
HAL Id: hal-00617040
https://hal.archives-ouvertes.fr/hal-00617040

Submitted on 25 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimalist Grammars and Minimalist Categorial
Grammars, definitions toward inclusion of generated

languages
Maxime Amblard

To cite this version:
Maxime Amblard. Minimalist Grammars and Minimalist Categorial Grammars, definitions toward
inclusion of generated languages. Sylvain Pogodalla and Myriam Quatrini and Christian Retoré.
Logic and Grammar: Essays Dedicated to Alain Lecomte on the Occasion of His 60th Birthday, 6700,
springer, pp.61–80, 2011, LNCS/LNAI, �10.1007/978-3-642-21490-5_4�. �hal-00617040�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49967595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00617040
https://hal.archives-ouvertes.fr

Minimalist Grammars and Minimalist

Categorial Grammars, definitions toward

inclusion of generated languages

Maxime Amblard1

Nancy Université - INRIA Nancy-Grand Est
amblard@loria.fr

Abstract. Stabler proposes an implementation of the Chomskyan Min-
imalist Program, [1] with Minimalist Grammars - MG, [2]. This frame-
work inherits a long linguistic tradition. But the semantic calculus is
more easily added if one uses the Curry-Howard isomorphism. Minimal-
ist Categorial Grammars - MCG, based on an extension of the Lambek
calculus, the mixed logic, were introduced to provide a theoretically-
motivated syntax-semantics interface, [3]. In this article, we give full
definitions of MG with algebraic tree descriptions and of MCG, and take
the first steps towards giving a proof of inclusion of their generated lan-
guages.

The Minimalist Program - MP, introduced by Chomsky, [1], unified more
than fifty years of linguistic research in a theoretical way. MP postulates that
a logical form and a sound could be derived from syntactic relations. Stabler,
[2], proposes a framework for this program in a computational perspective with
Minimalist Grammars - MG. These grammars inherit a long tradition of genera-
tive linguistics. The most interesting contribution of these grammars is certainly
that the derivation system is defined with only two rules: merge and move. The
word Minimalist is introduced in this perspective of simplicity of the definitions
of the framework. If the merge rule seems to be classic for this kind of treatment,
the second rule, move, accounts for the main concepts of this theory and makes
it possible to modify relations between elements in the derived structure.

Even if the phonological calculus is already defined, the logical one is more
complex to express. Recently, solutions were explored that exploited Curry’s
distinction between tectogrammatical and phenogrammatical levels; for example,
Lambda Grammars, [4], Abstract Categorial Grammars, [5], and Convergent
Grammars [6]. First steps for a convergence between the Generative Theory
and Categorial Grammars are due to S. Epstein, [7]. A full volume of Language
and Computation proposes several articles in this perspective, [8], in particular
[9], and Cornell’s works on links between Lambek calculus and Transformational
Grammars, [10]. Formulations of Minimalist Grammars in a Type-Theoretic way
have also been proposed in [11], [12], [13]. These frameworks were evolved in [14],
[3], [15] for the syntax-semantics interface.

Defining a syntax-semantics interface is complex. In his works, Stabler pro-
poses to include this treatment directly in MG. But interactions between syntax

and semantic properties occur at different levels of representation. One solution is
to suppose that these two levels should be synchronized. Then, the Curry-Howard
isomorphism could be invoked to build a logical representation of utterances. The
Minimalist Categorial Grammars have been defined from this perspective: cap-
ture the same properties as MG and propose a synchronized semantic calculus.
We will propose definitions of these grammars in this article. But do MG and
MCG genrate the same language? In this article we take the first steps towrds
showing that they do.

The first section proposes new definitions of Minimalist Grammars based on
an algebraic description of trees which allows to check properties of this frame-
work, [3]. In the second section, we will focus on full definitions of Minimalist
Categorial Grammars (especially the phonological calculus). We will give a short
motivation for the syntax-semantics interface, but the complete presentation is
delayed to a specific article with a complete example. These two parts should be
viewed as a first step of the proof of mutual inclusion of languages between MG
and MCG. This property is important because it enables us to reduce MG’s to
MCG, and we have a well-defined syntax-semantics interface for MCG.

1 Minimalist Grammars

Minimalist Grammars were introduced by Stabler [2] to encode the Minimalist
Program of Chomsky, [1]. They capture linguistic relations between constituents
and build trees close to classical Generative Analyses.

These grammars are fully lexicalized, that is to say they are specified by their
lexicon. They are quite different from the traditional definition of lexicalized
because they allow the use of specific items which do not carry any phonological
form. The use of theses items implies that MG represent more than syntactic
relations and must be seen as a meta-calculus lead by the syntax.

These grammars build trees with two rules:merge andmove which are trigged
by features. This section presents all the definitions of MG in a formal way, using
algebraic descriptions of trees.

1.1 Minimalist Tree Structures

To provide formal descriptions of Minimalist Grammars, we differ from tradi-
tional definitions by using an algebraic description of trees: a sub-tree is defined
by its context, as in [16] and [17]. For example, the figure on the left of the figure
1 shows two subtrees in a tree (t1 and t2) and their context (C1 and C2). Before
we explain the relations in minimalist trees, we give the formal material used to
define a tree by its context.

Graded alphabets and trees: Trees are defined from a graded set. A graded
set is made up of a support set, noted Σ, the alphabet of the tree, and a rank
function, noted σ, which defines node arity (the graded terminology results from
the rank function). In the following, we will use Σ to denote a graded (Σ, σ).

The set of trees built on Σ, written TΣ , is the smallest set of strings (Σ ∪
{(;); , })∗. A leaf of a tree is a node of arity 0, denoted by α instead of α(). For
a tree t, if t = σ(t1, · · · , tk), the root node of t is written σ .

Moreover, a set of variables X = {x1, x2, · · ·} is added for these trees. Xk is
the set of k variables. These variables mark positions in trees. By using variables,
we define a substitution rule: given a tree t ∈ TΣ(Xk) (i.e. a tree which contains
instances of k variables x1, · · · , xk) and t1, · · · , tk, k trees in TΣ , the tree obtained
by simultaneous substitution of each instance of x1 by t1, . . . , xk by tk is denoted
by t[t1, · · · , tk]. The set of all subtrees of t is noted St.

