
HAL Id: inria-00616877
https://hal.inria.fr/inria-00616877

Submitted on 14 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AntReckoning: Dead Reckoning using Interest Modeling
by Pheromones

Amir Yahyavi, Kévin Huguenin, Bettina Kemme

To cite this version:
Amir Yahyavi, Kévin Huguenin, Bettina Kemme. AntReckoning: Dead Reckoning using Interest
Modeling by Pheromones. 10th ACM/IEEE International Workshop on Network and Systems Support
for Games (NETGAMES), Oct 2011, Ottawa, ON, Canada. �10.1109/NetGames.2011.6080977�. �inria-
00616877�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49967746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00616877
https://hal.archives-ouvertes.fr

AntReckoning: Dead Reckoning using Interest
Modeling by Pheromones

Amir Yahyavi
McGill University

Montréal, QC, Canada

Kévin Huguenin
McGill University

Montréal, QC, Canada

Bettina Kemme
McGill University

Montréal, QC, Canada

Abstract—In games, the goals and interests of players are key
factors in their behavior. However, techniques used by networked
games to cope with infrequent updates and message loss, such
as dead reckoning, estimate a player’s movements based on
previous observations only. The estimations are typically done
using dynamics of motion, taking only inertia and external factors
(e.g., gravity, wind) into account while completely ignoring the
player’s goals (e.g., chasing other players or collecting objects).

This paper proposes AntReckoning: a dead reckoning algo-
rithm, inspired from ant colonies, which models the players’
interests to predict their movements. AntReckoning incorporates
a player’s interest in specific locations, objects, and avatars in the
equations of motion in the form of attraction forces. In practice,
these points of interest generate pheromones, which fade and
spread in the game world, and are a source of attraction.

Our simulations using mobility traces from World of Warcraft
and Quake III show that AntReckoning improves the accuracy
by up to 30% over traditional dead reckoning techniques.

I. INTRODUCTION

Interactive games have become very popular reaching an
unprecedented scale, and therefore, forcing major on-line
multi-player gaming platforms to develop a range of tech-
niques to increase scalability. In interactive games, position
update messages account for the largest portion of the network
traffic [1], calling for techniques that predict player movements
in order to reduce the update rate while keeping the error
on player position low: the current position of an avatar is
usually estimated from previous positions; only when the error
is higher than a threshold a new position update is sent, thus
reducing the update rate [2, 3]. Upon reception of a new update
a convergence step is performed to hide the estimation errors
from the player in rendering the motion [4]. Such techniques
also help in coping with message loss or delay by extrapolating
the new position when the new update is not received in time.

Dead reckoning estimates the position of an object from
the equations of motion, based on previous observations, and
has been successfully used in a number of areas including
distributed simulations [2, 5] and games [3, 4]. While the
performance of dead reckoning, in its current form, is good
for vehicles moving smoothly [6], it may degrade in games
where players, driven by their short-term environment-related
goals, make frequent and sudden changes to their movements.

A typical example of this is a wounded player, moving in
a given direction, having both an attacker shooting at him
and a health pack in his vision field: he tends to maintain the
same motion (because of inertia), while trying to move towards

the health pack and to evade from the attacker. As games
generally have relaxed physical rules sudden drastic changes in
movements (e.g., rapid U-turn) can occur. These unpredictable
changes may dramatically reduce the performance of dead
reckoning as it only takes mechanics into account.

Motivated by this example, we argue that key factors in
an avatar’s motion are not only inertia but also the objectives
of the game as well as entities in his vicinity that we refer
to as points of interest. Following this line of reasoning, we
propose AntReckoning. To the best of our knowledge it is
the first interest-based approach to dead reckoning. The main
concepts involved in AntReckoning are as follows:
• Each entity is assigned a given attractiveness leading to the

generation of pheromones that fade and spread in the world;
• Pheromones in the vicinity of an avatar exert attraction on

it. Attraction is integrated in the equations of motion, under
the form of forces, to estimate its future position.

