
HAL Id: inria-00616878
https://hal.inria.fr/inria-00616878

Submitted on 14 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Short paper: Cheat Detection and Prevention in P2P
MOGs

Kévin Huguenin, Amir Yahyavi, Bettina Kemme

To cite this version:
Kévin Huguenin, Amir Yahyavi, Bettina Kemme. Short paper: Cheat Detection and Prevention in
P2P MOGs. 10th ACM/IEEE International Workshop on Network and Systems Support for Games
(NETGAMES), Oct 2011, Ottawa, ON, Canada. �10.1109/NetGames.2011.6080988�. �inria-00616878�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49967745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00616878
https://hal.archives-ouvertes.fr


Cheat Detection and Prevention in P2P MOGs
Kévin Huguenin, Amir Yahyavi, and Bettina Kemme

School of Computer Science, McGill University, Montréal, QC, Canada

I. INTRODUCTION

Scalability and fairness are keys to the success of massively
multi-player on-line games. The first is necessary for the
technical viability of the game while the latter is required for
the wide adoption by players. Although they achieve better
scalability, peer-to-peer games are more prone to cheating as
players have access to and manipulate sensitive game data [2].

While in centralized games cheat detection and prevention
can be achieved by having the server verify the players’ actions
and reduce the information sent to players to the minimal
amount required to render the game world, in decentralized
games, it is more difficult as natural trade-offs between respon-
siveness, scalability, verification and information disclosure
appear together with the issues of trust and collusion [3].

Common decentralized approaches include mutual verifi-
cation, auditing, agreement protocols, and information filter-
ing [2–4]. However, most protocols have one of the following
drawbacks: they (1) rely on a central server or trusted third
parties; (2) do not deal with collusion; (3) detect cheaters a
posteriori; (4) fail to provide responsiveness and scalability.

Based on Donnybrook [5], a distributed version of
Quake III, we propose the following techniques to detect and
prevent cheating while avoiding the aforementioned pitfalls:
• vision-based filtering and indirect communication to reduce

the information available at each player close to the mini-
mum amount necessary to render the game world;

• assign each player a proxy player in charge of update
dissemination and action verification. Proxies are chosen
at random and dynamically renewed to limit the impact of
collusion while allowing on-the-fly mid-term verifications.

II. BACKGROUND

Games usually run in a discrete event-loop, meaning that in
each frame the states of the avatars and objects are updated and
updates may be sent. In a centralized game, all objects in the
game world are owned by the server and players send updates
about their avatars to the server. The server verifies each update
and sends it, given its global knowledge, to only those players
who need it. In a P2P game, however, each client usually
owns his avatar and some of the other objects. A simple P2P
game lets each player send all changes directly to all other
players. However, because of resource limitation, the following
techniques are used:

Kévin Huguenin was partially funded by a scholarship offered by University
of Rennes I and an Explorateur grant offered by INRIA. Amir Yahyavi was
funded by NSERC Strategic Grant STPGP/350626-2007. An extended version
is available as a Technical Report [1].

• Dead reckoning consists in predicting the state of an avatar,
thus allowing to reduce the frequency of position updates
while keeping the display smooth. In Donnybrook, guidance
messages containing the avatar’s expected next position and
aim (computed locally) and its current position, aim, rate of
fire, etc. are used by AI to simulate the avatar’s action.

• Area of interest filtering consists in limiting the information
a player receives about other avatars. Donnybrook distin-
guishes between the set of the top-5 avatars (with respect to
an attention metric based on proximity, aim and interaction
recency), called interest set (IS), and other avatars.

In Donnybrook, a player receives frequent updates only about
avatars in his IS and guidance messages about all other avatars.
This is implemented through a publish-subscribe scheme, in
which each player manages the subscriptions to his avatar,
with two subscriptions types (i.e., IS and others).

The cheating opportunities a player can exploit to help him
achieve his goal (i.e, kill other players’ avatars and avoid being
killed in a typical deathmatch scenario) are to: (1) delay, drop
or corrupt updates in order to confuse other players; (2) delay
the updates he sends to base his actions on those he receives
from others; (3) tamper with the game code to circumvent the
game physical laws (e.g., limited velocity) and unduly change
his state (e.g., increase his health); (4) increase his score by
unduly claiming he has killed some other player; (5) exploit
information available but not supposed to be disclosed (e.g.,
position of players not visible, expected position contained in
guidance messages, and subscriptions from other players) to
increase his chances to kill other players and foresee danger.

III. CHEAT DETECTION AND PREVENTION

We propose a cheat detection and prevention approach
based on mutual verification, indirect communication, and
vision-based information filtering. These key mechanisms are
facilitated by a dynamic randomized proxy architecture.
Proxy architecture In any frame, a player has a single
designated proxy. To prevent collusion, proxies are chosen in
a randomized but verifiable way. In order to limit in time the
impact of collusion between a player and his proxy, the effects
of a malicious proxy, and unnecessary information disclosed
to proxies, proxies are periodically renewed. This is achieved
by making each player maintain, for each player including
himself, a pseudo-random number generator that he initializes
with the player’s id. At the beginning of each new period, a
player determines both his own and the other players’ proxies
by picking a player id with the associated generator.
Subscriptions To prevent players from cheating the infor-
mation received by players from updates is reduced to the



minimum amount required to render the game world, from the
standpoint of his avatar. This is achieved by means of different
subscription types based on the relative positions and aims of
the avatars (Fig. 1). We used three subscriptions types:
• Interest set (IS): it contains the top-5 (with respect to

an attention metric) avatars about who a player receives
frequent state updates (just as in Donnybrooke).