Thus, for a given tree t and a given node n of t, the subtree for which n is
the root is denoted by t with this subtree replaced by a variable.

Minimalist trees are produced by Minimalist Grammars and they are built
on the graded alphabet {<,>,Σ}, whose ranks of < and > are 2 and 0 for
strings of Σ. Minimalist Trees are binary ones whose nodes are labelled with <
or >, and whose leaves contain strings of Σ.

Relations between sub-trees We formalise relations for different positions of
elements in St. Intuitively, these define the concept of be above, be on the right
or on the left. A specific relation on minimalist trees is also defined: projection
that introduces the concept of be the main element in a tree.

In the following, we assume a given graded alphabet Σ. Proofs of principal
properties and closure properties are all detailed in [3]. The first relation is the
dominance which informally is the concept of be above.

Definition 1 Let t ∈ TΣ, and C1, C2 ∈ St, C1 dominates C2 (written C1 ⊳
∗

C2) if there exists C ′ ∈ St such that C1[C
′] = C2.

Figure 1 shows an example of dominance in a tree. One interesting property
of this algebraic description of trees is that properties in sub-trees pass to tree.
For example, in a given tree t, if there exists C1 and C2 such that C1 ⊳∗ C2,
using a 1-context C, we could build a new tree t′ = C[t] (substitution in the
position marked by the variable xx1 of t). Then, C[C1] and C[C2] exist (they
are part of t′) such that C[C1]⊳ C[C2].

Definition 2 Let t ∈ TΣ, C1, C2 ∈ St, C1 immediately precedes C2 (written
C1 ≺ C2) if there exists C ∈ St such that:

1. C1 = C[σ(t1, . . . , tj , x1, tj+2, . . . , tk)] and
2. C2 = C[σ(t1, . . . , tj , tj+1, x1, . . . , tk)].

Precedence, written ≺∼, is the smallest relation defined by the following
rules (transitivity rule, closure rule and relation between dominance and prece-
dence relation):

C1 ≺∼ C2 C2 ≺∼ C3
[trans]

C1 ≺∼ C3

C1 ≺ C2
[∗]

C1 ≺∼ C2

C1 ⊳
∗ C2

[dom]
C2 ≺∼ C1

C
1

C
2

t
1

t
2

C
1

C
2

t
1

t
2

– C1 is the context of the sub-tree t1

– C2 is the context of the sub-tree t2

– C1 ⊳
∗

C2 means that the root node of
t1 is higher than the root node of t2 in
the full tree

– C1 is the context of the sub-tree t1

– C2 is the context of the sub-tree t2

– C1 <
∗

C2 means that the root node of
t1 is on the left side of the root node
of t2 in the tree

Fig. 1. Dominance and precedence relations in trees.

Precedence encodes the relation be on the left (and then be on the right) or
be above another element (using the dominance). These two relations stay true
for substitution (as mentioned above).

The next relation does not define a tree relation. It realises a linguistic prop-
erty by leading the concept of be the main element in a structure (or a substruc-
ture).

Definition 3 Let t ∈ TΣMG
(A), and C1, C2 ∈ St, C1 immediately projects

on C2 (written C1 < C2) if there exists C ∈ St such that one of the two following
properties holds:

1. C1 = C[<(x1, t2)] and C2 = C[<(t1, x1)],

2. C1 = C[>(t2, x1)] and C2 = C[>(x1, t1)],

in this case C ⊳ C1 and C ⊳ C2. If C1<C2 or C2<C1, then there exists C
such that C ⊳ C1 and C ⊳ C2.

<∼ is the smallest relation defined by the following system of rules:

C ∈ St
[0]

C<∼C

C1<
∼C2 C2<

∼C3
[trans]

C1<
∼C3

C1<C2
[∼]

C1<
∼C2

C1 ⊳
∗ C2 C3 ⊳

∗ C4 C2<C3
[A]

C1<
∼C4

C1 ⊳ C2 C2<C3
[B]

C2<
∼C1

Note that the projection relation is transitive. All the properties of these
three relations are proven in [3]. The figure 2 presents three minimalist trees
where in t the main element is the verb walks (which is accessible by following
the projection relation).

These three relations could seem quite complicated for a reader who is not
familiar with these notations or the zipper theory. But their expressiveness allows
to prove the structural properties assumed for MG and moreover to give the proof
of languages inclusion with MCG. Finally, in this section, we have defined the
concept of parent and child relations in trees plus the projection relation which
defines constituents in linguistic descriptions.

1.2 Linguistic Structures in Trees

From the linguistic perspective, trees represent relationships between grammat-
ical elements of an utterance. Linguistic concepts are associated with minimalist
tree structures. These relationships have been proposed for the analysis of struc-
tural analogies between verbal and nominal groups. Thus, groups of words in a
coherent statement (phrases), whatever their nature, have a similar structure.
This is supposed to be the same for all languages, regardless of the order of sub-
terms. This assumption is one of the basic ideas of the X-bar theory introduced
in the seventies, [18] and in the MP, [1].

The head is the element around which a group is composed. An easy way to
find the head of a minimalist tree is to follow the projection relation of the nodes.

Definition 4 Let t ∈ TMG, if for all C
′ ∈ St, C<∼C ′ then C is called the head

of t. For a given tree t ∈ TMG, we write Ht[x] ∈ St a sub-tree of t of which x is
the head, and head(t) is a leaf which is the head of t. Then t = Ht[head(t)].

For a minimalist tree, there always exists a unique minimal element for the
projection relation and it is a leaf (which is the head of the tree) [3].

For example, the head of the minimalist tree in figure 2 is the leaf walks
(follow the direction of the projection relation in nodes and stop in a leaf).
Subtrees have their own head, for example the leaf a is the head of the subtree
t1 (in figure 2) and the preposition in is the head ot t3.