The main contributions of AntReckoning are: (1) to incorpo-
rate players’ interests into the equations of motion used for
dead reckoning, and (2) to use pheromones to model such
interests, taking temporal and spatial aspects into account.
Moreover, pheromones offer a practical solution to the de-
centralized implementation of interest-based dead reckoning.

We evaluated AntReckoning using mobility traces from
World of Warcraft and Quake III. Our simulation results show
that AntReckoning consistently outperforms dead reckoning
for a carefully chosen set of parameters, and can improve the
average accuracy of the estimation by up to 30% over tra-
ditional dead reckoning. Since AntReckoning involves several
parameters we identify the key ones and perform a preliminary
sensitivity analysis to evaluate their respective impact on
the accuracy. We also discuss solutions to set game-related
parameters, such as attractiveness of objects and avatars.

II. BACKGROUND

In multi-player games, players control their avatars which
evolve in a virtual space called the game world. Clients
regularly exchange the states of their avatars, including their
position. They do so directly or through servers. The objective
of the game is to accomplish missions such as going to a given
location, collecting objects, or killing other entities.

In networked games, dead reckoning exploits information
contained in the last state updates to extrapolate the time-
dependent future state of entities. Dead reckoning enables less

frequent exchange of state updates and also helps coping with
update message loss. A typical dead reckoning problem is the
estimation of the position of a moving entity, which is required
for rendering the virtual world at the clients, between two
successive updates. In this situation, the key variables are the
kinematic ones: the last position xt and velocity vt = ẋt of
the entity and possibly its acceleration at = ẍt (as defined by
the IEEE Standard for Distributed Interactive Simulation [7]),
where t represents time. Extra information that helps estimate
the forces the entity is subject to can also be included.

The study of the trajectory of objects rely on the dynamic
equations of motion, and more specifically, on Newton’s
second law which links the acceleration of an object, its mass
and the forces it is subject to: at =

1
m

∑
f . When a closed

form expression of the (sum of the) forces is known, the
ordinary differential equation characterizing the trajectory of
the object can be obtained from this relation, and formally or
numerically solved. The future position of the object is thus
fully determined by its initial position and velocity.

In practice, a polynomial approximation derived from Taylor
series expansion of the position, as a function of time, is
used to predict the position in a near future. For instance,
the second-order polynomial predictor is given by:

xt+δt = xt + vt δt+
1

2
at δt

2 (1)

Note that such predictors are accurate only for small values of
δt (compared to the rate at which players move and change
their direction). It has been shown that using derivatives
of orders higher than two usually results in a negligible
improvement in the prediction [8, 9]. As a result, the use
of first and second order derivatives is usually preferred and
estimating the velocity and acceleration and sending them with
the current position is sufficient for short-term dead reckoning.

Estimating velocity and acceleration is commonly done
from previous observation using exponential moving average
(EMA). In short, EMA estimates the velocity by a weighted
sum of its current value, namely the difference between the
current position xt and the last position xt−δt divided by the
time interval, and the last estimation:

vt = αv
xt − xt−δt

δt
+ (1− αv) vt−δt (2)

at = αa
vt − vt−δt

δt
+ (1− αa) at−δt (3)

Such an approach, taking into account previous estimations,
has proven to have a beneficial smoothing effect [10].

III. MOTIVATION AND DESIGN RATIONALE

When using a first order predictor, the velocity of the avatars
is usually estimated from short term history of their states,
thus taking into account only their inertia in the prediction.
To increase the accuracy of dead reckoning, one needs to
incorporate the second derivative (i.e., the acceleration) and
estimate it from the forces the avatar is and will be subject to.

Estimating the forces an avatar is subject to is a difficult
problem since it depends on the player’s decisions: For in-
stance, a player can suddenly accelerate to have his avatar

in the game world chase another avatar. The intuition behind
this reasoning is that a player is more likely to follow another
player or to go to pick up a game item (e.g., a weapon) rather
than just continuing on its current path. Key here is the fact
that players’ moves are usually driven by specific goals and
interests that are themselves related to features of the virtual
world. Indeed, in games such as World of Warcraft, players
are interested in specific locations, certain objects, and other
avatars, referred to as points of interest (POI).

