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Abstract—E-science is moving from grids to clouds. Getting the
best of both worlds needs to build on the experience gained by
the steady operation of production grids since some years. With
the Grid Observatory initiative, trace data are publicly available
to the computer science and engineering community and can be
used for dimensioning and optimizing infrastructure.

This paper proposes a new approach for analyzing behavioral
traces: as most of them are indeed text documents, state of the
art techniques in text mining, and specifically Latent Dirichlet
Allocation, can be exploited. The advantages are twofold: pro-
viding some level of explanation inferred from the data; and a
relatively scalable way to capture the temporal variability of the
behavior of interest, while retaining the full dimensionality of the
problem at hand.

We experiment the text mining analogy approach by character-
izing file access behavior. We validate the resulting probabilistic
model by showing that it is capable of generating synthetic traces
statistically consistent with the real ones.

Index Terms—Graphical Models; Trace Analysis; e-science
infrastructures

I. INTRODUCTION

In the last ten years, scientific communities worldwide have
pioneered the deployment of extreme e-science computational
infrastructures, in the form of grids. At the European level, the
High Energy Physics (HEP) community has been the driving
force for building the largest existing non-profit system, the
EGEE/EGI grid [1]. This real-world, production-quality grid
experience is relevant for cloud research and engineering
for three reasons. Firstly, computational grids provide new
natural examples of emerging collective behavior, the dis-
tinctive feature of complex systems; second, at least for the
EGEE/EGI grid, monitoring data are publicly available for
research through the Grid Observatory initiative [2]; finally,
e-science is moving to cloud technology, with its own require-
ments.

This paper focuses on the usage pattern as characterized by
file access. Analyzing this behavior as well as the ability to
explain it through mathematical models would be interesting
in its own right but it would also prove to be an important asset
for system administrators who wish to use this knowledge
to monitor and/or regulate the usage of the resources. The
implications of characterizing, for example, the access pattern
of files shared by e-science users include realistic requests
modeling, inferring latent relationships among files and users,

anomaly detection, reducing file I/O latency by optimizing
caching policies, etc.

The goal of this paper is to create and validate a generative
model of these accesses. By definition, a generative model
can generate synthetic realizations simulating realistic usage.
In this work, the model is derived from the transaction traces
provided by the GridFTP protocol. In a first attempt, we tried
to discover descriptive characterizations of classical complex
systems indicators, such as popularity, locality, and social
graphs parameters. Overall, the resulting statistical distribu-
tions do not follow simple models such as a power law. Going
further needs to disentangle a network of causal interactions
between the users and the middleware, which cannot be
defined a priori.

To propose a probabilistic model capable of explaining how
the observed responses could have been generated, our key
observation is that a trace can be considered a text document.
Characterizing a text document based on the observed words
is central to text mining, and has been extensively studied
[3]. From this perspective, a document is described in terms
of unobservable (latent) topics, which are in turn described in
terms of observable words: the topics relevant to the document
generate all the words in the document. Latent Dirichlet
Allocation (LDA) [4] is a well established probabilistic model
for this class of causal structure.

As far as we know, no previous work has considered LDA
for behavioral modeling of large distributed systems. The ad-
vantages of this approach are twofold. The first one is that the
topics - in our context, the unknown causes - are inferred from
the data, not defined a priori. Second, and more specifically to
trace analysis, LDA offers a relatively scalable way to capture
the temporal variability of the behaviors of interest (here the
file accesses), while retaining the full dimensionality of the
problem at hand, and making limited and well-defined a priori
assumptions, essentially that the user request probabilities
over successive periods are sampled i.i.d. from a Dirichlet
distribution with some unknown parameter. The main result
of this paper is that LDA is indeed instrumental for trace
modeling.

The rest of this paper is organized as follows. Section II
provides an empirical analysis of a 11 week trace from a
major EGI site. Section III fits two generative models first
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Fig. 1: File popularity.

for a generic LDA model, and second by taking advantage
of the supplementary information on causes that are present
in the trace. Some of the statistical properties revealed in the
empirical study are exploited to make this analysis tractable.
This section also develops the above-mentioned advantages
compared with a classical time series approach. Section IV
experimentally validates the model. Section V briefly discusses
related work, before the conclusion.