Maximal Projection is, for a leaf l, the largest subtree for which l is the
head. This is the inverse notion of head. In the minimalist tree of figure 2, the
maximal projection of the leaf walks is the full tree t. To describe other maximal
projections in this example, the maximal projection of a is the subtree which
contains a man and the maximal projection of the man is the leaf man. In a
more formal way, the maximal projection is defined as follows:

>

✟✟✟ ❍❍❍

<

✟✟❍❍
a man

<

✟✟ ❍❍
walks <

✟✟❍❍
in <

✟✟❍❍
the street

<

✟✟❍❍
a man

<

✟✟❍❍
in <

✟✟❍❍
the street

t t1 t2

Fig. 2. a minimalist tree t and two of its sub-tree

Definition 5 Let t ∈ TMG, C ∈ St. The maximal projection of C (denoted
by projmax(C)) is the subtree defined by:

– if C = x1, projmax(C) = x1

– if C = C ′[< (x1, t)] or C = C ′[> (t, x1)], projmax(C) = projmax(C
′)

– if C = C ′[< (t, x1)] or C = C ′[> (x1, t)], projmax(C) = C

Then projmax(walks) = t. This logical characterization of minimalist trees
and structural relations allows to prove different properties of MG (for example
that the projection is anti-symmetric), [3].

Complement and Specifier are relations on subtrees with respect to the head.
Elements coming after the head provide information and they are in the

complement relation. Let t ∈ SMG, C1 is a complement of head(t) = C, if
projmax(C)⊳∗ C1 and C ≺+ C1, denoted by C1 comp C.

In the tree t of figure 2, the subtree t2 is in a complement relation with the
head walks. It adds information to the verb.

By contrast, elements placed before the head determine who (or what) is in
the relationship. Let t ∈ SMG, C1 is a specifier of head(t) = C, if projmax(C)⊳∗

C1 and C1 ≺+ C, denoted by C1 spec C.
In the tree t of figure 2, the subtree t1 is in a specifier relation with the head

walks. It specifies interpretation of the verb.

1.3 Minimalist Grammars

The computational system of MG is entirely based on features which represent
linguistic properties of constituents. Rules are trigged by these features and
they build minimalist trees. A Minimalist Grammar is defined by a quintuplet
〈V, Features, Lex, Φ, c〉 where:

– V is a finite set of non-syntactic features, which contains two sets: P (phono-
logical forms, marked with / /), and I (logical forms, marked with ()).

– Features= {B ∪ S ∪ La ∪ Le} is a finite set of syntactic features,
– Lex is a set of complex expressions from P and Features (lexical items),
– Φ = {merge,move} is the set of generative rules,

– c ∈Features is the feature which allows to accept derivations.

The final tree of a derivation which ends with acceptance is called a deriva-
tional tree, which corresponds to a classical generative analysis. Phonological
forms are used as lexical items (and they could be seen as the grammar’s ter-
minal symbols). A left-to-right reading of phonological forms in derived and
accepted structures provides the recognized string. But intermediate trees in a
derivation do not stand for this. Only the derivational tree allows to recognize
a string. This results from the move rule which modifies the tree structure. For
a MG G , the language LG recognized by G is the closure of the lexicon by the
generation rules.

1.4 Features

A MG is defined by its lexicon which stores its resources. Lexical items consist of
a phonological form and a list of syntactic features. The syntactic set of features
is divided in two subsets: one for basic categories, denoted B, and one for move
features, denoted D. Different types of features are:

– B = {v, dp, c, · · ·} the set of basic features. Elements ofB denote standard
linguistic categories. Note that this set contains c, the accepting feature (I
assume it is unique at least).

– S = {=d | d ∈ B} the set of selectors which expresses the necessity of
another feature of B of the same type (for d ∈ B, =d is the dual selector).

– La = {+k | k ∈ D} the set of licensors. These features assign an expres-
sion’s property to complement another in a specifier-head relation.

– Le = {−k | k ∈ D} the set of licensees. These features state that the
expression needs to be complemented by a similar licensor.

Lexical sequences of features follow the syntax: /FP/ : (S(S ∪La)
∗)∗B(Le)

∗

I II III

b

=b

b -d=b

+d

Fig. 3. Automata of acceptable sequences of features where b ∈ B and d ∈ D.

Vermaat, [19], proposes an automata which recognises the acceptable se-
quences, proposed in figure 3. This structure could be divided in two parts: the
first containing a sequence of selectors and licensors (features which trigger rules,
as we shall see), and the second which contains only one basic feature (the gram-
matical category associated to the expression) and a sequence of licensees. The

first part corresponds to stat I and II and the second to stat III and transitions
to this state. In the following, e will denote any feature and E a sequence of
features (possibly empty).

For example, the sequence associated with an intransitive verb will be: =d +case v
which means that this verb must be jointed with a determinal phrase (determi-
nal comes from the Generative Theory), a complex expression with feature d.
Then it must be combined with a −case, we will see how in the next section, an
then there is a structure associated with verb (feature v).

Transitive verbs will extend the intransitive ones wth the list:

=d +case =d +case v

The two =d correspond to the subject and the object of the verb. The first case
will be accusative and the second nominative.

Another example is determiners: they are combined with a noun to build a
determiner phrase and need to be unified in the structure (see the next section).
Here is an example of lexicon which contains a verb, a noun and a determiner:

walks : =d +case v
a : =n d −case

man : n

1.5 MG Rules

Φ, the set of generating rules, contains only: merge and move. A derivation is a
succession of rule applications which build trees. These trees are partial results:
the structural order of phonological forms does not need to correspond to the
final one. In the MP, a specific point, called Spell-Out is the border between
the calculus of derivations and the final result. Rules are trigged by the feature
occurring as the first element of list of features of the head.

Merge is the process which connects different parts. It is an operation which
joins two trees to build a new one:

merge : TMG × TMG → TMG

It is triggered by a selector (=x) at the top of the list of features of the head
and it is realised with a corresponding basic feature (x) at the top of the list of
features of the head of a second tree. Merge adds a new root which dominates
both trees and cancels the two features. The specifier/complement relation is
implied by the lexical status of the tree which carried the selector. The new root
node points to this tree.