More specifically, an interest-based dead reckoning algo-
rithm should handle the following situations: (1) Game objects
attract players specially if they are valuable or when the player
is in urgent need of them. For example if a player comes
across a powerful weapon he will most likely move towards
it and pick it up. Similarly, players running out of ammo
or wounded would pick up ammunitions or health packs.
Attraction therefore depends on both the objects of interest
and the moving avatar. (2) Players are attracted by the avatars
they are chasing or they want to trade with, and repulsed by
the avatars that are chasing them. (3) Interesting and popular
locations (e.g., top of a hill, corner, etc.) in the game, namely
hotspots, are a source of attraction. Such attraction points can
be inferred from the history of the movements of all players.

In order to use the framework of dynamics while con-
sidering game strategy for predicting avatar movement, we
incorporate player interest in the second order predictor in the
form of attraction forces. The intensity of the attraction forces
exerted by POIs on a given avatar depends on their relative
attractiveness given the current state of the avatar and can be
determined or learned in most games.

IV. THE ANTRECKONING ALGORITHM

In AntReckoning, points of interest are treated as ants that
generate pheromones modeling their relative attractiveness.
Pheromones are chemicals that exert attraction forces on
players, integrated in a second order predictor. They spread
in the game world, and fade over time, therefore taking
geometrical and temporal aspects into account. Throughout
this section, we use the example depicted in Figure 1 to
illustrate the different mechanisms involved in AntReckoning.
Table I summarizes the parameters of AntReckoning together
with a brief description and the value used in the evaluation.
We discuss how to tune these parameters in Section V.
Model Consider a game evolving in discrete event loops called
frames. In each frame each player needs to know the positions
of other avatars, which he receives through position updates.
Consider player Q who seeks to estimate the position xt+δt
of the avatar of player P in frame t+ δt while the last update
received contains the position xt (and possibly the estimated
velocity vt and acceleration at) of P in frame t.
Dead reckoning AntReckoning makes use of a second order
predictor where the second order term is a weighted sum of
the acceleration of the avatar and the attraction forces. The
estimated position therefore writes:

xt+δt = xt + vt δt+
1

2

(
α

1

m
Ft + (1− α) at

)
δt2 , (4)

r
×

P
v

1
2mΣf

b

u

r dead reckoned avatar (P)
b other avatar
u object of interest

× predicted position
past trajectory

Fig. 1. Overview of AntReckoning: the game world is divided into cells
using a regular square grid. Each cell contains a certain amount of pheromone
reflected in grayscale. To estimate the current position of P , one adds (1) his
velocity, estimated from his trajectory, and (2) the sum of the attraction forces
generated by cells inside a square region around him, to the position of P in
the last frame. Attraction forces are directed towards the attracting cells and
their intensity is proportional to the amount of pheromone they contain.

where δt is the number of frames elapsed since the last
position update, Ft is the sum of the attraction forces exerted
by pheromones on P and other forces (e.g., gravity), and vt
(resp. at) is the estimated velocity (resp. acceleration) of P .
In AntReckoning, the estimation of velocity and acceleration
is performed from previous observations using EMA as de-
scribed in §II with parameters αv and αa respectively.

Figure 1 illustrates the estimation of the position of P for
the next frame using the current velocity alone (i.e., αv = 1)
and attraction forces alone (i.e., α = 1).

Pheromones As common to most games, AntReckoning as-
sumes a game world divided into non overlapping cells,
e.g., Delaunay triangulation, Voronoi tessellation, binary space
partitioning, or regular grids (e.g., square grid in Figure 1) typ-
ically used for tasks such as path finding, collision detection, or
graphical rendering. The management of pheromones and the
computation of attraction forces exerted by them is performed
at the granularity of a cell: for each avatar P for which Q
performs dead reckoning, Q computes the concentration of
pheromone (represented in grayscale in Figure 1) in each cell
and computes and sums the corresponding attraction forces.
For the sake of scalability, only the cells in a limited region
around P , called the attraction region and denoted by R, are
considered, e.g., a fixed-size square represented with dashed
lines in Figure 1. Since pheromones spread, even points of
interest outside R are taken into account.