II. EMPIRICAL STUDY ON FILE ACCESS PATTERNS

The data set, publicly available from the Grid Observatory
portal, spans a 11 week period from 29/11/2010 to 31/02/2011
including 5,204,269 transactions by 262 distinct users on
2,123,734 distinct files. The monitored storage is the one of the
LAL site; however, the requests can originate from across the
whole EGI grid, because its storage is fully distributed. The
next question is to which extent this trace is representative
of the EGI file traffic. This is a difficult issue, on which
we will get back in Section V and in the conclusion. A
specificity of the trace is that is it truly multi-disciplinary,
with significant usage from the Complex Systems community,
the HEP experiments, and Cosmology.

The primary goal was to characterize the measurements
of interest in terms of known parametric distributions. The
metrics (first column of table I) will be described later; for
now, we see that in all cases except one, the standard deviation
is larger than the mean by 1 or 2 orders of magnitude, requiring
to study the complete distributions.

A. File Popularity and User Behavior

With the prevalence of the power law distribution observed
in popularity based measures (e.g., city populations within
a country, outdegree of sites on the Internet, frequency of
words within a text, etc.), we expected a similar behavior for
count-based measures such as file popularity, user activity, and
outdegree of user-file relation graphs. However, it turns out
that this is not the case.

We measure the popularity of a file that resides in the
grid during the study period using three different metrics: file
access count, user and file outdegree.
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Fig. 2: Distribution of user outdegree. MLE α = 1.577, γ =
0, 020 for the PL with exponential cutoff, and α = 1.732 for
the PL restricted to the upper tail.

The first metric, the file access count, is the total number
of requests for a file, including multiple requests by the same
user. This metric measures the popularity from a workload
perspective and is sensitive to usage artifacts: for example,
if a job repeatedly reads the same file without copying it
first to local space (which would be the sensible strategy),
that particular file may show a surge in popularity. The rank-
frequency plot on a doubly log scale (Figure 1) shows that the
popularity distribution does not seem to resemble any known
parametric distribution including the power law (here we do
not normalize the count in order to show the magnitudes). A
more detailed analysis shows that the activity is dominated by
only a few users where less than 2% of the users account for
nearly 80% of the requests (for the sake of completeness, it
must be said that in fact, at least some of these dominating
users are generic ones, acting as a proxy for real users,
in a portalized usage of the grid). The rank-frequency plot
restricted to the most active user, also on Figure 1, shows that
the shape of the popularity distribution is highly influenced
by the behavior of the dominating user. We believe that this
dominance in the overall access count by a few users is
what prevents the file popularity from exhibiting a power law
distribution.

The basic representation of the requests structure is a
bipartite graph with the distinct users as the nodes on one
side, the distinct files as the nodes on the other side; there is
an edge between a user and a file if the user requested the file
at least once.

The second metric is the file outdegree (the number of
distinct users who accessed it). This metric measures the
popularity of a file from a social perspective, i.e., how diverse
its userbase is. Due to space limitation, we only give the
conclusion: the files are well segregated with respect to the
users, i.e., each file has a small number of users, at most 7,
and most have only one user.

The third metric is the user outdegree (how many different
files the user accessed), and characterizes the behavior of a
user. Figure 2 plots the outdegree distribution of the user



Sample size Mean Std Median Min Max
File access count 2123734 2.45 103.61 1 1 76025
User outdegree 262 9537 77561 105 1 1123645
File outdegree 1002186 1.17 0.39 1 1 7

User access count 262 19863 163013 128 1 2486709
Lifetime (sec) 754887 339699 937056 11259 0 6651860
Cluster size 63 4.16 21.15 1 1 170

TABLE I: Summary statistics
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Fig. 3: Daily access count for the most popular file. Left graph:
histogram. Right graph: autocorrelation.

nodes. On initial observation, a power law distribution with
exponential cutoff, p(x) ∝ x−αe−γx, is plausible. The max-
imum likelihood estimation of the parameters was computed
with the code of [5], and the goodness of fit evaluated with a
χ2 test. The resulting p-value is 2.2×10−16, thus invalidating
the fit. We also tried restricting the fit to the upper tail part
(i.e., from rank 1 to rank xmax), hoping to reveal at least a
local power law behavior, to no avail, as for xmax = 3, ..., 262
the p-value computed from the χ2-test was 0.

