance (for a lesion with a diameter of temable to detect tissue deformations. Hence, in real cases we
voxels) and measured the performance for the case of centrah expect that if, for a given lesion, the volume variation

E. Robustness with Respect to the Approximative Center
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TABLE VI
MEASUREMENTS OF THEVOLUME VARIATION WITH A REAL
PLAQUE (RESULTS IN mmﬁ‘)f FOR THE TIME SERIES OF
20 VOLUMETRIC IMAGES, REPRESENTED INFIG. 19

Image 1 2 3 4 5 6 7

AVieq 738 876 674 593 356 40 | -339
AV,,n | 1451 | 1356 915 1114 | 1594 | 608 | -895
AVi,o 1486 | 1415 1057 1175 | 1528 | 572 | -837
Image 8 9 10 11 12 13 14

AVseqg | -499 -384 -387 -342 -312 | -432 | -174
AV,on | -1792 | -812 | -1044 | -617 | -403 | -455 | -334
AV, | -1880 | -1027 | -1136 | -738 -351 | -583 | -386
Image 15 16 17 18 19

AV,eq | -308 69 -181 -143 -100
AV,pn | -189 -319 -153 | -162.5 | -232
AVieo -182 -87 -141 -183 -161

Fig. 19. The same ROI in the 20 successive images of the same patient 2005 & % Segmentaiion
(T2-weighted, first echo). 180.0 | S  Spheres

11001 E5O -# Isosurfaces
obtained with the deformation-field analysis is significantly 10004
larger than the one measured by segmentation, this is evidence ©  go0
of a deformation of the tissues, or mass effect, larger than the :’7 200 |
visible spot which can be segmented. E  _oool :\}\ &

~80.0 +
VIl. M EASUREMENTS ONREAL MULTIPLE SCLEROSISIMAGES 1000
A close inspection on real MS plaques reveals that, in -140.0 1
addition to a clearly visible bright spot in the center, some -180.0 ‘ s : ; ’ . ,
. . . 0.0 28.0 56.0 84.0 112.0 140.0 168.0 196.0
lesions are surrounded by a cloudy halo whose intensity can days
hardly be distinguished from the surrounding white matter.

; ; Eg. 20. Temporal volume variatiofdV/dt) with a real plaque for the
This Strongly suggests that MS plaques are in fact Iarger tht?n%e series of 20 volumetric images (results in tper day): comparison

their visible central spots. of segmentation, spheres method, and isosurfaces method.
Another clue for this hypothesis is provided by dynamic

sequences of accurately registered volumetric images. We have=: sw00

registered the volumetric images of a time sequence of 24 ..  Somera s . —— omaces bths

time frames (courtesy of Dr. R. Kikinis and C. Guttmann, , .
see Fig. 19) and we have been able to evidence visually a

a000.0

deformation of the surrounding tissues induced by the lesion: ™" - .

The gyri of the brain are pushed when the lesion is growing, fooee

and return to place when it is shrinking (growing and shrinking s\~ ———5——s7—a, ool
is a normal course for active plaques). What is surprising is that e o

this displacement is visible, even quite far from the central spot @ (b)

(up to ten voxels). Because the deformation effect decrea&@s21. Profile ofAV; for real images. (a) Measured with the spheres. (b)
in 1/7,2 in 3-D, the central spot alone cannot explain visiblMeasured with the isosurfaces (computed between frames one and four).
displacement that far from the center. It can be sensitive only ) . o o
two or three voxels apart, and the only explanation that we'i obtained in the real case are qualitatively similar to
found is that a diffuse deformation, much larger in extensidh® theoretical ones (compare Figs. 14 and 21) which is an
than the visible spot, is responsible for these displacemeffiditional confirmation of the validity of our model. As the
of tissues. lesion is not spherical, we believe that the isosurfaces mea-
To give quantitative grounds to this assumption, we hagéirement method is the most reliable. In fact, even a volume
compared the volume variation obtained by segmenting tM@riation twice as large as that measured by segmentation
plaque visible in the 20 images of Fig. 19 with the resulseems to us insufficient to fully explain the visual effect in
of the spheres and the isosurfaces method (see Table VIt dynamic sequence. We saw previously that the isosurfaces
Fig. 20). The variations obtained by the deformation-fielthethod underestimates pure diffuse deformation in synthetic
methods are much larger (about two times) than the orexperiments (by about a factor of two), hence, we believe that
obtained by segmentation, which justifies our hypothesis. Wee value which is provided by our method is a lower bound
can see also that the spheres and the isosurfaces methdan even larger diffuse deformation.
give coherent results and that, as in synthetic cases, thdy integrating the volume variation (see Table VII or
isosurface variations are generally slightly larger. The profilésg. 22) we can estimate the absolute volume from both
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TABLE VII T2-weighted Proton Density (PD)
ESTIMATION OF THE VOLUME WITH A REAL PLAQUE (RESULTS IN scone .- 000 . -
mmﬁ‘)., FOR A TIME SERIES OF 20 VOLUMETRIC IMAGES, g PRLN
REPRESENTED INFIG. 19. NOTE THAT FOR THE DEFORMATION FIELD s . R Rt vaaton