• Vision set (VS): it contains the avatars the player can see,
i.e., those within a spherical cone, defined by a given radius
and angle (e.g., 50 meters and ±45 degrees), centered on the
avatar and not behind obstacles (e.g., walls). For VS sub-
scription, a player receives infrequent guidance messages.

r Vision – Spherical cone

b Interest – Top-5 inside vision

u Other

+

b
b

b

b

b

r

r

r

r

r

u

u

u

u

u

u

u

Fig. 1. Subscription-types and corresponding areas.

• Others: In order to determine the subscription type he
needs, the player receives infrequent position updates about
avatars neither in IS nor in VS. This is the default type and,
thus it does not require explicit subscription.

To make the multi-type subscription management cheat-proof
and hide from players the subscriptions from other players,
subscriptions are handled by proxies and through proxies (see
Fig. 2). A player’s proxy relays (and verifies) the subscriptions
the player does. Subscriptions to a player are sent to his
proxy, which maintains the list of subscribers on the player’s
behalf. All updates are then published by players through their
proxies: the player sends the three types of updates to his proxy
which then dispatches them accordingly.

player

publishes updates

through its proxy

p

p’s proxy
manages subscriptions

to p
verifies and forwards

p’s updates

state up., pos. up.,

guidance

Interest (IS)

· · ·p3

p3’s proxy
verifies and forwards

p3’s subscriptions

IS-sub.

IS-sub. from
p
3

state up.

Vision (VS)

· · ·p1VS-sub.

VS
-su

b.
fro

m
p1

guid
ance

Other

· · ·p2pos. up.

players

subscribe through

their proxies

Fig. 2. Role of proxies: manage subscriptions and verify and forward updates.

Verifications In our verification scheme, all players verify
each others’ actions, with a special attention from proxies to
the players they are in charge of:
• Subscriptions are done through proxies who assess the

validity of their types (e.g., the target of a VS-subscription
is indeed in the player’s vision field). Proxies have sufficient
information to perform such verifications (i.e, frequent

position updates about the players they are in charge of
and infrequent position update about the target).

• State updates are published through the proxies which ver-
ify that players’ actions follow games physics (e.g., limited
velocity) and game rules (e.g., decreasing health after a
fall) by comparing successive state updates. Proxies also
verify, a posteriori, that actual movements are consistent
with predictions included in guidance messages. All players
can verify another player’s actions but with relative accuracy
depending on the information they have. Proxies also check
that players do send timely updates.

• Interactions such as hit and kill-claims can be verified by
proxies as well as by players acting as witnesses.
To prevent players from tampering with the messages they

forward, updates and subscriptions are signed. Misbehaviors
detected upon verifications are reported under the form of
blames that eventually lead to sanctions. Ill-founded blames
(e.g., purposeful, message loss) are dynamically filtered out.

IV. EVALUATION

We built our solution in Quake III and performed our
evaluation with 48 players in the q3dm17 map. We compared
our solution against Donnybrook along the following aspects:
• Mutual verifications We evaluated, for a given cheater, the

average number of honest players that: act as proxy for him,
have him in their IS, or have him in their VS. The results
foresee a great potential for verifications: when the cheater
colludes with 3 other cheaters, he is assigned an honest
proxy in 93% of the cases and 10 players witness his actions
(4 through frequent updates and 6 through guidance).

• Information disclosure: We observed that, despite the use
of proxies, information disclosure is significantly reduced
when compared to Donnybrook. For instance, a coalition
of three cheaters has minimum information (i.e., infrequent
position update alone) for 31% of the honest players while
in Donnybrook, it has guidance message about 99% of them.

• Responsiveness The use of proxies increases the delays
because of forwarding. Another source of delay is when an
avatar enters in a player’s IS or VS while only a possibly
outdated position update is available. This phenomenon is
however infrequent: in a frame, on average 88% of the
players in IS were already in IS in the previous frame, 8.5%
were in VS and only 3.5% would suffer from a slight delay.

REFERENCES

[1] K. Huguenin, A. Yahyavi, and B. Kemme, “Cheat Detection
and Prevention in P2P MMOGs,” McGill, Tech. Rep. SOCS-
TR-2011.5, Aug 2011.

[2] P. Kabus, W. Terpstra, M. Cilia, and A. Buchmann, “Addressing
Cheating in Distributed MMOGs,” in NETGAMES, 2005.

[3] N. Baughman, M. Liberatore, and B. Levine, “Cheat-Proof
Playout for Centralized and Peer-to-Peer Gaming,” IEEE/ACM
ToN, vol. 15, pp. 1–13, 2007.

[4] S. Webb, S. Soh, and J. Trahan, “Secure Referee Selection for
Fair and Responsive Peer-to-Peer Gaming,” Simulation, vol. 85,
pp. 608–618, 2009.

[5] A. Bharambe, J. Douceur, J. Lorch, T. Moscibroda, J. Pang,
S. Seshan, and X. Zhuang, “Donnybrook: Enabling Large-Scale,
High-Speed, Peer-to-Peer Games,” in SIGCOMM, 2008.