B. Temporal locality of file and user access

Figure 3, left graph, depicts the number of daily accesses to
the most popular file. We observe a recurrent pattern. To better
measure the temporal locality of accesses, we examined the
empirical autocorrelation of the daily access frequency vector.
Figure 3, right graph, shows a drop to near zero at a 7 day
lag, which will have implication for the LDA model.

The recurrent access of the most popular file however, is not
representative of the other, less popular, files. Figure 4 shows
the distribution of the files’ lifetime, defined as the difference
between its first and last access date. Many files seem to be
more transient, with a shorter lifetime. While this conclusion
might not be absolute, a 11 week window is a reasonable time
length for practical planning and analysis purposes.

C. Clustering the Users

To get a more concise representation of the trace, it makes
sense to cluster the users with similar interests in terms of file
access. File grouping, on the other hand, has been proposed in
several studies for data staging [6] and for data visualization
[7]. Ideally, we would like to group the users along a common
property. Co-access is the simplest one. The interpretation of
the resulting clusters is outside the scope of this work, as
it depends heavily on external factors such as the type of
applications: for example, if a research project is of the type
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single instruction multiple data, two collaborators may never
access the same file, in which case having co-access to a file
may indicate a competitor relationship.

The strength of the link between any two users is the
number of common files that both accessed. Connecting two
users who have link strength of at least 1, the resulting graph
will be partitioned into connected components, which are
the requested clusters. In this way, the 262 distinct users
are partitioned into 63 clusters. The largest cluster contains
170 users and there are 10 clusters with more than 1 user
(Figure 5). We later use the number of clusters as a parameter
of the LDA model.



III. GENERATIVE MODELS FOR ACCESS PATTERN
CHARACTERIZATION

A. Overview
The previous empirical study describes what the current

state of the system looks like during the analyzed 11 week
period, but provides little insight on why we see what we see
because it is merely a response to whatever (possibly latent)
cause that generates the transactions. The goal of this section is
to propose a probabilistic model that is capable of explaining
how the observed responses could have been generated.

The number of transactions made by each user during the
11 week period indicates the contribution each user had on the
overall behavior of the system. However, user A accounting
for 50% and user B 30% of the total transactions over the 11
week period does not imply that they had the same ratio for,
say, week 2. In fact, the individual user contributions fluctuate
within the 11 week period to arrive at cumulative figures like
50% and 30% for the whole period. There are a few options
for modeling this time variability. A naive approach would be
to ignore the time variability and use the cumulative figures for
each period. If we used this approach for building a model to
generate synthetic trace, each period will look nearly identical,
which is clearly not desirable. A second approach would be
to consider the proportion of transactions made by each user
within each individual week as a random vector and deal with
the sequence as a stochastic process. We need to decide on
how to model this multi-dimensional stochastic process. In
this paper, we assume that this stochastic process is i.i.d.

Our specific model choice is influenced by the observation
that there is an analogy between the transaction traces and text
documents. In text document characterization, an important
goal is to describe a document in terms of unobservable topics
through observable words. A document is then a mixture of
topics, and characterizing the document amounts to identifying
the topic mixture probability.

Putting our problem in the same framework, our goal is to
characterize the transaction trace based on the observed file
accesses. Thus, we make the assumption that there are several
“causes” which themselves are characterized by a specific file
access pattern. We can use this analogy to take advantage of
the machinery of LDA developed for text documents. Once we
model our problem as a LDA, the remaining technical problem
is to estimate the model parameters.

