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free Replicated Data Type (CRDT). Replicas of any CRDT are guaranteed to converge in
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Types de données sans conflit
Résumé : La réplication selon la politique de cohérence à terme (Eventual Consistency
ou EC) autorise toute réplique à accepter des mises à jour sans se synchroniser avec les
autres. Cette approche ne bride pas les performances et permet le passage à l’échelle dans
les systèmes distribués, par ex. dans l’informatique en nuage. Cependant, les algorithmes EC
précédemment publiés sont ad-hoc et sujets aux erreurs. Nous proposons un modèle formel,
la cohérence à terme forte (Strong Eventual Consistency ou SEC), dans lequel nous étudions
des conditions suffisantes de converegence. Un type de données satisfaisant ces conditions
sera dit sans conflit (Conflict-free Replicated Data Type ou CRDT). Les répliques d’un
CRDT convergent de façon auto-stabilisante, quel que soit le nombre de fautes. Cet article
formalise deux approches courantes, celle basée sur les états et celle basée sur les données,
et les conditions suffisantes correspondantes. Nous étudions un certain nombre de CRDT
génériques, comme des ensembles, avec une sémantique appropriée pour les opérations add
et remove, et approfondissons un type plus complexe, le graphe. Les CRDT peuvent être
composés, de façon à développer des applications réparties à grande échelle, et ont des
propriétés théoriques intéressantes.

Mots-clés : Cohérence à terme, objets partagés répliqués, système réparti de grande
échelle
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1 Introduction
Replication and consistency are essential features of any large distributed system, such as

the WWW, peer-to-peer, or cloud computing platforms. The standard “strong consistency”
approach serialises updates in a global total order [10]. This constitutes a performance
and scalability bottleneck. Furthermore, strong consistency conflicts with availability and
partition-tolerance [8].

When network delays are large or partitioning is an issue, as in delay-tolerant networks,
disconnected operation, cloud computing, or P2P systems, eventual consistency promises
better availability and performance [17, 20]. An update executes at some replica, without
synchronisation; later, it is sent to the other replicas. All updates eventually take effect
at all replicas, asynchronously and possibly in different orders. Concurrent updates may
conflict; conflict arbitration may require a consensus and a roll-back. 1

This weaker consistency is considered acceptable for some classes of applications. How-
ever, conflict resolution is hard. The literature offers little guidance on designing a correct
optimistic system. Ad-hoc approaches are brittle and error-prone; witness for instance the
concurrency anomalies of the Amazon Shopping Cart [3].

We propose a simple, theoretically-sound approach to eventual consistency. Our system
model, Strong Eventual Consistency or SEC, avoids the complexity of conflict resolution and
of roll-back. Conflict-freedom ensures safety and liveness despite any number of failures. It
leverages simple mathematical properties that ensure absence of conflict, i.e., monotonicity
in a semi-lattice and/or commutativity. A trivial example is a replicated counter, which (as-
suming no overflow) converges because its increment and decrement operations commute.
In our conflict-free replicated data types (CRDTs), an update does not require synchroni-
sation, and CRDT replicas provably converge to a correct common state. CRDTs remain
responsive, available and scalable despite high network latency, faults, or disconnection.

Non-trivial CRDTs are known to exist: for instance, we previously published Treedoc, a
sequence CRDT for co-operative text editing [14]. Our aim here is to expand our knowledge
of the principles and practice of CRDTs. We claim the following contributions for this paper:

– A solution to the CAP problem, Strong Eventual Consistency (SEC).
– Formal definitions of Strong Eventual Consistency (SEC) and of CRDTs.
– Two sufficient conditions for SEC.
– A strong equivalence between the two conditions.
– We show that SEC is incomparable to sequential consistency.
– Description of basic CRDTs, including integer vectors and counters.
– More advanced CRDTs, including sets and graphs.
We refer the interested reader to a separate technical report [18] for a comprehensive

portfolio of CRDT designs.

1. A conflict is a combination of concurrent updates, which may be individually correct, but that, taken
together, would violate some invariant.

RR n° 7687
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Figure 1: State-based replication
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Figure 2: Operation-based replication

2 System model
We consider a system of processes interconnected by an asynchronous network. The

network can partition and recover. We assume a finite set Π = {p0, . . . , pn−1} of non-
byzantine processes. Processes in Π may crash silently; a crashed process may remain
crashed forever, or may recover with its memory intact. A non-crashed process is said
correct.

2.1 State-based object
In this section we specify replicated objects in the so-called state-based style. The intu-

ition is illustrated in Figure 1. Executing an update modifies the state of a single replica.
Every replica occasionally sends its local state to some other replica, which merges the state
thus received into its own state. In this way, every update eventually reaches every replica,
either directly or indirectly.

With no loss of generality, we consider a single object with one replica at each process.
An object is a tuple (S, s0, q, u, m). The replica at process pi has state si ∈ S, called its
payload; the initial state is s0. A client of the object may read the state of the object via
query method q and modify it via update method u. Method m serves to merge the state
from a remote replica. A method (whether q, u or m) executes at a single replica.

