
HAL Id: hal-00619382
https://hal.archives-ouvertes.fr/hal-00619382

Submitted on 6 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timesheets.js: When SMIL Meets HTML5 and CSS3
Fabien Cazenave, Vincent Quint, Cécile Roisin

To cite this version:
Fabien Cazenave, Vincent Quint, Cécile Roisin. Timesheets.js: When SMIL Meets HTML5 and CSS3.
DocEng 2011, 11th ACM Symposium on Document Engineering, Sep 2011, Mountain View, United
States. 10 p. �hal-00619382�

https://hal.archives-ouvertes.fr/hal-00619382
https://hal.archives-ouvertes.fr

Timesheets.js: When SMIL Meets HTML5 and CSS3

Fabien Cazenave
INRIA

655 avenue de l’Europe
38334 Saint Ismier, France

fabien.cazenave@inria.fr

Vincent Quint
INRIA

655 avenue de l’Europe
38334 Saint Ismier, France
vincent.quint@inria.fr

Cécile Roisin
Grenoble University & INRIA

655 avenue de l’Europe
38334 Saint Ismier, France
cecile.roisin@inria.fr

ABSTRACT
In this paper, we explore different ways to publish multimedia doc-
uments on the web. We propose a solution that takes advantage of
the new multimedia features of web standards, namely HTML5 and
CSS3. While JavaScript is fine for handling timing, synchroniza-
tion and user interaction in specific multimedia pages, we advo-
cate a more generic, document-oriented alternative relying primar-
ily on declarative standards: HTML5 and CSS3 complemented by
SMIL Timesheets. This approach is made possible by a Timesheets
scheduler that runs in the browser. Various applications based on
this solution illustrate the paper, ranging from media annotations to
web documentaries.

Categories and Subject Descriptors
I.7 [Document and Text Processing]: Document Preparation—
Markup languages, Multi/mixed media, Standards

General Terms
Design, Experimentation

Keywords
Declarative languages, Multimedia, Web applications, SMIL, HTML5

1. INTRODUCTION
The multimedia web is evolving very rapidly. With the advent of
HTML5, web pages can now integrate graphics, sound and video
seamlessly. In addition, scripting languages can animate content
such as text, graphics, pictures, as well as continuous media. These
multimedia contents can be played on an increasing number of ter-
minals, ranging from the traditional desktop to the smallest pock-
etable mobile device, and with good performances.

Rendering true multimedia web content is becoming easier. The
user experience on web pages embedding video and sound is now
much smoother than back in the days when specific plug-ins were
required. Modern web browsers can now render natively all sorts of
contents embedded in HTML5 pages. In addition, they are support-
ing graphic formats such as SVG, including its animation feature,

DocEng’11, September 19–22, 2011, Mountain View, California, USA.

as well as the latest properties introduced in CSS to handle transi-
tions and animations, not to mention their ability to manipulate all
these contents through powerful script engines.

With these novel multimedia features, new web applications are
made possible. They are very diverse, but they all have in com-
mon the addition of a time dimension to the usual web document.
Time could be present through such continuous content as video or
sound, through a time structure added to discrete contents, through
animations performed by executing some code (script), or through
a combination of these. Concretely, these timed multimedia appli-
cations may be slide shows, captioned video clips, annotated audio
recordings, graphic animations, augmented recorded conferences,
interactive photo albums, web documentaries, and so on.

To implement such web applications, various approaches can be
considered, ranging from declarative to imperative:

• The purely declarative approach was taken by SMIL [4], the
first multimedia technology specially designed for the web.
In SMIL, the time dimension of a document is expressed by
a hierarchy of temporal operators. Applications are run by
players that interpret the declarative language and play the
document (Ambulant [2], RealPlayer, X-Smiles [12]).

• The imperative approach is illustrated by the many ad hoc
applications written in JavaScript and ActionScript, where
scripts are used to handle user interaction and to make the
document change over time.

Obviously, both approaches can be combined; many applications
using a declarative language are complemented by some scripting.
It is worth noting that scripting languages can also be used to im-
plement players that interpret a declarative language. For instance,
the SMIL Timesheets language [17] was implemented in JavaScript
(Timesheets JavaScript Engine [16], LimSee3 [10], FakeSmile1),
but this does not impact application developers, who still work
declaratively.

The choice between both approaches should take many criteria into
account. What efforts are necessary to make sure the content can
be enjoyed on different devices? Is accessibility for people with
disabilities granted? What kind of user interaction is supported?
Can (some parts of) the application be easily reused in another ap-
plication? How easy is it to maintain applications? Is it possible to
reference some particular piece of content or some specific state or
1http://leunen.d.free.fr/fakesmile/

date in the document? How can synchronization with continuous
content be achieved? Answers to these questions may vary strongly
depending on the approach.