B. Latent Dirichlet Allocation
To be reasonably self-contained, this section formally

sketches LDA [4]. The most intuitive description is in the
text mining context where we wish to explain how words
are generated within a document. LDA assumes a conditional
distribution of words given a topic and that a document is
characterized by its weights on different topics. It is further
assumed that the topic weights for each document follow a
common Dirichlet distribution. The generative process works
as follows: words within a document are generated by first
sampling a topic according to the weights and then sampling
a word conditioned on the sampled topic.

Having this basic structure in place, it remains to specify
the conditional distributions that are involved, which requires.
to introduce quite a lot of notations. Let K be the number of
topics, M the number of documents, and L the size of the
vocabulary. We denote:
α The K dimensional Dirichlet parameter. The i-th

component is denoted by αi.
θ The K dimensional vector of probabilities sampled

from Dirichlet(α) representing the topic distribution
within a document. The i-th component is denoted
by θi.

For each word in a N words document, we denote:
u A scalar representing the chosen topic in {1, ...,K}
ui The indicator function ui = 1{u = i}.
f A scalar representing the chosen word in {1, ..., L}
f i The indicator function f i = 1{f = i}.
β The K × L matrix whose rows represent the word

selection probabilities conditioned on each of the K
topics. βij = p(f j = 1|ui = 1).

Here we have intentionally suppressed the dependence on the
document index m for θ and N , and both the word index
n and document index m for u and f to simplify notation.
When necessary, we will use the full notation Nm, θm, unm,
and fnm to make the dependence explicit.

LDA can be described as the following generative process
for each of the M documents.

1) Choose N ∼ Poisson(ξ).
2) Choose θ ∼ p(θ|α), a Dirichlet distribution.
3) For each of the N words within the document:

a) Choose a topic u ∼ p(u|θ), a multinomial distri-
bution.

b) Choose a word f ∼ p(f |u, β), a multinomial
distribution.

Finally, each conditional distribution is defined as follows:
• p(θ|α) = B(α)

∏K
i=1 θ

αi−1
i , where B(α) is the coeffi-

cient of the pdf of Dirichlet(α).
• p(u|θ) =

∏K
i=1 θ

ui

i

• p(f |u, β) =
∏K
i=1

∏L
j=1 β

uifj

ij

The graphical model representation of LDA is illustrated in
Figure 6. For the readers not familiar with graphical models,
these figures state that the joint distribution of a single docu-
ment given the parameters α and β is

p(θ,u, f |α, β) = p(θ|α)

N∏
n=1

p(un|θ)p(fn|un, β) (1)

where u = (u1, ..., uN ) and f = (f1, ..., fN ). And the joint
distribution for the corpus of M documents is

p(Θ,U,F|α, β) =

M∏
m=1

p(θm,um, fm|α, β). (2)

C. LDA applied to transaction traces
We apply LDA to the problem of modeling file access

behavior on a grid computing platform by using the following
analogy between a text corpus and a transaction trace.



(a) LDA model assuming latent causes.

(b) LDA model assuming causes are observed.

Fig. 6: Graphical model representation of LDA. Observed data
is represented by shading the node, which we later condition
on to find the posterior distribution of the latent variables.

• Word translates to Filename
• Topic translates to Cause
• Document translates to a Trace snippet
• Corpus translates to the Complete trace

The term “cause” may need further clarification. It can be
thought of a category which is characterizable by its file
access pattern. For example, causes can be categories of job
types (simulation job, equation solver, etc.), fields of study
(particle physics, plasma physics, astrophysics, etc.), research
projects, or Virtual Organizations, which is the fundamental
administrative structure of e-science production grids .

A trace snippet is simply the segment of the trace corre-
sponding to a time window. Using consecutive windows, the
collection of all snippets covers the whole trace. Segmenting
the trace into snippets is the fundamental trick that makes
modeling the temporal variability tractable.