For each P for which player Q has to perform dead
reckoning, the concentration of pheromone inside a cell that is
part of the attraction region R of P is calculated as follows:
• Generation: in each frame, each point of interest within a

cell, be it an avatar or an object, generates a given amount of
pheromone related to its attractiveness to P . Attractiveness
is a function of the characteristics of the object and the
current state of the considered avatar (as in the wounded
player example). This amount is added to the concentration
of the cell. The maximum concentration of a cell can be
capped to limit the attractiveness of any single cell.
• Evaporation: in order to limit in time the attraction of

previous positions of points of interest, pheromones fade

in time, meaning that their concentration is decreased at the
beginning of each frame. Exponential decays, i.e., removing
a fixed percentage of the old pheromones at the beginning of
each frame, have been successfully used in previous work on
ant colonies (e.g., Max-Min ant colonies [11]). Beyond its
simplicity and its effectiveness, such an evaporation model
ensures that the total number of pheromones in the game
world does not grow to infinity over time.
• Dissemination: since pheromones spread, the concentration

of pheromone in neighboring cells are mutually dependent.
At the beginning of each frame (after the evaporation step),
a given amount of pheromone is removed from each cell
and evenly dispatched to its neighboring cells. The size and
shape of this neighborhood depend respectively on the speed
of pheromones and the world map (e.g., wall, hills, etc.).

These phenomena are captured by the following recursive
expression of the concentration of pheromone in a cell, for
a given player P , at frame t:

pht(cell)=

evaporation︷ ︸︸ ︷
ε pht−δt(cell)+

generation︷ ︸︸ ︷∑
entity∈cell

attractiveness(entity, P)+

∑
c∈N (cell)

ε · γ
|N (c)|pht−δt(c)︸ ︷︷ ︸

incoming dissemination

− ε · γ pht−δt(cell)︸ ︷︷ ︸
outgoing dissemination

, (5)

where ε is the evaporation factor, γ is the dissemination
factor, and N (·) is the set of a cell’s neighboring cells.
The attractiveness of a player to itself is set to zero. These
phenomena can be observed in Figure 1 around the trajectory
of a moving avatar: some pheromones remain and some spread
around its previous positions; all pheromones fade over time.

To better understand the evolution of the concentration of
pheromone described by Equation (5), consider the central
cell c in the simplified example depicted in Figure 2. Cell c
contains an object (depicted with a triangle), its neighborhood
is composed of the four adjacent cells, and its current concen-
tration of pheromone is 32. Assuming an evaporation factor ε
of 0.5 the concentration is first reduced to 16. Considering a
dissemination factor γ of 0.5, another 8 pheromones are then
removed and evenly dispatched to the four neighboring cells.
As a result of pheromone dissemination from the neighboring
cells, cell c receives a total of 1 + 4 + 2 + 4 = 11 incoming
pheromones. Finally the pheromones generated by the object
in c, say 5, are added to its concentration yielding a total of
16− 8+ 11+ 5 = 24 pheromones in cell c at the next frame.

To further improve AntReckoning’s scalability, concentra-
tions of pheromone lower than a given threshold are ignored,
since their attraction power is negligible.
Attraction In physics, attraction forces between two bodies
are generally directed along the line connecting them and
their intensity is a decreasing function of the distance between
them. In the case of spring attraction, the force is inversely
proportional to the distance between the two bodies while it
is inversely proportional to the square of the distance for grav-
itational and electromagnetic attractions. In AntReckoning, the

16

64 32 64

32

u

4

2
u object of interest

dissemination of pheromones

dissemination neighborhood

Fig. 2. Illustrative example of the evolution of the concentration of
pheromone inside a cell with an evaporation factor of ε = 0.5 and a
dissemination factor of γ = 0.5: half of the pheromones are removed due to
evaporation and half of the remaining pheromones are evenly dispatched to
the four neighboring cells.