Let t,t′ ∈ TMG be such that t = Ht[l : =h E] and t′ = Ht′ [l
′ : h E′] with

h ∈ B:

merge(t, t′) =

{

< (l : E,Ht′ [l
′ : E′]) if t ∈ Lex,

> (Ht′ [l
′ : E′], Ht[l : E]) otherwise.

Figure 4 presents the graphical representation of merge.

EE'

>

h E'

t :

=h E

t' : merge(t,t') :

E'

E

<

h E'

t : =h E t' : merge(t,t') :

if t ∈

Lex

else

+g E -g E'

C

C2

 E

C1
E'

>

t move(t)

Fig. 4. Tree representation of merge and move.

For example, to derive a man walks, we first need to combine a with man,
and then to combine the result with the verb:

<

✟✟✟ ❍❍❍

a

✟✟=n d −case
man

✚n

and

<

✟✟✟✟

❍❍❍❍

walks
✟✟=d +case v

<

✟✟✟ ❍❍❍

a

✟✟=n ✁d −case
man

✚n

Obtained trees do not verify the word order (only the final tree will check
the right word order). In this example, the selectors are carried by lexical items,
then projection relations point to the left in both cases.

Move encodes the main idea of the Minimalist Program. It corresponds to the
movement of a constituent at the top position in a derivation. Move is trigged
by a licensor (+x) at the top of the list of features of the head of a tree. Then,
it looks for a corresponding licensee (−x) at the top of the list of features of
the head inside the tree. If these conditions are met, the maximal projection of
the node which carries the licensee is moved to the left of a new root. This node
points to the right (the subtree which carries the former head). Both licensor and
licensee are cancelled. The root of the moved maximal projection is substituted
by an empty leaf (ǫ). This new leaf is called the trace of the move.

Figure 4 shows a graphical representation of the move rule where the head
of C carries a +g in its top features list. Then we look for a leaf with −g in
its top features list and then find its maximal projection (C2) which contains
all the elements which depend on it. Finally this sub-tree is moved to the left
position of a new root node. Intuitively, a linguistic property is checked and the
consequence is a move in first position in the tree. And strictly:

move : TMG → TMG

For all tree t = C[l : +g E, l′ : −g E′], such that t = Ht[l : +g E], there
exists C1, C2 ∈ St such that: C2 is the maximal projection of the leaf l′ and C1

is t deprived of C2. Then, t = C1[l : +g E,C2[l
′ : −g E′]] where:

– C2[l
′ : −g E′] = projmax(C[l′ : −g E])

– C1[l : +g E, x1] = projmax(C[l : +g E, x1])

move(t) = >(C2[l
′ : E′], C1[l : E, ǫ])

Figure 4 presents the graphical representation of move.
Stabler introduces some refinements to these grammars. Let us mention them.

He introduces a second move: weak move, which does not move the phonological
forms. The precedent move is then called strong move, which is trigged with
capital features. The weak move is, like strong move:

move(t) = >(C2[ǫ : E
′], C1[l : E, l′])

Variations on strong/weak values achieve variations on phonological order.
This is an instance of the use of parameters of the Minimalist Program.

Moreover, restrictions can be introduced on MG derivations. An important
one is the Shortest Move Condition (SMC) which blocks move in case of ambi-
guity on licensees. Then, the move operation of MG with SMC is deterministic.

A locality condition could also be introduced: Specifier Island Condition -
SPIC. “Islands” define areas which prohibit extractions. With SPIC, a subtree
cannot be moved if it is in a specifier relation within a subtree. This condition was
introduced by Stabler, in [20] drawing on works of [21] and [22], who proposes
that moved elements had to be in a complement relation.

In the previous example, the head of the last tree is the leaf walks which
contains a +case feature as first element of its list. Then, a move is trigged
in the tree with the leaf a which carries a (−case). The resulting tree is the
following:

>

✟✟✟✟

❍❍❍❍

<

✟✟✟ ❍❍❍

a

✟✟=n ✁d✘✘✘−case
man

✚n

<
✟✟ ❍❍

walks
✟✟=d✘✘✘+case v

ǫ

The move operation modifies the position of the maximal projection of the
leaf which carries the −case. The old position is substituted by an empty leaf
(ǫ). Finally, the tree contains only one feature which is v. In this small example,
I did not discuss the validity of the final feature, but in a real derivation, we
assume that it is not the verb which carries the +case licensor which corresponds
to the nominal case, but it is a specific item. This item corresponds to the
morphological mark of the verb. Then each acceptable derivation assumes that
a verb has received its time (and other properties). But exhibiting the use of

this item needs other refinements of the two rules (Head-movement and Affix-
Hopping).

This section did not propose a new framework for computational linguistics.
This is a new definition of Stabler proposal. This way, assumed properties of min-
imalist trees have been fully proved, [3]. Moreover this algebraic definition of MG
is a perfect description to compare generated languages with other frameworks.
Finally, this modifies the point of view on derivations and shows all steps of the
calculus as substitution. One missing point is still the introduction of a semantic
calculus. Let us now develop MCG which are defined with a syntax-semantics
interface.

2 Minimalist Categorial Grammars - MCG

In this section, we define a new Type-Theoretic Framework which is provided
by the mixed calculus, a formulation of Partially Commutative Linear Logic. It
proposes to simulate MG and then keep linguistic properties of the Minimalist
Program. MCG are motivated by the syntax-semantics interface, [3]. This in-
terface, as for Lambek calculus, is based on an extension of the Curry-Howard
isomorphism, [23]. Even though this interface is not the aim of this paper, let us
discuss some important points.

The idea of encoding MP with Lambek calculus arises from [11] and ex-
tended versions of this work. In these propositions, the calculus is always non-
commutative, a property needed to model the left-right relation in sentences. But
the move operation could not be defined in a proper way with non-commutative
relation. In particular, in complex utterances, the non-commutativity implies
that a constituent (for example the object DP) must be fully treated before
another one is introduced (for example the subject DP). Otherwise, features
are mixed and non-commutativity blocks resolutions. It is not acceptable to
normalize the framework with such a strong property and it makes the system
inconsistent in regard to linguistics.