» - Absoluta variation -+ Absolute vanaten

ANALYSIS TECHNIQUES (SPHERES AND |SOSURFACE$, THIS VALUE Is
OBTAINED BY INTEGRATION FROM THE FIRST VALUE GIVEN BY THE

. @--- @ Segmertaton
80000 S ----® Relative vanation
I
|
|
i

|
|

SEGMENTATION, HENCE IT CAN BE SUBJECT TO INCREASING ERRORS g E e , /‘ e f{g
Tmage | 1 2 3 4 5 6 7 eyl
AVieg | 350 | 1088 | 1964 | 2638 | 3231 | 3587 | 3627 . &3 L Ny
AV, | 350 | 1801 | 3157 | 072 | 5186 | 6780 | 7388 S e i s st AT e G s s
AViso 350 1836 | 3251 | 4308 | 5483 | 7011 | 7583
Tmage | 8 9 10 | 11 | 12 | 13 | 14 @) (0)
AVseg | 3288 | 2789 | 2405 | 2018 | 1676 | 1364 | 932 Fig. 23. Temporal coherency and coherency with a change of MR sequence:
AV,pp | 6493 | 4701 | 3889 | 2845 | 2228 | 1825 | 1370 volume-variation profiles (plaque of Fig. 2) obtained by segmentation, by
AViso | 6746 | 4866 | 3839 | 2703 | 1965 | 1614 | 1031 relative measurements, and by absolute measurements (isosurfaces method).
Tmage 15 16 17 18 19 20 (a) Results obtained witfi> -weighted MR images. (b) Results obtained with
AV,eqg | 758 | 450 | 519 | 338 | 195 | 95 proton density MR images.
AV,pr | 1036 847 528 375 212 -19
AViso 645 463 376 235 52 -109

respect to temporal coherency, because the integration of the
relative volume variations accumulates, in the end, the errors
of 20 independent measurements and is still very close to the

oy 1 T T T

7500.0 . s » 4 absolute measurements.
65000 | * mSpheres ] 2) Coherency Between Different EchoBor the same pa-
s Isosurfaces tient and for each time frame we have both theweighted

WO 1 and the proton density volumetric images. An interesting

experiment is to compare the computation performed inde-
pendently in both types of imaged( and proton density).
The result is also presented in Fig. 23. The results of segmen-
tation, absolute variation measurements, and relative variation
: measurements are not very sensitive to the change of MR
sequence, which suggests that the measures are intrinsic to
co00 A the tissue displacements and relatively independent of image

0.0 28.0 560 840 1120 1400 168.0 196.0 224.0 contrast.
days

4500.0

mm3

3500.0

2500.0

1500.0 |

500.0 ¢

Fig. 22. Volume of a real plaque for the time series of 20 volumetric images:
comparison of segmentation, spheres method, and isosurfaces method. ) ] ) )
B. Comparison with Deformations Obtained

with Cross-Correlation

the spheres and the isosurfaces measurements and compareGhe possible drawback of the method that we are using to
to segmented volumes. The volume profile obtained from tegaluate the deformation field is that, because it is relying on
segmentation and from the deformation-field methods are vehe optical flow paradigm (conservation of image intensity),
coherent except for a multiplicative factor, which suggests thatcan be influenced by intensity changes. Global intensity
the mass effect is present at each stage of the evolution. changes are taken into account because global linear transfor-
mations between the intensities of the two successive images
A. Some Validation Experiments with Real Images of the sequence are estimated (using linear regression between

