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Abstract—In this paper, we present a method for symbol
description based on spatio–structural as well as statistical
features of visual elementary parts called ‘vocabulary’. The
extracted vocabulary is first organised into different groups
based on their types (e.g., circle, corner). This vocabulary is
used as a basis for an Attributed Relational Graph (ARG)
where spatial relational descriptors formalise the links be-
tween the types, labelled with global shape descriptors. The
description is used to globally recognise structure by comparing
the signatures. The method is experimentally validated in the
context of electrical symbol recognition from wiring diagrams.
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I. INTRODUCTION

Graphics recognition has an extremely rich state–of–the–

art literature in symbol recognition and localisation. How-

ever, most methods are particularly suited for isolated line

symbols, not for composed symbols connected to a complex

environment [4], [10]. Considering the problem of symbol

localisation in real documents, composed of individual parts

constrained by spatial relations for instance, one needs to be

able to extract visual parts and formalise the possible links

that exist between them, in addition to the possible use of

shape description on visual parts. This integration of spatial

relations and shape description of the extracted visual parts

is going to be the core of this paper. The method is very

much inspired by a real world industrial problem [16], [7].

Fig. 1 shows a few samples of it.

Figure 1. A few symbols in FRESH dataset. Both linear as well as
symbols in the composite form are enlisted.

Global signal based descriptors [21] present a number of

inconvenients in our context. They difficultly accommodate

with connected as well as composite symbols. They are gen-

erally not well adapted for capturing small detail changes. In

statistical approaches, signatures are simple with low compu-

tational cost. However, discriminative power and robustness

strongly depend on the optimal selection of features [1] as

well as fusion of classifiers [14] partially based on the idea

presented in [15] that off–the–shelf methods are primarily

designed for applications where line symbols are isolated.

Besides global signal based descriptors, another idea is to

decompose the symbols into either vector based primitives

like points, lines and arcs or, on the other hand, meaningful

parts like circles, triangles and rectangles. They are then rep-

resented as Attributed Relational Graphs (ARG) [3], Region

Adjacency Graphs (RAG) [9], as well as deformable tem-

plates [17]. In addition to the common drawback i.e., error-

prone raster–to–vector conversion, variability of the size

of graphs leads to computational complexity in matching.

Structural approaches however, provide a powerful relational

representation, conveying how parts are connected to each

other, while also preserving generality and extensibility.

In this paper, we aim to combine the best of both structural

and statistical approaches, and try to avoid the shortcomings

of each of them. To do so, we decompose symbols by

expressing their various parts in a fixed visual vocabulary,

using spatial relations, graphs and signal based descriptors

to describe the whole shape. Our symbol description is

clearly explained in Section II. Thanks to the use of fixed

and completely labelled attributes, we can avoid the NP–

hardness of the matching problem. Overall, symbols can

be compared by fusion of matching scores from every

corresponding vertex and edge alignment (cf., Section III).

In Section IV, we validate that our method. The paper

concludes in Section V.

II. SYMBOL DESCRIPTION

We have a set of well controlled visual elementary parts

as a vocabulary [16], [7] (see Fig. 2). We denote the type

set as,
∑

T
= {Tthick,Tcircle,Tcorner,Textremity}.

symbol

=⇒

circles corners extremities

Figure 2. Visual elementary parts from corresponding symbol.

Now, we represent whole symbol by a complete ARG as a
4–tuple G = (V,E, FA, FE) where V is the set of vertices,
E ⊆ V × V is the set of graph edges, FA : V → AV

is a function assigning attributes to the vertices and AV

representing a set of vocabulary type set
∑

T
as well as their

global shape signatures S , and FE : E → ℜE is a function
assigning labels to the edges where ℜ represents spatial



relations of the edge E. Following Fig. 2 and its resulting
graph in Fig. 3 whose attribute type set is {T1,T2,T3}, its
ARG representation can be expressed as G = {

V = {T1,T2,T3}, E = {(T1,T2), (T1,T3), (T2,T3)},

FA = {((T1,Tcircle),S(T1)), . . . , ((T3,Textremity),S(T3))}

FE = {((T1,T2),ℜ(T1,T2)), . . . , ((T2,T3),ℜ(T2,T3))}}.