Systems that deliver every update to every replica eventually in a fault-tolerant manner
are well-known in the literature, for instance gossip or anti-entropy approaches [5, 13]. For
simplicity, we will assume hereafter a fully connected communication graph, where every arc
is a fair-lossy channel. Infinitely often, the replica at pi sends (if it is correct) its current state
to pj ; replica pj (if it is correct) merges the received state into its local state by executing
method m.

A method whose precondition is satisfied is said enabled. We assume that an enabled
method executes as soon as it is invoked. Method executions at some replica are numbered
sequentially from 1. The kth method execution at replica i will be noted fk

i (a), where f
is either q, u or m, and a denotes the arguments. We note Ki(f) the ordinal of execution
f at replica i, i.e., Ki(fk

j (a)) = k for i = j, and is undefined otherwise. (Abusing nota-
tion somewhat, we may drop subscripts, superscripts and/or arguments when there is no
ambiguity.)

INRIA
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The states of a replica are numbered sequentially incrementing with each method exe-
cution. Thus, replica i has initial state s0

i = s0. Before its kth execution of a method it has
state sk−1

i , and sk
i afterwards. We note the transition sk−1

i • fk
i (a) = sk

i .
We define state equivalence s ≡ s′ if all queries return the same result for s and s′. A

query has no side-effects, i.e., (s • q) ≡ s.

Definition 2.1 (Causal History (state-based)). We define the object’s causal history C =
[c1, . . . , cn] (where ci goes through a sequence of states c0

i , . . . , ck
i , . . . ) as follows. Initially,

c0
i = ∅, for all i. If the kth method execution at i is: (i) a query q: the causal history does
not change, i.e., ck

i = ck−1
i ; (ii) an update (noted uk

i (a)): it is added to the causal history,
i.e., ck

i = ck−1
i ∪ {uk

i (a)}; (iii) a merge mk
i (sk′

i′ ), then the local and remote histories are
unioned together: ck

i = ck−1
i ∪ ck′

i′ .

We say that an update is delivered at some replica when it is included in the causal history at
that replica. An update u happened-before u′ iff u is delivered when u′ executes: u→ u′

def=
u ∈ ck−1

j , where u′ executes at replica pj and Kj(u′) = k. Updates are concurrent if neither
happened-before the other: u ‖ u′

def= u 6→ u′ ∧ u′ 6→ u. Note that the causal history is a
formal reasoning device, which is normally not needed in a concrete implementation.

Given our communication assumptions, we can conclude that, in a state-based object,
every update is eventually delivered to all replicas. However, this is not sufficient to ensure
that replicas converge. For instance, if the merge method m is a no-op, an update executed
at some replica has no effect on other replicas, and they will never converge.

2.2 Strong Eventual Consistency
Informally, eventual consistency means that replicas eventually reach the same final value

if clients stop submitting updates. We capture this intuition as follows:

Definition 2.2 (Eventual Consistency (EC)). Eventual delivery: An update delivered at
some correct replica is eventually delivered to all correct replicas: ∀i, j : f ∈ ci ⇒ ♦f ∈
cj.

Convergence: Correct replicas that have delivered the same updates eventually reach equiv-
alent state: ∀i, j : �ci = cj ⇒ ♦�si ≡ sj.

Termination: All method executions terminate.

Several EC systems will execute an update immediately, only to discover later that it
conflicts with another, and to roll back to resolve this conflict [19]. This constitutes a waste
of resources, and in general requires a consensus to ensure that all replicas arbitrate conflicts
in the same way. To avoid this, we require a stronger condition:

Definition 2.3 (Strong eventual consistency (SEC)). An object is Strongly Eventually Con-
sistent if it is Eventually Consistent and:
Strong Convergence: Correct replicas that have delivered the same updates have equiva-

lent state: ∀i, j : ci = cj ⇒ si ≡ sj.

RR n° 7687
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2.3 State-based Convergent Replicated Data Type (CvRDT)
We now propose a sufficient condition for strong convergence in state-based objects. A

join semilattice (or just semilattice hereafter) is a partial order ≤ equipped with a least
upper bound (LUB) t for all pairs: m = x t y is a Least Upper Bound of {x, y} under ≤
iff ∀m′, x ≤ m′ ∧ y ≤ m′ ⇒ x ≤ m ∧ y ≤ m ∧m ≤ m′. It follows that t is: commutative:
x t y = y t x; idempotent: x t x = x; and associative: (x t y) t z = x t (y t z).

Definition 2.4 (Monotonic semilattice object). A state-based object, equipped with partial
order ≤, noted (S,≤, s0, q, u, m), that has the following properties, is called a monotonic
semi-lattice: (i) Set S of payload values forms a semilattice ordered by ≤. (ii) Merging state
s with remote state s′ computes the LUB of the two states, i.e., s •m(s′) = st s′. (iii) State
is monotonically non-decreasing across updates, i.e., s ≤ s • u.