These analogies implicitly assume that 1) each cause is
characterized by a file access distribution, 2) each window is
characterized by a cause mixture distribution, and 3) the snip-
pets, each of which is characterized by a distribution over files,
are mutually independent. The first assumption is inherent to
our approach, which exploits only the transaction trace. The
second assumption is clearly a rough approximation: ideally,
the segmentation should be inferred from the data too, as for
instance in [8], [9]. The last assumption is partially justified
by the observation of Section II-B, showing that correlation
vanishes quite fast, in which case, the only correlation will
occur near the boundaries of the periods.

Another important assumption made in the LDA model
is that the distribution of words (files) within a docu-
ment (trace snippet) is exchangeable, i.e., p(f1, ..., fN ) =
p(fπ(1), ..., fπ(N)) for any permutation π. This means that the
generative process says nothing about the exact order in which

files are accessed. This assumption poses no serious problem
since we are mostly interested in the aggregate statistics, such
as file access frequency or distinct file accesses, within a single
window.

With the joint distribution Eq.(2) available, the next step is
to estimate the parameters of the model given the observed
data, namely the file accessed in each transaction. Recall that
the individual causes (u) as well as its mixture probabilities
(θ) are latent in our model.

1) Parameter estimation: The procedure for finding the
maximum likelihood estimator (MLE) of α and β is covered
in [4].

In order to find a maximum likelihood estimate of the
parameters, we need an expression for the likelihood function.
Integrating over the latent variables θ and u of Eq.(1):

p(f |α, β) =

∫
p(θ|α)

N∏
n=1

∑
un

p(un|θ)p(fn|un, β)dθ

= B(α)

∫
∑

i θi=1

(
K∏
i=1

θαi−1
i

)
N∏
n=1

K∑
i=1

L∏
j=1

θiβ
fj
n
ij dθ,

which is intractable to evaluate [10].
A difficulty when trying to use an EM algorithm to compute

the MLE of the parameters of this model is that the parameters
are coupled which makes it intractable to compute the poste-
rior distribution of the latent variables. Therefore, a variational
EM is used to approximate the joint distribution so that
the parameters decouple, and consequently an approximated
posterior distribution of the latent variables can be computed.
At each step, the parameters of the approximate distribution
is chosen so that the Kullback-Liebler divergence to the true
distribution is minimized. Through the variational EM, we get
the MLE of the model parameters α and β.

2) When causes are observable: We have so far assumed
that causes are latent. However, the transaction trace provides
a precious information: the user who requested the file trans-
action. Therefore, we may explore a simplifying assumption,
namely that the individual users of the grid are in fact the
causes, effectively making the causes observable. The only
remaining latent variable in this case is the cause mixture
distribution θ. Let us however pretend for now that θ is
observed.

For each period, pretending that θ is observed, and since
θ and f are conditionally independent given u, we have the
complete likelihood

p(u, f , θ|α, β) = p(θ|α)

N∏
n=1

p(un|θ)p(fn|un, β).

But since the random vector θ is latent, we must integrate over



it to get the true likelihood function:

p(u, f |α, β) =

∫
p(u, f , θ|α, β)dθ

l(α, β) = log

∫
p(u, f , θ|α, β)dθ

= log

∫
q(θ|u, α)

p(u, f , θ|α, β)

q(θ|u, α)
dθ

≥
∫
q(θ|u, α) log p(u, f , θ|α, β)dθ

−
∫
q(θ|u, α) log q(θ|u, α)dθ. (3)

The inequality is a result of Jensen’s inequality and q can
be any distribution of our choice. We seek to maximize the
likelihood function indirectly through maximizing a lower
bound to it. When q is fixed, maximizing the provided lower
bound of the log-likelihood with respect to α, β reduces to
maximizing

Eq[log p(u, f , θ)|α, β] =

∫
q(θ|u, α) log p(u, f , θ|α, β)dθ.

It can be easily verified that the q that closes the inequality
gap is in fact the posterior probability p(θ|u, f , α, β) ∝∏K
i=1 θ

∑N
n=1 u

i
n+αi−1

i . So we set

q(θ|u, α) = B(α′)

K∏
i=1

θ
α′

i−1
i

where α′i =
∑N
n=1 u

i
n + αi.