The solution we propose is to define a new framework which allows to deal
with commutative and non-commutative connectors: the mixed calculus. The
main consequence on the model of this calculus is that variables in logical for-
mulae are introduced at different places and must be unified later. In [3] we
show how the unification is used to capture semantic phenomena which are not
easily included. In few words, the idea is to consider proofs of mixed calculus as
phases of a verb. Phases have been introduced by Chomsky to detail different
modifications which occur on a verb. Several linguists have showed that phases
have implications on semantics, for example the theta-roles must be allocated
after a specific phase. This is exactly the result of the syntax-semantics inter-
face of MCG. Full explanations need more space to be presented, but the main
contribution of MCG is to propose an efficient syntax-semantics interface in the
same perspective as MG.

In this section, we will detail MCG and expose their structural link with MG.
First we present the mixed calculus, then we give definitions of MCG and show

proofs of the mixed calculus produced by MCG (together with their linguistic
properties).

2.1 Mixed calculus

MCG are provided with mixed calculus, [24], a formulation of Partially Commu-
tative Linear Logic. Hypotheses are either in a non-commutative order (<;>) or
in a commutative one ((,)) The plain calculus contains introduction and elimi-
nation rules for:

– the non-commutative product ⊙:

∆ ⊢ A⊙B Γ,< A;B >,Γ ′ ⊢ C
[⊙e]

Γ,∆, Γ ′ ⊢ C

∆ ⊢ A Γ ⊢ B
[⊙i]

< ∆;Γ >⊢ A⊙B
– its residuals (/ and \):

Γ ⊢ A ∆ ⊢ A\C
[\e]

< Γ ;∆ >⊢ C

∆ ⊢ A/C Γ ⊢ A
[/e]

< ∆;Γ >⊢ C

< A;Γ >⊢ C
[\i]

Γ ⊢ A\C

< Γ ;A >⊢ C
[/i]

Γ ⊢ C/A
– the commutative product ⊗:

∆ ⊢ A⊗B Γ, (A,B), Γ ′ ⊢ C
[⊗e]

Γ,∆, Γ ′ ⊢ C

∆ ⊢ A Γ ⊢ B
[⊗i]

(∆,Γ) ⊢ A⊗B
– its residual ⊸:

Γ ⊢ A ∆ ⊢ A ⊸ C
[⊸e]

(Γ,∆) ⊢ C

(A,Γ) ⊢ C
[⊸i]

Γ ⊢ A ⊸ C

The product connectors of the mixed calculus use in a first step hypotheses
to mark positions in the proof and in a second one substitute the result of an an-
other proof in these positions using a product elimination (the commutative/non-
commutative status depends on relations between hypotheses). This is exactly
the process we will use to define the move rule of MCGs.

Moreover, the calculus contains an axiom rule and an entropy rule. This last
one allows to relax the order between hypotheses. We will use this rule to define
merge in MCG as we will see in the following section.

[axiom]
A ⊢ A

Γ ⊢ C
[entropy — whenever Γ ′ ⊏ Γ]

Γ ′ ⊢ C
This calculus has been shown to be normalizable, [25] and derivations of

MCG will be proofs of the mixed calculus in normal form.

2.2 Minimalist Categorial Grammars

As MG, MCG are lexicalized grammars. Derivations are led by formulae associ-
ated with lexical items built with connectors of the mixed logic. They are specific
proofs of the mixed logic, labelled to realise the phonological and semantic tiers.
Phonological labels on proofs will be presented with definitions of MCG rules.

A MCG is defined by a quintuplet 〈N,p, Lex, Φ,C〉 where :

– N is the union of two finite disjoint sets Ph and I which are respectively the
set of phonological forms and the one of logical forms.

– p is the union of two finite disjoint sets p1 and p2 which are respectively the
set of constituent features (the set B of MG) and the one of move features
(the set D of MG).

– Lex is a finite subset of E × F × I, the set of lexical items 1.
– Φ = {merge,move} is the set of generative rules,
– C ∈ p is the accepting formulae.

As mentioned in the previous section, move is defined using a product elim-
ination. In MG, a constituent is first introduced in a tree using its basic feature
and then can be moved using its licensees. In MCG, a constituent will be intro-
duced only when all its positions (which correspond to the basic feature and its
licensees) have been marked in the proof by specific hypotheses. But we need
to distinguish the type of the basic feature from the licensees features. That is
why p is divided in two subsets p1 and p2. This sub-typing of formulae is used
to well define lexicons of MCG.

The set E is Ph∗, and the set F , the set of formulae used to build Lex, is
defined with the set p, the commutative product ⊗ and the two non-commutative
implications / and \. Formulae of F are recognized by the non-terminal l of the
following grammar:

l ::= (b) / p1 | c
b ::= p1 \ (b) |p2 \ (b) | c

c ::= p2 ⊗ (c) | c1

c1 ::= p1

In more details, MCG formulae start with a / which is followed by a se-
quence of \. This sequence contains operators allowing to compose the proof
with another one (operators are the translation of selectors and licensors). Lex-
ical formulae are ended by a sequence of ⊗. To sum up, these formulae have the
structure (cm\ . . . \c1\(b1⊗ . . .⊗ bn⊗a))/d, with a ∈ p1, bi ∈ p2, cj ∈ p and d ∈
p1. This structure corresponds to the two parts of the list of features we have
mentioned in the previous section.

For the example a man walks, the MCG’s lexicon is the following:

walks : case\v/d
a : (case⊗ d)/n

man : n

Licensees, which express the need for an information, are there seen as a
specific part of the basic feature (a part of the main sub-type). Licensors will
be cancelled with an hypothesis to mark a position in the proof. Distinction
between them is not written by an ad hoc marker but by structural relations
inside the formula. Before we explain the move and merge rules, let us present
the phonological tiers.

1 In the following, Lex is a subset of E×F . The semantic part is used for the syntax-
semantics interface which is not detailed here.

2.3 Derivations

Labels. Derivations of MCG are labelled proofs of the mixed calculus. Before
defining labelling, we define labels and operations on them.

Let V be an uncountable and finite set of variables such that: Ph∩V = ∅. T is
the union of Ph and V . We define the set Σ, called labels set as the set of triplets
of elements of T ∗. Every position in a triplet has a linguistic interpretation: they
correspond to specifier/head/complement relations of minimalist trees. A label
r will be considered as r = (rspec, rhead, rcomp).