Theorem 2.1 (Convergent Replicated Data Type (CvRDT)). Assuming eventual delivery
and termination, any state-based object that satisfies the monotonic semilattice property is
SEC.

Proof. As we assumed earlier a fully connected communication graph and that replicas
transmit and merge state infinitely often, the conditions for eventual delivery are fulfilled.
With no loss of generality, we assume that every operation is enabled (otherwise its invoca-
tion reduces to a no-op); furthermore we already assumed that an operation executes at a
single replica. Under these conditions, an operation terminates if it has no infinite loops or
recursion, which we assume to be true.

We now focus on proving strong convergence. We first note that Definition 2.4 precludes
spontaneous state changes or roll-backs: when a replica is in some state s, it can change
state only by executing an update u or a merge m.

Consider replicas i and j. The proof assumption is ci = cj . Since updates are unique,
these replicas can only have delivered the same updates in the following conditions:

– They are in the initial state, and therefore si ≡ sj .
– During the execution, there was a point p, q when cp

i ⊂ cq
j . In pi, for k > p there is

a merge that included a state s : s = sq
j and all fk

i operations are non mutating or
merges with s ⊆ sq

j . In pj , for k > q, all operations fk
j are non mutating or merges

with s ⊆ sq
j . Therefore, since t is a LUB, one has si ≡ sj(≡ sq

j).
– During the execution, there was a point p, q when cq

j ⊂ cp
i . Proved by simmetry with

the previous case.
– During the execution, there was a point p, q when cp

i 6⊂ cq
j and cq

j 6⊂ cp
i . In pi, for k > p

there is a merge that included a state s : sq
j ⊆ s ⊆ sq

j ∪ sp
i and all fk

i operations are
non mutating or merges with s ⊆ sq

j ∪ sp
i . Converselly in pj , for k > q there is a merge

that included a state s : sp
i ⊆ s ⊆ sq

j ∪ sp
i and all fk

j operations are non mutating or
merges with s ⊆ sq

j ∪ sp
i . In these conditions, ci = cj = cp

i ∪ cq
j and due to the LUB

properties of t we have si ≡ sj(≡ sp
i t sq

j ≡ sq
j t sp

i ).

INRIA
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Since replicas transmit and merge state infinitly often, these conditions will occur in-
finitly often. Finally, by t transitivity all replicas that deliver the same updates will depict
equivalent states.

A CvRDT converges towards the LUB of the most recent updates. We require that
x ≤ y ∧ y ≤ x⇒ x ≡ y.

2.4 Op-based Commutative Replicated Data Type (CmRDT)
Alternatively to the state-based style, a replicated object may be specified in the operation-

based (or op-based) style. An op-based object is a tuple (S, s0, q, t, u, P ), where S, s0 and q
have the same meaning as above (respectively state domain, initial state and query method).
An op-based object has no merge method; instead an update is split into a pair (t, u), where
t is a side-effect-free prepare-update method and u is an effect-update method. (their ar-
guments may differ, e.g., t(a) and u(a′) in Figure 2). The prepare-update executes at the
single replica where the operation is invoked (its source). At the source, prepare-update
method t is followed immediately by effect-update method u, i.e., fk−1

i = t ⇒ fk
i = u. (If

this were not true, there would be no causality between successive updates.)
The effect-update method executes at all replicas (said downstream). The source replica

delivers the effect-update to downstream replicas using a communication protocol specified
by the delivery relation P , explained below.

We use the same notations for states and causal history as above, except that now f can
refer to any of q, t or u. Both queries and prepare-update methods are side-effect-free, i.e.,
s • q ≡ s • t ≡ s.

Definition 2.5 (Causal History (op-based)). An object’s causal history C = {c1, . . . , cn}
is defined as follows. Initially, c0

i = ∅, for all i. If the kth method execution at i is: (i) a
query q or a prepare-update t, the causal history does not change, i.e., ck

i = ck−1
i ; (ii) an

effect-update uk
i (a), then ck

i = ck−1
i ∪ {uk

i (a)}.

An update is said delivered at a replica when the update is included in the replica’s
causal history. Update (t, u) happened-before (t′, u′) iff the former is delivered when the
latter executes: (t, u) → (t′, u′) ⇔ u ∈ ck−1

j , where t′ executes at pj and k = Kj(t′). The
definition of concurrent updates remains as above.

We assume an underlying reliable causally-ordered broadcast communication protocol,
i.e., one that delivers every message to every recipient exactly once and in an order consistent
with happened-before. Such protocols are a standard feature of distributed systems; they
do not require consensus and they deliver to all correct processes as long as any network
partition eventually recovers (as we assumed earlier). It follows that two updates that are
related by happened-before execute at all replicas in the same sequential order: (t, u) →
(t′, u′)⇒ ∀i, Ki(u) < Ki(u′). However, concurrent updates may be delivered in any order.

RR n° 7687



8 Shapiro, Preguiça, Baquero, Zawirski

Definition 2.6 (Commutativity). Updates (t, u) and (t′, u′) commute, iff for any reachable
replica state s where both u and u′ are enabled, u (resp. u′) remains enabled in state s • u′

(resp. s • u), and s • u • u′ ≡ s • u′ • u.