attraction force exerted by a cell on an avatar is directed
along the line connecting the position of the avatar, i.e., xt,
to the center of the cell. The intensity of the attraction force
is proportional to the concentration of pheromone in the cell
divided by the distance raised to a certain power:

‖ft(cell,xt)‖ =
pht(cell)
d(cell,xt)k

, (6)

where k is a parameter of the system. Attraction forces of
various intensities originating from P and directed towards
cells containing pheromones can be observed in Figure 1.

Throughout this section, we considered solely players at-
tracted by objects and other players, through pheromones.
However, repulsion, e.g., of players by one another as de-
scribed in the motivation section (§III), can easily be incorpo-
rated in the force model of AntReckoning: making repulsive
objects (e.g., time bomb) or avatars (e.g., an attacker) generate
pheromones with negative values would result in repulsive
forces moving P away from them in the predictions.

TABLE I
IMPORTANT PARAMETERS IN ANTRECKONING.

Parameter Description Value
δ # of frames since last position update variable
α weighting coef. acceleration v.s. forces 1
αv weighting coef. in EMA of velocity 0.8
αa weighting coef. in EMA of acceleration 0.8
R region for attraction variable
ε evaporation factor variable
γ dissemination factor 0
k decreasing power of attraction forces 2

attractiveness(·) attractiveness of avatars and objects variable

V. PARAMETRIZATION AND IMPLEMENTATION

In here we discuss practical considerations about AntReck-
oning, more specifically the tuning of its parameters and its
implementation in a decentralized setting.

A. Parametrization

Defining parameters of AntReckoning are as follows:

Attractiveness of points of interest can be divided into two
categories: (1) game objects and (2) players:
• Game objects: Most games are able to define the attrac-

tiveness of the game objects based on their value or power
in the game. In addition, the attractiveness of objects can be
defined as a function of key factors in the player’s current
state, estimated from the analysis of game play traces. For

instance, one can experimentally estimate the probability
that a player with a given health level having a health pack
in his sight picks it up within the next δt seconds. This
estimation can then be used to define the attractiveness of a
health pack as a function of the current health of an avatar.
• Players: Attractiveness of players for one another can be

based on their recent interactions, e.g., trading or fighting,
and built into the equations as follows: the attractiveness
of a player Q to a player P is a function of the time
tP,P ′ elapsed since their last interaction. An exponentially
decreasing factor (i.e., e−tP,P ′) takes the pace of game into
account. The type of interaction (e.g., shooting or being
shot) determines the sign of attractiveness, i.e., attraction
or repulsion. Other factors such as the items a player is
carrying, e.g., flag, can be incorporated in his attractiveness.

Mass modulates the effect of attraction forces on avatars.
Avatars with higher masses are less subject to attraction than
others. Different mass levels can be used to capture the relative
attraction of avatars by objects: for instance, heroes may
move only to achieve important goals and should therefore
be assigned a high mass while regular units which move
to achieve secondary goals (e.g., collect resources) should
be assigned small masses. Note that the scale of mass is
proportional to that of attractiveness: doubling the mass of all
avatars is equivalent to halving the attractiveness of all objects.

Attraction region & cell size The size of the attraction region,
in game world distance unit, and the size of each cell affects
the accuracy of predictions. Larger attraction regions take into
account farther objects and smaller cells compute the direction
of attraction forces at a finer granularity, thus providing better
accuracy. This, however, comes at the cost of computational
and memory overheads. More precisely, the computational
and space complexities of dead reckoning the position are
proportional to the number of cells inside the attraction region.
Note that since attraction decreases rapidly with the distance,
increasing the size of the attraction region beyond a certain
point may bring only a negligible improvement.

In games where players see the world through the eyes of
their avatars, the attractiveness of objects should be weighted
based on their relative positions to the avatar. The rationale
is that players would be more attracted by objects they can
actually see, which depends on their vision field and on the
world map (e.g., walls). Also, taking into account the game
map for dissemination allows to prevent avatars from being
attracted by objects they cannot reach, e.g., behind an obstacle.