For a label in which there is an empty position, we adopt the following nota-
tion: r−head = (rspec, ǫ, rcomp), r−spec = (ǫ, rhead, rcomp), r−comp = (rspec, rhead, ǫ).
We introduce variables in the string triplets and a substitution operation. They
are used to modify a position inside a triplet by a specific material. Intuitively,
this is the counterpart in the phonological calculus of the product elimination.
The set of variables with at least one in r is denoted by V ar(r). The number of
occurrences of a variable x in a string s ∈ T ∗ is denoted by |s|x, and the number
of occurrences of x in r by ϕx(r). A label is linear if for all x in V , ϕx(r) 6 1.

A substitution is a partial function from V to T ∗. For σ a substitution, s a
string of T ∗ and r a label, we note s.σ and r.σ the string and the label obtained by
the simultaneous substitution in s and r of the variables by the values associated
by σ (variables for which σ is not defined remain the same).

If the domain of definition of a substitution σ is finite and equal to x1, . . . , xn

and σ(xi) = ti, then σ is denoted by [t1/x1, . . . , tn/xn]. Moreover, for a sequence
s and a label r, s.σ and r.σ are respectively denoted s[t1/x1, . . . , tn/xn] and
r[t1/x1, . . . , tn/xn]. Every injective substitution which takes values in V is called
renaming. Two labels r1 and r2 (respectively two strings s1 and s2) are equal
modulo a renaming of variables if there exists a renaming σ such that r1.σ = r2
(resp. s1.σ = s2).

Finally, we need another operation on string triplets which allows to combine
them together: the string concatenation of T ∗ is noted •. Let Concat be the
operation of concatenation on labels which concatenates the three components
in the linear order: for r ∈ Σ, Concat(r) = rspec • rhead • rcomp.

We then have defined a phonological structure which encodes specifier/comple-
ment/head relations and two operations (substitution and concatenation). These
two operations will be counterparts in the phonological calculus of merge and
move.

Labelled proofs. Before exhibiting the rules of MCG, the concept of labelling
on a subset of rules of the mixed logic is introduced. Minimalist logic is the
fragment of mixed logic composed by the axiom rule, \e, /e, ⊗e and ⊏.

For a given MCG G = 〈N,p, Lex, Φ,C〉, let a G-background be x : A with
x ∈ V and A ∈ F , or 〈G1;G2〉 or else (G1, G2) with G1 and G2 some G-
backgrounds which are defined on two disjoint sets of variables. G-backgrounds
are series-parallel orders on subsets of V ×F . They are naturally extended to the
entropy rule, noted ⊏. A G-sequent is a sequent of the form: Γ ⊢G (rs, rt, rc) : B
where Γ is a G-background, B ∈ F and (rs, rt, rc) ∈ Σ.

A G-labelling is a derivation of a G-sequent obtained with the following rules:

〈s,A〉 ∈ Lex
[Lex]

⊢G (ǫ, s, ǫ) : A

x ∈ V
[axiom]

x : A ⊢G (ǫ, x, ǫ) : A

Γ ⊢G r1 : A / B ∆ ⊢G r2 : B V ar(r1) ∩ V ar(r2) = ∅
[/e]

〈Γ ;∆〉 ⊢G (r1s, r1t, r1c • Concat(r2)) : A

∆ ⊢G r2 : B Γ ⊢G r1 : B \A V ar(r1) ∩ V ar(r2) = ∅
[\e]

〈Γ ;∆〉 ⊢G (Concat(r2) • r1s, r1t, r1c) : A

Γ ⊢G r1 : A⊗B ∆[x : A, y : B] ⊢G r2 : C V ar(r1) ∩ V ar(r2) = ∅ A ∈ p2
[⊗e]

∆[Γ] ⊢G r2[Concat(r1)/x, ǫ/y] : C

Γ ⊢G r : A Γ ′
⊏ Γ

[⊏]
Γ ′ ⊢G r : A

Note that a G-labelling is a proof tree of the minimalist logic on which
sequent hypotheses are decorated with variables and sequent conclusions are
decorated with labels. Product elimination is used with a substitution on labels
and implication connectors with concatenation (a triplet is introduced in another
one by concatenating its three components).

If Γ ⊢G r : B is a G-sequent derivable, then r is linear, and V ar(r) is ex-
actly the set of variables in Γ . Finally, for all renamings σ, Γ.σ ⊢G r.σ : B is a
G-sequent differentiable.

Merge and Move rules are simulated by combinations of rules of the mini-
malist logic producing G-labeling.

Merge is the elimination of / (resp. \) immediately followed by an entropy
rule. The meaning of this rule is joining two elements in regard to the left-right
order (then non-commutative connectors are used) and, as mentioned earlier,
all hypotheses must be accessible. To respect this, a commutative order between
hypotheses is needed. Then an entropy rule immediately follows each implication
elimination.

For the phonological tier, a label is concatenated in the complement (respec-
tively specifier) position in another one. Note that a merge which uses / must
be realized with a lexical item, so the context is always empty.

⊢ (rspec, rhead, rcomp) : A / B ∆ ⊢ s : B
[/e]

∆ ⊢ (rspec, rhead, rcomp • Concat(s)) : A
[⊏]

∆ ⊢ (rspec, rhead, rcomp • Concat(s)) : A

∆ ⊢ s : B Γ ⊢ (rspec, rhead, rcomp) : B \A
[\e]

〈∆;Γ 〉 ⊢ (Concat(s) • rspec, rhead, rcomp) : A
[⊏]

∆,Γ ⊢ (Concat(s) • rspec, rhead, rcomp) : A

These combinations of rules are noted [mg].
For example, the proof of the utterance a man walks begins with the formulae

of walks: case\v/d. The first step of the calculus is to introduce two hypotheses,
one for d and the other for case. The result is the following proof:

v : case ⊢ (ǫ, v, ǫ) : case

⊢ (ǫ, walks, ǫ) : case\v/d u : d ⊢ (ǫ, u, ǫ) : d
[mg]

u : d ⊢ (ǫ, walks, u) : case\v
[mg]

(v : case, u : d) ⊢ (ǫ, walks, u) : v

In parallel, the derivation joins the determiner a and the noun man:

⊢ (ǫ, a, ǫ) : (case⊗ d)/n ⊢ (ǫ,man, ǫ) : n
[mg]

⊢ (ǫ, a,man) : case⊗ d

Note that the first proof contains two hypotheses which correspond to the
type of the main formula in the second proof. The link between these two proofs
will be made by a move, as we will show later.