Clearly, a sufficient condition for convergence of an op-based object is that all its con-
current operations commute. An object satisfying this condition is called a Commutative
Replicated Data Type (CmRDT).

P is a delivery precondition, i.e., effect-update method u is enabled only if the precon-
dition is satisfied. We interpret this temporally, i.e., delivery of u at replica i may delayed,
until P (si, u) is true. Therefore, for liveness, we now have the added obligation to prove that
delivery is eventually enabled. Therefore we restrict our scope to preconditions for which
causally-ordered broadcast is sufficient to ensure P .

Theorem 2.2 (Commutative Replicated Data Type (CmRDT)). Assuming causal delivery
of updates and method termination, any op-based object that satisfies the commutativity
property for all concurrent updates, and whose delivery precondition is satisfied by causal
delivery, is SEC.

Proof. We assume delivery of updates to all correct replicas by reliable causal broadcast,
which fullfils their delivery specification P . Once delivered operations cannot be undelivered.
We also assume that the all CmRDT methods are well formed and terminate. Thus, we now
focus on proving strong convergence.

Consider any two correct replicas pi and pj . Under the assumptions, eventually the the
two replicas will deliver the same operations (if no new operations are generated), and we
have ci = cj . For any two updates f(a), f ′(a′) in ci: (i) If f(a) → f ′(a′), then by causal
delivery assumption, ∀pi the apply order is consistent with causality Ki(f(a)) < Ki(f ′(a′));
(ii) If they are not causally related, f(a) ‖ f ′(a′), then they must commute and can be
delivered in any relative order. In any replica pi, both apply orders, Ki(f(a)) < Ki(f ′(a′))
and Ki(f(a)) > Ki(f ′(a′)), lead to the same effect. In all cases an equivalent abstract state
si ≡ sj is reached in the two replicas.

By transitivity, ∀i, j : ci = cj ⇒ si ≡ sj .

3 Some results
3.1 Fault-tolerance and the CAP theorem

The CAP theorem states that it is impossible to simultaneously ensure strong consistency
(C), availability (A) and tolerate network partition (P) [8]. As, network faults unavoidably
occur in a large-scale environment, a real system must sacrifice either consistency or avail-
ability. Availability is often the top priority in practice [3]: does this mean giving up all
consistency guarantees?

No: SEC provides a solution. A SEC replica is always available for both reads and writes,
independently of network conditions. Any communicating subset of replicas of a SEC object

INRIA



Conflict-free Replicated Data Types 9

eventually converges, even if partitioned from the rest of the network. SEC is weaker than
strong consistency but nonetheless provides the well-defined guarantee of strong eventual
convergence.

SEC provides an extreme form of fault tolerance, as a SEC object tolerates up to n− 1
simultaneous crashes. Remarkably, SEC does not require to solve consensus.

3.2 CvRDTs and CmRDTs are equivalent
3.2.1 Operation-based emulation of a state-based object

Theorem 3.1 (CmRDT emulation). Any SEC state-based object can be emulated by a SEC
op-based object of a corresponding interface.

Proof. Given a CvRDT represented by tuple (S,≤, s0, q, u, m), we emulate it by a CmRDT
object (S, s0, q, t, u′, P ), which we specify hereby.

State and query of CvRDT can be directly stored and processed by emulating CmRDT
using the same definitions. A prepare-update t(a) has the same interface (accepts the same
domain of arguments and returns the same domain of value) as an update u(a). It records
the result of applying update u(a) on a copy of current replica state s: s′ = s • u(a); return
value of u(a) is passed to the client. Recorded state s′ is used as an argument of an actual
effect-update u′(s′), which is delivered to all replicas by the underlying protocol of CmRDT.
Precondition P is unrestricted and enables delivery at any time. Effect-update u′(s′) merges
received state using original CvRDT method: s • u′(s′) def= s •m(s′).

Since merge always commutes, then updates u′(s′) commute and since the communica-
tion is reliable, we have a CmRDT with strong eventual consistency, which propagates all
updates of emulated CvRDT.

3.2.2 State-based emulation of an operation-based object

State-based emulation of an operation-based object essentially formalises the mechanics
of an epidemic reliable causal broadcast.

Theorem 3.2 (CvRDT emulation). Any SEC op-based object can be emulated by a SEC
state-based object of a corresponding interface.

Proof. Given a CmRDT represented by tuple (S, s0, q, t, u, P ), we emulate it by a CvRDT
object ((S × U × U),≤, (s0,∅,∅), q′, u′, m), which we specify hereby.

Without loss of generality, we assume that each invocation uk
i is unique across repli-

cas and set U denotes all possible updates. CvRDT’s state is then defined as a triple
(sm, M, D), where sm is a state of emulated CmRDT, M and D are two add-only sets of, re-
spectively, known and delivered updates. A relation ≤ is defined as following: (sm, M, D) ≤
(s′m, M ′, D′) def= M ⊆M ′ ∧D ⊆ D′.