Since this forms a complete graph, it is obvious that there

exist r = t(t−1)
2 edges for t attribute types.

S(T1)

S(T2)S(T3)

ℜ(T1,T2)ℜ(T1,T3)

ℜ(T2,T3)

Figure 3. ARG description for a symbol in Fig. 2 – an example.

A. Edge Signature

Choice of spatial relation models rely on behaviour of the

studied objects. If the objects are far enough from each other,

their relations can be approximated by their centres based

on the discretised angle [11]. Otherwise, if they are neither

too far nor too close, relations can be approximated by

their Minimum Bounding Rectangle (MBR) [12] as long as

they are regular. Approaches like histograms of angle [18],

tends to be more capable of dealing with overlapping.

However, since they consider all pixels, their computational

cost increases dramatically. Our work is inspired by the

concept of fuzzy relationsthat takes degree of truth which is

more natural than using standard, all–or–none relations [5].
Our model can be explained as follows. For a given

reference point Rp, we cover the surrounding space at
regular radial intervals of Θ = 2π/m by using a radial–
line. We set up a unique reference point Rp computed from

centroids CA and CB of given pairs Rp = CA+CB

2 . Rp thus,
avoids erroneous choice of referencing one from a pair. As
in Fig. 4, the line rotates over a cycle, and intersecting with
object X (A or B), generates a boolean histogram H,

H(X,Rp) = [I(Rp, jΘ)]j=0..m−1,

where

I(Rp, θi) =

{

1 if line(Rp, θi) ∩ X 6= ∅
0 otherwise.

This is extended wlog to the sector defined by two successive

angle values (θi and θi+1) and is normalised with respect to

the total area of the studied object such that
∑

HX(.) = 1.

It applies to both spatial objects.

Following Fig. 4, any angle made by Rp and CX is

re–projected on the horizontal axis such as to make the

histogram rotation invariant. Also, translation does not affect

at all, since it uses CX. Fig. 5 shows an example. In a similar

manner, scaling does not produce any difference in H as it

is normalised in every sector made by θi and θi+1.

x

y

Rp

θi

CX

θi+1

Θ

Figure 4. Computing spatial relations using radial-line rotation 	.

B. Vertex Signature

Each vertex has a distinct vocabulary type containing

different shape and size information. Since spatial rela-

tions only encode relative positioning and point distribu-

tions, and do not completely exploit global shape informa-

tion, we study the pertinence of R−signature [13], region

based Zernike Moments [8], Generic Fourier Descriptors

(GFD) [20] and Shape Context (SC) [2].

III. SYMBOL RECOGNITION

Based on our symbol description, matching of two sym-

bols is done by matching their corresponding ARGs. Let

us consider two ARGs, query Gq = (V q, Eq, F q
A, F

q
E) and

database Gd = (V d, Ed, F d
A, F

d
E), where the set of vertices

V = {T1, . . . ,Tt}, and the set of edges E = {E1, . . . , Er}.
Our matching is straightforward i.e., matching has been

made between the candidates only having the exact same set
of vertices as well as exact labels. To generalise it, we define
a binary indicator function τVA : ΣT → {0, 1} to check the
presence of vertices in the ARG, where the value of τVA (T)
is 1 if T is present in V and 0, otherwise. Now, we can
then set up bijective matching functions: σ : V q → V d and
ϕ : Eq → Ed, respectively for vertices and edges. Now, the
fusion of both alignments provides the distance between two
matched graphs Gq and Gd,

D(Gq, Gd) =
∑

t∈V

δ(F q
A(t), F

d
A(σ(t))) +

∑

r∈E

δ(F q
E(r), F

d
E(ϕ(r))),

where δ(a, b) =
∑L

l=1 ||al − bl||2.

IV. EXPERIMENT

A. Dataset, Ground–truth and Evaluation Metric

Fig. 1 gives some examples of very similar and very dif-

ferent symbols. Symbols may either be very similar in shape

– and only differ by slight details – or either be completely

different from a visual point of view. Symbols may also be

composed of other known and significant symbols and need

not necessary be connected. The global dataset is composed

of roughly 500 different known symbols.