Move is simulated by an elimination of a commutative product in a proof
and, for the phonological calculus, is a substitution. We have structured the
lexicons and the merge rule to delay to the move rule only the substitution part
of the calculus.

Γ ⊢ r1 : A⊗B ∆[u : A, v : B] ⊢ r2 : C
[⊗e]

∆[Γ] ⊢ r2[Concat(r1)/u, ǫ/v] : C

This rule is applied only if A ∈ p2 and B is of the form B1 × . . . Bn × D
where Bi ∈ p2 and D ∈ p1.

This rule is noted [mv]. Move uses hypotheses as resources. The calculus
places hypotheses in the proof, and when all hypotheses corresponding to a
constituent are introduced, this constituent is substituted. The hypothesis p1 is
the first place of a moved constituent and hypotheses of p2 mark the different
places where the constituent is moved or have a trace.

In recent propositions, Chomsky proposes to delay all moves after the real-
isation of all merges. MCG could not encode this but contrary to MG where a
move blocks all the process, in MCG merge could happen, except in the case of
hypotheses of a given constituent shared by two proofs which must be linked by
a move.

In our example, we have two proofs:

– one for the verb: (v : case, u : d) ⊢ (ǫ, walks, u) : v
– one for the DP: ⊢ (ǫ, a,man) : case⊗ d

The first hypothesis corresponds to the entry position of the DP in MG
and the second to the moved position. Here, we directly introduce the DP by
eliminating the two hypotheses in the same step:

⊢ (ǫ, a,man) : case⊗ d (v : case, u : d) ⊢ (ǫ, walks, u) : v
[mv]

⊢ (a man,walks, ǫ) : v

The phonological result is a man walks. The proof encodes the same structure
as the derivational tree of MG (modulo a small transduction on the proof).

For cyclic move (where a constituent is moved several times) all hypotheses
inside this move must be linked together upon their introduction in the proof. For
this, when a new hypothesis A is introduced, a [mv] is applied with a sequent with
hypothesis A⊗B ⊢ A⊗B where A is in p2 and B is of the form B1⊗ . . .⊗Bn⊗D
where Bi ∈ p2 and D ∈ p1.

x : A⊗B ⊢ (ǫ, x, ǫ) : A⊗B ∆[u : A, v : B] ⊢ r : C
[⊗e]

∆[A⊗B] ⊢ r[x/u, ǫ/v] : C

In the definition of merge, the systematic use of entropy comes from the def-
inition of move. As it was presented, move consumes hypotheses of the proof.
But, from a linguistic perspective, these hypotheses could not be supposed in-
troduced next to each other. The non-commutative order inferred from \e and
/e blocks the move application. To avoid this, the entropy rule places them in
commutative order. In MCG, all hypotheses are in the same relation, then to
simplify the reading of proofs, the order is denoted only with ’,’.

The strong/weak move could be simulated with the localization of the sub-
stitution (if hypotheses are in p1 or p2).

s : Γ ⊢ A⊗B r[u, v] : ∆[u : A, v : B] ⊢ C
[movestrong]

r[Concat(s)/u, ǫ/v] : ∆[Γ] ⊢ C

s : Γ ⊢ A⊗B r[u, v] : ∆[u : A, v : B] ⊢ C
[moveweak]

r[ǫ/u, Concat(s)/v] : ∆[Γ] ⊢ C

This version of move is quite different from the one presented for MG, but is
close to one developed for later MG such as [26].

The main difference between MG and MCG comes from move: in MCG,
constituents do not move but use hypotheses marking their places. MCG uses
commutativity properties of mixed logic and see hypotheses as resources. To sum
up, the derivation rules of MCG is the following set of rules:

〈s,A〉 ∈ Lex
[Lex]

⊢G (ǫ, s, ǫ) : A

⊢ (rspec, rhead, rcomp) : A / B ∆ ⊢ s : B
[mg]

∆ ⊢ (rspec, rhead, rcomp • Concat(s)) : A

∆ ⊢ s : B Γ ⊢ (rspec, rhead, rcomp) : B \A
[mg]

∆,Γ ⊢ (Concat(s) • rspec, rhead, rcomp) : A

Γ ⊢ r1 : A⊗B ∆[u : A, v : B] ⊢ r2 : C
[mv]

∆[Γ] ⊢ r2[Concat(r1)/u, ǫ/v] : C

The set DG of recognized derivations by a MCGG is the set of proofs obtained
with this set of rules and for which the concluding sequent is ⊢ r : C. The
language generated by G is L(G) = {Concat(r)| ⊢ r : C ∈ DG}.

These derivations do not formally conserve the projection relation (nor the
specifier, head and complement relations). These principles are reintroduced with
strings. However, the head of a proof could be seen as the principal formula of
mixed logic, and then by extension, the maximal projection is the proof for which
a formula is the principal one. Specifier and complement are only elements on
the right or left of this formula.

An interesting remark is that rules of MCG do not use the introduction rule
of the mixed calculus. This way, they only try to combine together formulae
extracted from a lexicon and hypotheses. As in MG where a derivation cancels
features, the MCG system only consumes hypotheses and always reduces the
size of the main formula (only the size of the context could increase). This corre-
sponds to the cognitive fact that we stress the system in the analysis perspective.
Introduction rules could be seen as captured by the given lexicon. But, because
of the strong structure of the items, we directly associate formulae and strings.

We have presented all the MCG rules and lexicon, and illustrated them with
a tiny example which encodes the main properties of this framework.