A query q′(a) has the same interface as q(a); we define it as a trivial delegation to q(a)
on the CmRDT, sm • q(a). An update u′(a) has the same interface as prepare-update t(a).

RR n° 7687



10 Shapiro, Preguiça, Baquero, Zawirski

It first delegates the invocation to prepare-update t(a) of the CmRDT that in turn triggers
effect-update u(a), which becomes a locally known update. Finally, u′(a) uses a recursive
function d to process updates:

d(sm, M, D) def=
{

d(sm • u(a), M, D ∪ {u(a)}) if ∃u(a) ∈M \D : P (sm, u(a))
(sm, M, D) otherwise

Hence, u′(a) is defined as: (sm, M, D) • u′(a) def= d(sm • t(a), M ∪ {u(a)}, D).
Finally, merge m takes a union of known messages and processes available updates:

(sm, M, D) •m(s′m, M ′, D′) def= d(sm, M ∪M ′, D).
Since the emulation ensures that messages are delivered exactly once to each replica’s

embedded object, in the appropriate order, and since the CvRDT conforms to SEC criteria,
the embedded CmRDT instance is also SEC.

Note that the emulating object forms a monotonic semilattice over domain S × U × U .
Calling or delivering an operation adds it to the relevant message set, and therefore advances
the state in the partial order. The merge method m is defined to take the union of the M
sets and (possibly) updating D, and is thus a LUB operation. This construction is similar
to Wuu and Bernstein’s log covered in Section 4.2.

3.3 SEC is incomparable to sequential consistency
A state-based replica executes a sequence of query, update, and merge methods. In

addition to its sequential behaviour, a CRDT specifies concurrent behaviours that must
satisfy the strong convergence property. As we show now, this permits executions that
would be impossible in a sequentially-consistent system.

Consider a Set CRDT S with operations add(e) and remove(e). Immediately after
add(e), the state will satisfy e ∈ S; after remove(e) the state satisfies e /∈ S. In a sequential
execution, the last update wins, e.g., after remove(e) → add(e) the state satisfies e ∈
S. Concurrent adds or removes of different elements are independent, e.g., after add(e) ‖
remove(e′) the state satisfies e ∈ S ∧ e′ /∈ S.

There is a choice of alternative semantics for concurrent updates of the same element.
When concurrently adding and removing the same element, the add could win, or the remove
could win, or the update of the replica with the highest IP address could win, or the state
might be reset to a distinguished state ⊥, and so on. All these alternatives satisfy the strong
convergence condition, and any of them may be reasonable for some application.

Let us consider the add-wins alternative: after add(e) ‖ remove(e) the state satisfies e ∈
S. Now consider the following scenario. Replica p0 executes the sequence add(e); remove(e′).
Concurrently, replica p1 executes add(e′); remove(e). Then, replica p3 merges the state
from p0 and p1. According to the concurrent specification, the final state at p3 satisfies
e ∈ S ∧ e′ ∈ S. Such a state would never occur in a sequentially-consistent execution, in
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which either remove(e) or remove(e′) must be last. Thus, there is a SEC object that is not
sequentially consistent.

Now consider the converse. In the absence of crashes, a sequentially-consistent object is
SEC. Indeed, sequential consistency is defined by a single order of operations, after which
all replicas must terminate with the same state. However, in the general case, sequential
consistency requires consensus, which cannot be solved in the presence of n − 1 crashes.
Therefore, SEC is incomparable with sequential consistency.

4 Example CRDTs
We now recall some basic CRDTs that are known in the existing literature, which we

will later compose to build higher-level objects. We will use state- or op-based specifications
as most convenient. Generally, we find the state-based style more compact and easier to
reason about formally, whereas the op-based style is often convenient for implementation.

4.1 Integer vectors and counters
Consider the state-oriented specification of a vector-of-integers object: (Nn, [0, . . . , 0],≤n

, [0, . . . , 0], value, inc, maxn). Vectors v, v′ ∈ Nn are (partially) ordered by v ≤n v′ ⇔ ∀j ∈
[0..n − 1], v[i] ≤ v′[i]. A query invocation value() returns a copy of the local payload. An
update inc(i) increments the payload entry at index i, that is, s•inc(i) = [s′[0], . . . , s′[n−1]]
where s′[j] = s[j] + 1 if i = j and s′[j] = s[j] otherwise. Merging two vectors takes the
per-index maximum, i.e., s •maxn(s′) = [max(s[0], s′[0]), . . . , max(s[n − 1], s′[n − 1])]. We
omit the proof that it is a CRDT.

If each process pi is restricted to incrementing its own index inc(i), this is the well-known
vector clock [11].

An increment-only integer counter is very similar; the only difference being that query
invocation value() of a vector in state v returns |v| def=

∑
j v[j]. We construct an inte-

ger counter that can be both incremented and decremented, by basically associating two
increment-only counters I and D, where incrementing increments I and decrementing in-
crements D, whereas value() returns |I| − |D|. The ordering method ≤ is defined as
(I, D) ≤ (I ′, D′) def= I ≤n I ′ ∧D ≤n D′.