B. Implementation

Players have access to information about other avatars and
objects in their vicinity in order to render the game world.
This information is received from the server, other players, or
can be extracted from maps. Therefore, if P is in the vicinity
of Q, Q has access to information about the points of interest
in a limited vicinity around P . For reasonably sized attraction
regions, Q has access to all the necessary information and
history to run AntReckoning at no additional network cost.

 0.7

 0.8

 0.9

 1

 1.1

 5 15 25 35 45 55

re
la

ti
v

e
er

ro
r

size of the attraction region (|R|)

Quake III
World of Warcraft

(a)

 0.7

 0.8

 0.9

 1

 1.1

 0.4 0.8 1.2 1.6

attractiveness (λ)

Quake III
World of Warcraft

(b)

 0.7

 0.8

 0.9

 1

 1.1

 0.2 0.4 0.6 0.8

evaporation factor (ε)

Quake III
World of Warcraft

(c)

 0.7

 0.8

 0.9

 1

 1.1

 30 50 70 90

prediction step in frames (δt)

Quake III
World of Warcraft

(d)
Fig. 3. Sensitivity analysis of AntReckoning around point (|R|, λ, ε, δ) = (60, 1.2, 0.8, 60) for Quake III and (60, 0.8, 0.9, 70) for World of Warcraft.

Because it uses cells and pheromones instead of maintaining
the precise current and past positions of points of inter-
ests, AntReckoning provides a lightweight implementation of
interest-based dead reckoning. For each avatar for which dead
reckoning is performed, AntReckoning uses a single fixed-size
data structure, i.e., the map of pheromones around the avatar,
that maintains the amount of pheromone in each cell. The
map captures the entire temporal and geographical information
within a fixed amount of memory, independent from the
number of players and from time. By including the amount of
pheromone a cell contains in the partition structure provided
by the game, and by performing the pheromone generation
step during the iteration over the entities required by the game
rendering, the overhead of AntReckoning would remain low.

The complexity of AntReckoning can be optimized in two
ways: (1) If a player performs dead reckoning for himself and
sends the prediction to other players, he can use a single map
of pheromones, thus significantly reducing the complexity.
Also, since he has access to more information about the
points of interest around his avatar and its current state, the
computation is more accurate; (2) In case where players also
perform dead reckoning for other players, the complexity can
be reduced by making the attractiveness a function of only the
points of interest, regardless of the state of the dead reckoned
avatar, as then only one pheromone map would be needed.

VI. EVALUATION

The goal of the evaluation is two-fold: (1) perform prelimi-
nary experiments comparing AntReckoning to traditional dead
reckoning in order to validate our approach and estimate the
potential gains it conveys; (2) perform a sensitivity analysis
of AntReckoning to identify its key parameters and evaluate
their individual impact on the performance.

We evaluated AntReckoning using traces collected from
Quake III and World of Warcraft. The first consists of the
positions of the 48 players and entities (e.g., ammunitions) in
the game world, in q3dm1 and q3dm17 maps, for each frame as
well as the map information (e.g., walls). The second consists
of sparse position information about more than 200 players in
the Wintergrasp region, and has been obtained from [12].

The methodology used for the evaluation was as follows.
We divided time in frames and set the players’ positions for
each frame as their last position updates in the corresponding

time interval. We estimate the position of players δt frames
ahead with both traditional second-order dead reckoning, i.e.,
based on both the estimated velocity and acceleration, and
AntReckoning, and compare their performance with respect to
the relative error, knowing the actual position of the players at
this frame. More specifically, we compute the Euclidean dis-
tance between the estimation and the actual position, i.e., the
error, and look at the ratio between the errors of AntReckoning
and traditional dead reckoning. A value of 0.8 for this metric
means that AntReckoning decreases the estimation error by
20% over traditional dead reckoning. That is, values smaller
than 1 denote an improvement in accuracy.