3 Conclusion

In this article, we propose new definitions of MG based on an algebraic descrip-
tion of trees. These definitions allow to check properties of this framework and
moreover give a formal account to analyse links with other frameworks. Then,
we give the definitions of MCG, a Type-Theoretic framework for MG. In this
framework, merge and move are simulated by rules of the mixed logic (an ex-
tension of Lambek calculus to product and non-commutative connectors). The
phonological calculus is added by labelling proofs of this logic.

The main contribution of MCG is certainly its syntax-semantics interface.
This calculus is synchronized on proofs of MCG. But more technical details are
needed to present this interface and the linguistic properties which it encodes.
We delay the presentation of this interface to a future presentation.

Finally, the syntax-semantics interface of MCG should be used under the
condition they keep properties of MG. This is the aim of another future article

which will present the proof of inclusion of MG generated languages in MCG
generated languages. To prove this property, two alternative representations of
MG and MCG derivations are introduced: alternative derived structures and
split proofs and the corresponding merge and move. These structures and rules
make the gap between the two kinds of derivations. They need technical details
and more space to be presented.

Definitions and proofs could be easily extended to refinements ofmerge: Affix-
Hopping and Head-Movement because these operations derived the same strings
in both structures. But we have not included these rules in this presentation. On
another hand, the proof of inclusion presented here does not include the SMC.
The interpretation of SMC in MCG must be better defined before being included
in such perspective. The generative power of these grammars with shortest move
condition is still open.

This article is a first step to several perspectives which make a strong link
between a well defined framework with many linguistic properties and a new one
which captures this framework and proposes a syntax-semantics interface.

Acknowledgements

The author would like to express his deep gratitude to his supervisors Alain
Lecomte and Christian Retoré. In particular, discussions with Alain Lecomte was
a source of supports and good advices which turn the author to this research.

The author also wants to thank the associated editors and the anonymous
reviewers for their constructive remarks and suggestions, and finally Patrick
Blackburn and Mathieu Morey for their careful readings.

References

1. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)
2. Stabler, E.: Derivational minimalism. Logical Aspect of Computational Linguistic

1328 (1997)
3. Amblard, M.: Calcul de représentations sémantiques et suntaxe générative: les

grammaires minimalistes catégorielles. PhD thesis, université de Bordeaux 1
(septembre 2007)

4. Muskens, R.: Language, Lambdas, and Logic. In Kruijff, G.J., Oehrle, R., eds.: Re-
source Sensitivity in Binding and Anaphora. Studies in Linguistics and Philosophy.
Kluwer (2003) 23–54

5. de Groote, P.: Towards abstract categorial grammars. Association for Compu-
tational Linguistics, 39th Annual Meeting and 10th Conference of the European
Chapter, Proceedings of the Conference (2001)

6. Mansfield, L., Martin, S., Pollard, C., Worth, C.: Phenogrammatical labelling in
convergent grammar: the case of wrap. unpublished (2009)

7. Berwick, R., Epstein, S.: On the convergence of ’minimalist’ syntax and categorial
grammars (1996)

8. Retoré, C., Stabler, E.: Reseach on Language and Computation. Volume 2(1).
Christian Retoré and Edward Stabler (2004)

9. Lecomte, A.: Rebuilding the minimalist program on a logical ground. Journal of
Research on Language and Computation 2(1) (2004) 27–55

10. Cornell, T.: Lambek calculus for transformational grammars. Journal of Research
on Language and Computation 2(1) (2004) 105–126

11. Lecomte, A., Retoré, C.: Towards a logic for minimalist. Formal Grammar (1999)
12. Lecomte, A., Retoré, C.: Extending Lambek grammars: a logical account of mini-

malist grammars. In: Proceedings of the 39th Annual Meeting of the Association
for Computational Linguistics, ACL 2001, Toulouse, ACL (July 2001) 354–361

13. Lecomte, A.: Categorial grammar for minimalism. Language and Grammar : Stud-
ies in Mathematical Linguistics and Natural Language CSLI Lecture Notes(168)
(2005) 163–188

14. Amblard, M., Lecomte, A., Retoré, C.: Syntax and semantics interacting in a min-
imalist theory. Prospect and advance in the Syntax/Semantic interface (October
2003) 17–22

15. Amblard, M., Lecomte, A., Retoré, C.: Synchronization syntax semantic for a
minimalism theory. Journée Sémantique et Modélisation (mars 2004)

16. Huet, G.P.: The zipper. J. Funct. Program 7(5) (1997) 549–554
17. Levy, J.J., Cori, R.: Algorithmes et Programmation. Ecole Polytechnique
18. Chomsky, N.: Conditions on transformations. In Kiparsky, S.A..P., ed.: A

Festschrift for Morris Halle. Holt Rinehart and Winston (1973) 232–286
19. Vermaat, W.: Controlling movement: Minimalism in a deductive perspective. Mas-

ter’s thesis, Universiteit Utrecht (1999)
20. Stabler, E.: Remnant movement and structural complexity. Constraints and Re-

sources in Natural Language Syntax and Semantics (1999) 299–326
21. Koopman, H., Szabolcsi, A.: A verbal Complex. MIT Press, Cambridge (2000)
22. Kayne, R.S.: Overt vs covert movment. Syntax 1,2 (1998) 128–191
23. Howard, W.A.: The formulae-as-types notion of construction. In Hindley, J., Seldin,

J., eds.: To H.B. Curry: Essays on Combinatory Logic, λ-calculus and Formalism.
Academic Press (1980) 479–490

24. de Groote, P.: Partially commutative linear logic: sequent calculus and phase
semantics. In Abrusci, V.M., Casadio, C., eds.: Third Roma Workshop: Proofs and
Linguistics Categories – Applications of Logic to the analysis and implementation
of Natural Language, Bologna:CLUEB (1996) 199–208

25. Amblard, M., Retore, C.: Natural deduction and normalisation for partially com-
mutative linear logic and lambek calculus with product. Computation and Logic
in the Real World, CiE 2007 Quaderni del Dipartimento di Scienze Matem-
atiche e Informatiche ”Roberto Magari” (june 2007)

26. Kobele, G.: Generating Copies: An Investigation into Structural Identity in Lan-
guage and Grammar. PhD thesis, University of California, Los Angeles (2006)