4.2 U-Set, map and log
Another simple CRDT construct is an add-only set object (S,⊆,∅, value, add(e),∪).

The payload is any set; sets are ordered by inclusion. A query value() returns a copy of
the local payload. Update add(e) adds element e to the set, i.e., s • add(e) = s ∪ {e}. It
is well-known that sets ordered by ⊆ form a semi-lattice with ∪ as the LUB operator. It is
clearly monotonic by the definition of add. Therefore, the add-only set is a CRDT.

Wuu and Bernstein build further CRDTs by combination of these basic components [22].
They propose a set with both add and remove operations by associating two add-only sets
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A and R; adding an element adds it to A, removing it adds it to R; query value() returns
the set difference A \R. (R is often called the tombstone set. A client is allowed to remove
only an element that is currently in A). Note that they assume that every element is unique
and added only once; we call their construct U-Set [18]. Wuu and Bernstein derive their
Dictionary data type from U-Set in the obvious way.

A Log is a replicated object, whose payload contains a set (initially empty) of (event, timestamp)
pairs. It assumes that each process maintains a vector clock in the usual manner [11]. When
an event e occurs at process i, the process invokes update add(e); the update method up-
dates the vector clock (say, to state v) and adds the pair (e, v) to the set. The timestamp
ensures that each entry is unique. The merge method takes the union of the local and a
remote set.

To avoid unbounded growth, Wuu and Bernstein propose a distributed garbage collection
algorithm that discards unneeded entries. In order to tolerate n− 1 crashes, only an entry
that has been delivered to all processes may be discarded. If vector clock entry vi[j] = k, this
implies that process i has delivered all k first events of process pj . Each replica maintains
in its payload a copy of all remote vector clocks; for each remote site, the merge procedure
keeps the largest version. Then, a replica may discard a log entry as soon as its timestamp
is less than all the remote vector clocks. This algorithm does not require a consensus, but
it is live only if no process is crashed. However, this may be acceptable, since the liveness
of garbage collection does not impact the correctness of the main algorithm.

This algorithm may be adapted to other data types, for instance to discarding the A and
R entries of a removed element in the U-Set.

5 Directed Graph CRDT
Now let us examine how one would design a more complex data type: a Directed Graph

CRDT. Graphs are an important general-purpose data structure. Some important applica-
tions and algorithms work on graphs, e.g., shortest-path or web page-rank.

5.1 Thought experiment
To motivate our graph design, consider the “thought experiment” of designing a web

search engine. The search engine uses a directed graph representing the web structure.
This graph may be used, among other things, to compute page rank. Such an application
processes large amounts of data and performs many updates. For efficiency and scalability,
processing should be asynchronous; for responsiveness, processing should be incremental,
as fast as each page is crawled. Processing should not require any synchronisation, e.g.,
transactions. A CRDT could be ideal.

We start with a Set CRDT containing some initial URLs to be crawled. A number of
crawler processes run in parallel; each one removes some URL from the set and downloads
it. (It might happen that the same page is downloaded twice but this does not impact
correctness.)
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payload set V , A -- sets of pairs { (element e, unique-tag w), . . . }
initial ∅,∅ -- V : vertices; A: arcs

query lookup (vertex v) : boolean b
let b = (∃w : (v, w) ∈ V )

query lookup (arc (v′, v′′)) : boolean b
let b = (lookup(v′) ∧ lookup(v′′) ∧ (∃w : ((v′, v′′), w) ∈ A)

update addVertex (vertex v)
prepare (v) : w

let w = unique() -- unique() returns a unique value
effect (v, w)

V := V ∪ {(v, w)} -- v + unique tag
update removeVertex (vertex v)

prepare (v) : R
pre lookup(v) -- precondition
pre 6 ∃v′ : lookup((v, v′)) -- v is not the head of an existing arc
let R = {(v, w)|∃w : (v, w) ∈ V } -- Collect all unique pairs in V containing v

effect (R)
V := V \ R

update addArc (vertex v′, vertex v′′)
prepare (v′, v′′) : w

pre lookup(v′) -- head node must exist
let w = unique() -- unique() returns a unique value

effect (v′, v′′, w)
A := A ∪ {((v′, v′′), w)} -- (v′, v′′) + unique tag

update removeArc (vertex v′, vertex v′′)
prepare (v′, v′′) : R

pre lookup((v′, v′′)) -- arc(v′, v′′) exists
let R = {((v′, v′′), w)|∃w : ((v′, v′′), w) ∈ A}

effect (R) -- Collect all unique pairs in A containing arc (v′, v′′)
A := A \ R

Figure 3: Directed Graph Specification (op-based)

When a crawler finds a new page, it executes the corresponding addVertex. For every
page, it parses the links that it contains, comparing it with the page’s previous version, if
any, and executes the corresponding addArc and removeArc invocations. Finally, the URLs
of the linked pages are added to the set to be crawled. Note that addArc must work even
if the page at the tail of the arc has not yet been found (it might not even exist), but such
an arc is not functional; a lookup of the corresponding arc should fail. Similarly if a node
has been removed, all arcs incident to the node disappear. In this way, the behaviour of our
CRDT will be consistent with that of web pages, which are allowed to contain non-functional
URLs. Once the linked page is created, the link become relevant, e.g., for navigation and
for page-rank computation.