Since there is no absolute ground–truth associated to our

dataset, we have asked 6 volunteers to manually select what

they consider as “similar” symbols. They have chosen the

candidates which have similar visual overall appearance or
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Figure 5. identical histograms at 3o resolution for original, translation and rotation between circle and corner from symbol in Fig. 2.

contain significantly similar parts with respect to the chosen

query. In our testing protocol, we consider that a result

returned from an algorithm is correct if at least one evaluator

has selected the same result among the similar items.
For every query, we rank the symbols at the output based

on distance measure as described in Section III. Since the
number of ground–truths varies from one query to another,
we use retrieval efficiency [6]. For a chosen query and for
a given short–list of size K, it can be expressed as,

ηK =

{

n/N if N ≤ K
n/K otherwise,

where n is the number of returned relevant symbols and

N the total number of relevant symbols. The aim of the

metric is not to miss similar candidates in the short–list since

ηK computes the traditional recall if N ≤ K and precision

measure otherwise.

B. Results and Discussions

We perform a series of tests, focussing on three major

issues one–after–another as shown in Fig. 6.

Test 1. We consider the influence of different resolutions

Θ in our edge signature. Its value represents the trade–off be-

tween the optimal choice of resolution – and thus precision

of spatio–structural information capture – and time/space

requirements. Following results in Fig. 6 (a), and given the

relatively low gain of efficiency between 3◦ and 1◦, we

adopt the former for the rest of our experiments. Our spatial

relation is then compared with spatial relation models: Cone-

shaped [11], Angle Histogram [18] and MBR [12] as shown

in Fig. 6 (b). Our edge signature outperforms them with a

substantial difference.

Test 2. We employ a major set of global signal based

descriptors: R−signature [13], Zernike [8], GFD [20] and

SC [2]. We first employ them as vertex signatures only

and then confront them with the same shape descriptors,

applied to the overall shape. This comparison is illustrated

in Fig. 6 (c) and (d), respectively. On the whole, GFD

provides interesting results in both cases. SC is restricted by

the number of sample points i.e., we have images ranging

from a few tens of pixels to thousands of pixels.

Test 3. We integrate edge and vertex signature keeping

ARG as described in Section II. While integrating, use of

signatures on all vertices is not wise since our relation carries

sufficient information for a few vocabulary types in a pair.

Therefore, we have examined the use of signature from one

type to another as well as their possible combinations. In our

tests, substantial advancement is achieved from the combi-

nation of vertices, labelled with thick and circle vocabulary

types. Fig. 6 (e) shows results from using different shape

signatures integrating with edge signature at 3o resolution.

In Fig. 6 (f), a comparison is made among the best of

all experiments: MBR from the basic spatial relation model

and GFD from shape descriptors. Our method outperforms

all. For a few queries, visual illustration is shown in Fig. 7.
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(a) Edge Signature: {1◦, 3◦, 5◦, 9◦}.
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(b) Basic Relation models.
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(c) Vertex Signature.
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(d) Descriptors (overall shape).
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(e) Integration (Vertex + Edge Signature).
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Figure 6. Average Retrieval Efficiency over 30 queries.

V. CONCLUSIONS AND FURTHER WORK

We have presented an ARG based symbol description

method, where relational signatures formalise all possible

connections between the vocabulary types which are labelled

with global shape signatures. Our method has proven to sig-

nificantly outperform state–of–the–art basic spatial relation

models as well as global signal based descriptors.



Our method

MBR GFD Edge signature Vertex signature Integrating both

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

1. X X X X X X X X X X X X X X X

2. X X X X X X X X X X X X X X

3. X X X X X X X

4. X X X X X X X X X

5. X X X X X X X X X X X

6. X X X X X X X X X X

7. X X X X X

8. X X

9. X X X X X X

10. X X X X X

Figure 7. Visual illustration of symbol ranking at the output for a few queries: Q1, Q2 and Q3, showing X for true retrieval and false, otherwise. The
first symbol on the top always corresponds to the chosen query. Symbols are ranked from top to bottom based on decreasing order of similarity.

Comparison to a few more methods like [19], [22], is our

next step.
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