These data enable us to perform some useful validatif}f joint intensity map) and compensated for. _
experimentdand check for the coherency of the results. However, local intensity changes also have an influence
1) Temporal CoherencyAs we have 20 time frames aWhich cannot be easily discarded. To evaluate this effect, we

first experiment consists in comparing the integration of tHve implemented an independent way to evaluate a dense
results obtained between times 1 and 2, times 2 and .3 deformation field between two images. The principle is to
times n — 1 and n (relative volume variations, as in thesearch, for a subwindow defined around each voxel (typically

previous section), with respect to the direct computation 8 > VOXel$ subwindow), a sub-window (of 5 voxéls in

the volume variation between times 1 and 2, times 1 allle second image which correlate the most with this one.
3, ... times 1 andn(absolute variations). In Fig. 23 we This subwindow is searched in a larger window (typically 12
compare the absolute and relative variations, which showg/els’) centered on the voxel having the same coordinate

difference of only a few percent. These are nice results with the second image. It should be noted that this method
works only for very small deformations and is highly time

2This does not replace othen ivitro experiments andn vivo studies consuming. The following formula is the cross-correlation

which are necessary for a complete medical validation, which is the subject ffici db bwind f
of a collaboration that we have started with Dr. N. Roberts, University fO€HIcient c(z,y) measured between two subwindows 10

Liverpool. voxels wherex are the intensities for locations in the first
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an original method to compute volume variations based on

anon . the integration of the deformation fields obtained between

700U whe ‘ ; : . . .

- B ; different time frames. The volume-variation profiles obtained

wou | [ N from the segmentation and from deformation-field integration

NS 4 N oo are very coherent except for a multiplicative factor, which

! v : ~—+—DOemons )

3000 /}‘7 = . [=correlaen suggests that the mass effect is present at each stage of

2000 1 \\‘1\5\& - : the evolution and that it is at least twice as large as the

1000 1 R T T visible plague evolution. This applies to the studied cases,
0 o 0 i féu however, more experiments have to be made to determine the

1 proportion of the MS diseased population which is presenting

this kind of phenomenon (the cases that we have studied

Fig. 24. Comparison between volume-variation profiles obtained using_a ti ially | | This first It i
method close to optical flow (demons) and a method based on cross correlafibff Presenting gs_peua y large p aques)' 1S ":S result 1s
for a time sequence in the case of an MS plaque presenting a mass effestremely promising to better understand the disease. Our
This result shows independence of results with respect to the method useg|éteaction and quantification methods can help also to quantify
evaluate the deformation field. - .

more precisely the impacts of new drugs (sucl# ésterferon)

which are now tested in many ongoing clinical trials. The
image andy intensities in the second image application of our tool, however, is not limited to MS plaques,

cancer tumors.

' (x: —Z)(y; — ¥)
Cla,y) = = 1/2 ()
Y @)D -7
i=1 Jj=1

wherez = 1/n X%, x; andy = 1/n X1, v,.
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The principal advantage of cross correlation is that it #siverpool, who provided us with temporal sequences of MS
insensitive to local intensity variations (when the spatial extefliseased patients.

sion of these variations is larger than the subwindow size). The
principal drawback of cross correlation is computation time.
Our implementation of cross correlation is 50 times slower
than the implementation relying on optical flow. (1]
The results are qualitatively very similar between both
deformation measurement methods (see Fig. 24). This result
shows some independence with respect to the method used4b
evaluate the deformation field and confirm our hypothesis of;
mass effect for some MS plaques.
[4]
C. Grounds for a Mass Effect for MS
The coherence of the results between real experiments
and also with respect to synthetic experiments increase our
confidence in our quantification of mass effects. We believ
now that some MS plaques are subject to a mass effect of a%
least twice the volume of the visible plaque. Of course, we d&/]
not demonstrate that there is a mass effect for every plague
in MS. We now have a method to determine which plaque i$]
active or inactive and, if active, whether it is subject to a mass
effect. Such measurements open up new ways to evaluate the
impact of drug treatments for this particular disease. ol
VIII.

Thanks to a highly accurate 3-D registration algorithm angoj
time sequences of volumetric images, we had visually ob-
served in some patients’ T2 MR images a diffuse deformation
or mass effect in the case of MS (the eye being a precious
tool to perform optical flow analysis). To our knowledge[11]
the present paper is the first attempt to quantify a ma 9
effect in vivo for MS. To achieve this, we have develope

C ONCLUSION
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