In the web application, the graph is very large; sending the state between replicas and
merging would be very costly. Therefore, we choose an op-based approach.
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5.2 Design alternatives for arc removal
A directed graph is a pair of sets (V, A), called vertices and arcs respectively, such

that A ⊆ V × V . Updates must maintain the invariant that the head and tail vertices
of an arc both exist. Therefore, adding an arc to A has the precondition that its two
vertices are in V ; conversely, a vertex may be removed only if it supports no arc; these
are preconditions to prepare-update. Furthermore, the system must ensure that concurrent
addArc(v′, v′′) ‖ removeVertex(v′) do not violate the invariant. Several alternatives may be
considered: (i) Give precedence to removeVertex(v′): all edges to or from v′ are removed as
a side effect. This is easy to implement, by hiding any arc that includes a removed vertex.
(ii) Give precedence to addArc(v′, v′′): if either v′ or v′′ has been removed, it is restored.
This requires recreating nodes that have being explicitly deleted. (iii) removeVertex(v′) is
delayed until all concurrent addArc operations have executed. This requires synchronisation
which violates the goals of asynchrony and fault tolerance. There is no perfect choice.
Hereafter, we choose Option (i) because it is adequate in our application scenario.

5.3 Graph specification
Figure 3 shows our specification for a Directed-Graph CRDT. In the next section, we

prove that this object is indeed a CmRDT.
This CRDT maintains two sets internally, one for the vertices and one for the arcs. To

add a vertex v, the prepare-update method creates a unique identifier, w, and the effect-
update method adds the pair (v, w) to the set of vertices. With this approach, each vertex
has an unique internal identifier. If the same vertex is added twice, the two additions will
be distinguished by their two unique identifiers. A lookup will mask the duplicates.

To remove vertex v, the prepare-update computes the set R of pairs that contain v, i.e.,
all copies known in the source replica; the effect-update method removes this same set R from
the set of vertices in all replicas. As operations are delivered in causal order, when the effect-
update method executes in some replica, for each pair in R, the correspondent addVertex
operations has already executed. Thus, unlike the state-based solution of Section 4.2, a set
need not keep tombstones.

If the same vertex is removed and added concurrently, the addVertex wins, as the new
unique identifier is not included in the set computed by the remove’s prepare-update. This
approach is consistent with a sequential execution, as the a vertex can removed only if it is
observed. The same approach is used for arcs.

To remove a vertex, the source replica checks that the vertex is observed, and also that
it is not the head of any existing arc. Conversely, to add an arc, its head node must exist,
but there is no check for existence of the tail. The lookup method will mask the existence
of such an arc. However, if the tail is added later, then the arc becomes visible. Similarly,
concurrent updates may remove a vertex that is the head of an arc. However, the lookup
method will mask such an arc.
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5.4 Proof that Directed Graph is a CRDT
In this section, we prove that the specification of Figure 3 represents a CRDT. As

effect-updates are always enabled, and as inspection of the code shows that every method
execution terminates, termination follows.

Lemma 5.1. addVertex(v′) and addVertex(v′′) commute.

Proof. addVertex(v′) generates a unique identifier u′; addVertex(v′′) generates unique iden-
tifier u′′. For any initial state S = (V, A), whatever order both operations are executed, the
final state is the same S • addVertex(v′) • addVertex(v′′) = (V ∪ {(v′, u′)} ∪ {(v′′, u′′)}, A) ≡
S • addVertex(v′′) • addVertex(v′) = (V ∪ {(v′′, u′′)} ∪ {(v′, u′)}, A).

Lemma 5.2. removeVertex(v′) and removeVertex(v′′) commute.

Proof. removeVertex(v′) computes a set, R′, of pairs to be removed; removeVertex(v′′) com-
putes set R′′. For any initial state S = (V, A), whatever order both operations are executed,
the final state is the same S • removeVertex(v′) • removeVertex(v′′) = (V \ R′ \ R′′, A) ≡
S • removeVertex(v′′) • removeVertex(v′) = (V \R′′ \R′, A).

Lemma 5.3. Concurrent addVertex(v′) and removeVertex(v′′) commute.

Proof. addVertex(v′) generates unique identifier u′; removeVertex(v′′) generates set R′′.
(v′, u′) 6∈ R′′ as u′ is a fresh unique identifier. Thus, for any initial state S = (V, A),
whatever order both operations are executed, the final state is the same S • addVertex(v′) •
removeVertex(v′′) = (V ∪ {(v′, u′)} \ R′′, A) ≡ S • removeVertex(v′′) • addVertex(v′) =
(V \R′′ ∪ {(v′, u′)}, A).