The EM algorithm for finding the MLE of α is proposed
in [11]:
• E Step (For each period m):

q(t+1)
m (θ) = B

(
α′(t)

) K∏
i=1

θ
∑Nm

n=1 u
i
n+α

(t)
i −1

i

• M Step:

α(t+1) = arg max
α

M∑
m=1

E
q
(t+1)
m

[log p(um, fm, θ
m)|α, β]

The estimation of β is straightforward since it is decoupled
from both α and θ during the M-step of the EM algorithm.
Thus it does not require the E-step and can be solved once
and for all. The MLE of β is the solution to the problem:

max
β

M∑
m=1

Nm∑
n=1

K∑
i=1

L∑
j=1

uinmf
j
nm log βij

s.t.
L∑
j=1

βij = 1 for i = 1, ...,K.

which is

β̂ij =

∑M
m=1

∑Nm

n=1 u
i
nmf

j
nm∑M

m=1

∑Nm

n=1 u
i
nm

for ∀i, j

IV. EXPERIMENTAL RESULTS

From the 11 week transaction trace, we use the procedures
discussed in the previous section to estimate the Dirichlet
parameter α and the conditional multinomial parameters β
for each of the two file generation scenarios. The parameters
used for the estimations and the subsequent simulations are
the following:
• The number of periods: M = 11
• The number of causes: K = 63 for the LDA model;
K = 262 with the observed user assumption of Section
III-C2.

• The number of distinct files: L = 2, 123, 734
• The mean of the Poisson random variable N : ξ =

471, 659

The choice of K = 63 for the LDA model is due to the
observation of Section II-C where we clustered the users into
63 groups. For the observed user model, there were K = 262
distinct users.

Given the dimensionality of the parameters (see Section
III-B), the resulting values cannot be shown explicitly. We
note that all components of the estimated Dirichlet parameter
were in the order of 10−4 for the LDA model and over 93%
of the components were less than 1 for the model where users
were assumed the cause. Since a small α indicates that the
probability mass is concentrated in a few causes (or users),
this is consistent with our observation of the real traces that
the majority of the file access request is made by only a small
number of users.

In order to validate the model, a synthetic trace is generated
using the estimated parameters. We then conduct an analysis
similar to the one of Section II, in order to check the statistical
consistency between the real and synthetic traces.

Figure 7 plots the comparison of the resulting file popularity
rank-frequency. We measured the goodness of fit of the real
data for file popularity to the two generative models with
the estimated parameters through a χ2-test. It is possible to
compute the marginal file access distribution of the model
using the formula p(f = j) =

∑K
i=1 βijαi/

∑K
k=1 αk, which

we use as the distribution under the null hypothesis. It is
well known that χ2-tests are problematic when there are a
large number of bins where the expected frequency is small,
because the χ2 statistic tends to be inflated by the relatively
small denominator. Since the observations of the tail part of
our distribution is scarce, we suffer from this exact problem.
But since we are primarily interested in the fit quality of the
lower tail part, we truncated the data to ranks with expected
frequency of at least 1. Considering that the general rule of
thumb for the validity of χ2-tests where at least 80% of the
bins have expected frequency of at least 5, our truncation
rule is very aggressive towards rejecting the null hypothesis.
Nevertheless, in both models, we get a p-value of 1 and accept
the null hypothesis.

For the model where observed users are the causes, we
further study the statistic properties of the synthetic trace. We
examined the rank-frequency plot for distinct files accessed



Fig. 7: File popularity, real and estimated with LDA.

plotted against user rank (Figure 8) and for the access count
plotted against user rank (Figure 9). We observed that among
the 5 top ranked users, who collectively account for more than
79% of the file accesses, the maximum error was 30.8% for
Figure 8 and 26.6% for Figure 9 where error is evaluated
by |count(real)-count(synthetic)|/count(real). Nevertheless, it
is disturbing to observe an order of magnitude difference in
the tail part. This discrepancy can be partially explained by
recalling that our model only considers the set of users and
files that appear at least once in the real traces during the 11
week period as the total population. This means the number
of distinct users in the synthetic trace (216), by design, can
never be larger than the number of distinct users in the real
trace (262). Hence, the synthetic curve lies under the real
curve in the tail region. To avoid this artifact, we could use
a longer time period to fit the model in order to increase
the universe of users and files, and then simulate logs only
for a sub-period and compare it against the real traces of
the corresponding period. However, the results as they are
indicate that matching users alone with causes is not correct,
illustrating the explanatory power of the proposed class of
models.