For the sake of simplicity, we used a basic version of
AntReckoning: only players generate pheromones (since no
information about the objects were available in the World of
Warcraft trace) and all players generate the same amount λ
of positive pheromones regardless of the state of the avatar
for which dead reckoning is performed. Consequently a single
pheromone map is used for all avatars. We used a square region
of attraction and took into account pheromone evaporation.
However, we did not consider pheromones dissemination: only
cells players go through contain pheromones.

For our sensitivity analysis, we considered the following
parameters: (1) the diameter of the region of attraction, de-
noted by |R|; (2) the attractiveness of players for each other,
denoted by λ; (3) the evaporation factor, denoted by ε; (4) the
duration of the prediction step, denoted δt. Other parameters
were fixed to the values specified in Table I. The results from
our trace-driven evaluation are compiled in Figure 3.

The effect of the size of the attraction region is shown in
Figure 3(a). By increasing the size of the attraction region,
a larger number of attraction forces are taken into account,
therefore, improving the quality of predictions. However, in-
creasing the size beyond a certain point results in negligible
performance gains, confirming our intuition. This allows to
perform efficient interest-based dead reckoning at no network
cost with limited information locally available at each player
and with limited computational and memory overhead.

Figure 3(b) demonstrates the effect of attractiveness on
the performance of dead reckoning: while taking attraction
forces into account improves the accuracy, over-estimating
their influence and disregarding inertia decreases the accuracy.

Figure 3(c) shows that evaporation has little effect on the

performance of the algorithm: players’ actions are mostly
driven by other avatars’ recent positions. This is most likely
due to the fact that Quake III is a fast paced game. However, in
World of Warcraft where the pace of the game is slower and
players are more motivated by long term goals, evaporation
has a higher impact: larger values of ε, which characterize a
slower evaporation, significantly increase the performance.

Human interactions are an order of magnitude slower than
game events. Therefore, in very short periods of time (e.g. 50
ms), avatars movements are mostly a function of their inertia.
However, in longer periods (e.g., one second) they follow
players’ interests. This fact is illustrated in Figure 3(d) where
AntReckoning performs better when prediction is done farther
into the future. Given that many protocols (e.g., Donnybrook)
rely on dead reckoning to increase the delay between sending
updates to up to seconds, AntReckoning will be of use.

Our experiments on traces from World of Warcraft showed
a slightly lower improvement over dead reckoning, i.e., up to
20%. In addition, the optimal set of parameters was differ-
ent from Quake III showing the importance of fine tuning
AntReckoning parameters based on the game. In world of
Warcraft, players are motivated by longer term objectives and
interactions happen at a lower pace, highlighting the effects of
the evaporation factor and the length of the prediction step.

VII. RELATED WORK

A number of techniques improving the performance of
dead reckoning have been proposed. In [13] the threshold
above which a new update is sent is adapted to the precision
requirements, determined by the relative position of the enti-
ties. In [14], the metric used to evaluate the prediction error
takes temporal aspects into account in order to optimize the
perceived inconsistency. These techniques are orthogonal to
our approach and could be used together with AntReckoning
to increase the performance of dead reckoning.

In [5] neural networks are trained and used, instead of in-
stantaneous estimates, to predict changes of the entity velocity.
ARIVU [15] predicts the next player actions in mobile games,
using historical data, to determine if the wireless interface can
be put into sleep mode, thus saving energy. These techniques
could be incorporated in AntReckoning to help estimating
velocity and acceleration, and player actions respectively.

Ant colony optimization has been successfully used to solve
a wide range of problems, e.g., the traveling salesman prob-
lem [11, 16]. AntReckoning is inspired from these techniques,
e.g., the concepts of evaporation, spreading, etc., however
it is, to the best of our knowledge, the first application of
pheromones to interest modeling and dead reckoning.

Beyond predicting avatar position, the interest model of
AntReckoning, e.g., attractive pheromones, can be used to
make convergence, path-finding (e.g., A*), and artificial in-
telligence [4, 17] algorithms exhibit human-like behavior.