Proofs for arcs are similar, so we omit them. We finally need to prove that any operation
on vertices and arcs commute. However, as operation on vertices and operation on arcs
modify disjoint internal sets, it is immediate that executing both operations in any order
will lead to the same state.

Theorem 5.1. Specification of Figure 3 represents a CmRDT.

Proof. Effect-update methods are always enabled, and any pair of concurrent operations
commute, per the lemmas above.
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6 Comparison with previous work
Eventual consistency has been an active topic of research in highly-available, large-scale

asynchronous systems [17, 20]. Contrary to much previous work [3, for instance], we take a
formal approach grounded in the theory of commutativity and semilattices.

The state-based approach was invented for register-like objects, where the only update
operation is assignment. It is in wide use in file systems such as NFS, AFS or Coda, and
in key-value stores such as Dynamo [3] and Riak. Op-based approaches are used when the
cost of transferring state is too high, e.g., databases, and when operation semantics are
important, e.g., cooperative systems such as Bayou [13] or IceCube [15].

Although the CRDT concept was identified only recently, related designs have been
published before. Johnson and Thomas invented the LWW-Register [9]. They propose
a database of registers that can be created, updated and deleted, using the last-writer-
wins (LWW) rule to arbitrate between concurrent changes. LWW ensures a total order of
operations, at the cost of losing concurrent updates.

Concurrent editing uses the related concept of Operational Transformation (OT), due
to Ellis and Gibbs [7]. To ensure responsiveness, a local operation executes immediately.
Operations are not designed to commute; however, a replica receiving an update transforms
it against previously-executed concurrent updates to achieve a similar result. OT algorithms
for a decentralised architecture have been proposed; Oster et al. show that most of them are
incorrect [12]. We believe that designing for commutativity from the start is cleaner and
simpler.

The foundations of CvRDTs were introduced by Baquero and Moura [1]. We extend their
work with CmRDTs and with a number of new results. The CRDT concept was invented by
Shapiro and Preguiça on their work on Treedoc, a Sequence CRDT for concurrent editing
[14]. Logoot is another Sequence CRDT that supports an undo mechanism based on a
CRDT Counter [21].

Roh et al. [16] independently developed the related concept of Replicated Abstract Data
Type. They generalise LWW to a partial order of updates, which they leverage to build
several LWW-style classes.

Burckhardt and Leijen propose the Concurrent Revisions programming model for shared
abstract data types, in which a forked revision runs in isolation until it joins again. Join is
based on a three-way merge function [2]. They show that simple sequential merge functions
exist for ADTs built upon Abelian groups. We have also demonstrated the relation between
CRDTs and sequential consistency in a similar, but more loosely-coupled, replication model.

Ducourthial et al. study algebraic structures with specific properties in order to solve
self-stabilisation problems [6]. They propose the so-called r-operator for “silent” tasks [4].
Strong convergence can be seen as as a silent task, given a limited number of disturbing up-
dates. However, there are differences between the two approaches. Whereas a self-stabilising
system must tolerate arbitrary memory corruption, a shared mutable object should change
state durably only by executing update operations. Furthermore, whereas CvRDT states
constitute a monotonic semi-lattice, the r-operator requries a total order.
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7 Conclusion
We presented the concept of a CRDT, a replicated data type for which some simple

mathematical properties guarantee eventual consistency. In the state-based style, the suc-
cessive states of an object should form a monotonic semilattice, with merge computing a
least upper bound. In the op-based style, concurrent operations should commute. Assum-
ing only that the communication subsystem ensures eventual delivery (in causal order for
op-based objects), CRDTs are guaranteed to converge towards a common, correct state,
without requiring any synchronisation.

We presented some simple CRDT examples, such as sets, and detailed how to create a
directed Graph CRDT, which might be used in a large-scale web search engine. Our data
types have a clean and deterministic semantics in the presence of concurrent updates.

Eventual consistency is a critical technique in many large-scale distributed systems, in-
cluding delay-tolerant networks, sensor networks, peer-to-peer networks, collaborative com-
puting, cloud computing, and so on. However, work on eventual consistency was mostly
ad-hoc so far. Although some of our CRDTs were known before in the literature or in the
folklore, this is the first work to engage in a systematic study. We believe this is required if
eventual consistency is to gain a solid theoretical and practical foundation.

Future work is both theoretical and practical. On the theory side, this will include un-
derstanding the class of computations that can be accomplished by CRDTs, the complexity
classes of CRDTs, the classes of invariants that can be supported by a CRDT, the relations
between CRDTs and concepts such as self-stabilisation and aggregation, and so on. On the
practical side, we plan to implement the data types specified herein as a library, to use them
in practical applications, and to evaluate their performance analytically and experimentally.
Another direction is to support support infrequent, non-critical synchronous operations,
such as committing a state or performing a global reset. We will also look into stronger
global invariants, possibly using probabilistic or heuristic techniques.
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