V. RELATED WORK

A first line of related work involving file access char-
acterization derives from I/O workload analysis. Usually in
these studies, the focus is on the access characteristic of
individual applications [12], aggregate metrics such as I/O
transfer size [13], and application specific I/O operations
counts [14]. There has been early empirical studies in an-
alyzing the distribution of file access operations on various
commercial environments by providing simple statistics on the
I/O operation counts [15].

Recently, with the emergence of large scale grid systems,
more effort was put into characterizing the relationships
between individual files and graph structures derived from
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Fig. 8: Distinct files accessed for in the synthetic trace
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Fig. 9: Access frequency of users of synthetic trace

these relationships. An important information comes from
the comparison of our results with those of Doraimani and
Iamnitchi [6], which analyzed trace data from the high energy
physics experiment DZero [16]. Although the environment
was similar in nature to ours, several of the results including
the file popularity shared almost no similarity to our results.
In their analysis, they do not profile the files according to
who accessed it, but rather grouped files together according
simultaneous access. Therefore, it is not possible to verify
whether the discrepancy is due to the different behavior of
the dominating users or because of a fundamental difference
of the nature of the applications that run on the two different
systems. However, the multi-disciplinary nature of our trace
points to the last explanation.

A second line is related to predictive models. The focus
is not on file access per se, but on bandwidth consumption
and performance. [17] presents an extensive study on burst
identification, modeling and prediction, in the context of e-
science. The testbed, DQ2, a petabyte-scale distributed files
management system for the Large Hadron Collider, is one
of the largest existing open data system, with a mix of
cloud and grid technologies. The approach is based on time-
series, in the sense that no metadata are exploited, but only
bandwidth measurements. The sobering conclusion is that all



prediction methods (Neural Networks, SARIMA, and many
others) essentially fail to predict bursts. This suggests that
exploiting concepts of a higher semantic level, in the spirit
of the latent causes that we described in the paper, might be
a useful approach.

The literature about P2P systems, which are another style
of community driven file management, mostly focus on social
behavior (freeriding, seeding etc.), see for instance the recent
descriptive analysis in [18]. An interesting conclusion of [18]
is that the Bittorrent closed communities (those joined only
by invitation), essentially behave as systems based on FTP
transfers, with all data coming from the seeders. This fact
opens the possibility to experiment our model in a very
different context.

VI. CONCLUSION

Trace analysis of the LAL site revealed that most activity is
initiated by a very small fraction of users, and consequently,
the collective behavior is heavily influenced by them. Contrary
to common belief, most frequency plots did not exhibit even
local power law behavior. We conjecture that similar behavior
should be present under similar regulation policies in other
multi-disciplinary systems.

This raises a very challenging issue: moving to cloud
technology might be they key for wider adoption of shared
infrastructures by scientific communities other than HEP; but
evaluating, dimensioning, and optimizing the future e-science
infrastructures require an alternative to experimenting on real,
large, and complex data. For instance, comparing our results
with those of Doraimani and Iamnitchi shows very different
behaviors. Well-founded and parsimonious representations, in
other words generative models, are needed to experiment
seamlessly, and may also contribute to the a priori knowledge
required for operational autonomics. This paper proposed
two generative models of the file access that characterize
their spatio-temporal structure, and can be exploited in global
simulation frameworks.

When observing the file access pattern from a workload
analysis perspective, often the focus is on the application. In an
e-science environment where applications are usually custom
made, not much information is directly available to identify the
type of the application. Therefore, we relied on LDA to define
what the latent “applications” are and how they characterize
the trace data, or assumed that users are synonymous with
applications and therefore modeled the collective behavior of
users.
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