ACKNOWLEDGEMENTS

Amir Yahyavi was funded by NSERC Strategic Grant
STPGP/350626-2007. Kévin Huguenin was partially funded
by a scholarship offered by University of Rennes I.

VIII. CONCLUSION

This paper proposed AntReckoning, an interest-based al-
gorithm to improve dead reckoning. AntReckoning models a
player’s interest in other players and game objects in the form
of attraction forces exerted by pheromones at a low compu-
tational and memory overhead. Preliminary results on Quake
III and World of Warcraft have shown improvements up to
30% in accuracy over traditional dead reckoning, even in basic
settings, demonstrating a great potential. Future work includes
measuring bandwidth saved by AntReckoning using threshold-
based dead reckoning as well as refining the execution of the
algorithm with the notions of repulsion, map features, and
vision. We also plan to develop techniques to parametrize
AntReckoning with offline trace-driven analysis and online
learning as well as applying it to convergence algorithms.

REFERENCES

[1] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-Peer
Support for Massively Multiplayer Games,” in INFOCOM,
2004.

[2] R. Fujimoto, Parallel and Distributed Simulation Systems.
Wiley Interscience, 2000.

[3] S. Aggarwal, H. Banavar, A. Khandelwal, S. Mukherjee,
and S. Rangarajan, “Accuracy in Dead-Reckoning Based Dis-
tributed Multi-Player Games,” in NETGAMES, 2004.

[4] C. Murphy, Game Engine Gems 2. AK Peters/CRC Press,
2011, ch. Believable Dead Reckoning for Networked Games,
pp. 308–326.

[5] A. McCoy, T. Ward, S. McLoone, and D. Delaney, “Multistep-
Ahead Neural-Network Predictors for Network Traffic Reduc-
tion in Distributed Interactive Applications,” ACM TOMACS,
vol. 17, pp. 1–30, 2007.

[6] Z. Berman and J. Powell, “The Role of Dead Reckoning and
Inertial Sensors in Future General Aviation Navigation,” in
PLANS, 1998.

[7] IEEE Standard for Distributed Interactive Simulation – Appli-
cation Protocols, IEEE Standard 1278.1-1995 Std., 1996.

[8] S. Singhal and M. Zyda, Networked Virtual Environments:
Design and Implementation. Addison-Wesley, 1999.

[9] L. Pantel and L. Wolf, “On the Suitability of Dead Reckoning
Schemes for Games,” in NETGAMES, 2002.

[10] R. Brown, Smoothing, Forecasting and Prediction of Discrete
Time Series. Dover Publications, 2004.

[11] T. Stützle and H. Hoos, “Max-Min Ant System,” Future Gen-
eration Computer Systems, vol. 16, pp. 889–914, 2000.

[12] J. Miller and J. Crowcroft, “The Near-Term Feasibility of P2P
MMOG’s,” in NETGAMES, 2010.

[13] W. Cai, F. Lee, and L. Chen, “An Auto-Adaptive Dead Reckon-
ing Algorithm for Distributed Interactive Simulation,” in PADS,
1999.

[14] D. Roberts, R. Aspin, D. Marshall, S. Mcloone, D. Delaney,
and T. Ward, “Bounding Inconsistency Using a Novel Thresh-
old Metric for Dead Reckoning Update Packet Generation,”
Simulation, vol. 84, no. 5, pp. 239–256, 2008.

[15] B. Anand, K. Thirugnanam, L. Long, D.-D. Pham, A. Ananda,
R. Balan, and M. Chan, “ARIVU: Power-Aware Middleware
for Multiplayer Mobile Games,” in NETGAMES, 2010.

[16] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System: Op-
timization by a Colony of Cooperating Agents,” IEEE TSMC,
vol. 26, pp. 29–41, 1996.

[17] J. Bai, D. Seah, J. Yong, and B. Leong, “Offloading AI for
Peer-to-Peer Games with Dead Reckoning,” in IPTPS, 2009.