In this paper, we try to identify the advantages of each approach.
We consequently propose a trade-off that brings the best of each
world regarding the questions raised above, and we propose tools
that help achieving the best trade-off. In particular, we have chosen
to explore a solution built upon HTML5 and SMIL Timing.

The rest of the paper is organized as follows. The next section
presents various categories of multimedia web applications. It is
followed by a review of the current means available to implement
these applications. Sections 4 and 5 propose solutions based on
SMIL Timesheets as a new way to improve the current situation.
Section 6 provides a few examples to illustrate these solutions. Fi-
nally the conclusion summarizes the main contributions of the pa-
per and envisions future work.

2. MULTIMEDIA APPLICATIONS
For the sake of clarity, we divide multimedia web applications in
two main categories, depending on the role of the time dimension.

2.1 Media-Driven Applications
We call media-driven applications the broad category of multime-
dia applications where a piece of continuous content plays the role
of a backbone for the whole application. In these applications, typi-
cally, an audio or video recording constitutes the main content, and
various elements (often discrete media such as text or pictures) are
associated to parts of this main content to annotate it. Interactive
features are also available to the user for moving freely in the main
content and to interact with complementary information. This cat-
egory is exemplified by such applications as:

• a captioned movie: the main content is the movie itself, and
the captions constitute the associated content. The display
of each caption is precisely synchronized with the video. In
addition to the usual VCR controls, a menu allows the user
to change caption language or to hide them at any time. A
very fine-grained synchronization may be required when the
annotation is the transcript of the audio track, like in the
MIT150 Infinite History project [11].

• a commented program in an on-line radio archive: the back-
bone is an audio file, the recorded radio program. Some
pictures and textual annotations are associated with specific
parts of the program to illustrate them or to provide addi-
tional information. Usual controls are provided to pause,
play, move forward/backward, and to hide/show additional
content.

• a videotaped talk with synchronized slides (see Figure 1):
the main content is the video recording of the speaker, which
is complemented with the slides (pictures and/or text) the
speaker used when giving the talk. Slides are synchronized
with the video and displayed next to it. In addition to the
usual controls for a video, an interactive table of contents al-
lows the user to freely navigate through the video and the
sequence of slides.

In all these applications, the master media object comes with its
intrinsic clock which is used to schedule the whole application. The

Figure 1: Videotaped talk with synchronized slides

time dependencies of all other contents are expressed relatively to
this clock. In the latest example, each slide is associated with two
dates: the time when it must be displayed and the time when it must
disappear. Both dates are relative to the master clock. In the same
way, items of the table of contents have two dates: the time when
the corresponding section starts in the video and the time when it
stops. These dates are used to highlight the relevant entry in the
table of contents, or to skip to the right position in the video when
the user clicks an entry.

Because of this time structure, it is often easy in this kind of ap-
plication to superimpose one or several sectioning structures on the
master media object. Typically, in the example above, both the se-
quence of slides and the table of contents play this role. The slide
titles may be used to associate a series of labels with the timeline,
while the headings from the table of contents add a hierarchical
structure. This can be reflected through the user interface: when
moving the pointing device along the timeline, the user can see
various levels of labels, which are helpful to choose a particular
part in a long video.

This is for instance the approach taken in the Advene platform
where multiple levels of annotations can be associated with a movie
[3].

2.2 Event-Driven Applications
As opposed to media-driven applications, event-driven applications
are not organized around a single continuous media object that pro-
vides the main synchronization scheme. Instead, they are made of
a collection of multiple media objects related by links such as tem-
poral relations or user interactions.

To illustrate this concept, let us take the example of a slide show.
Each slide may be a single picture or a piece of text, but it could
also be a small multimedia document itself, with various (possibly
continuous) media objects and some interactive features. Slides
are linked together to define a preferred sequence for presentation.
They also offer the user a way to conveniently move from one slide
to the next/previous one in this sequence. A table of contents (or
an index) may be available, with links to every slides, offering the
user another way to access slides, in any order.

This kind of organization may be used for a photo album for in-
stance. The table of contents contains thumbnails of all pictures,
and each slide is constituted by a single photograph with a caption,
comments and buttons to go to the next or previous slide, or to the

thumbnail index. The same kind of organization is used for the
slides displayed on a large screen during a talk with a tool such as
HTML Slidy [13].

The category of event-driven applications is broader than the slide
show family. It actually includes all applications where there is no
dominant time structure, but multiple, different time structures for
different parts of the document. Concurrent time structures may
occur simultaneously, or some parts may have no intrinsic time di-
mension, only temporal relations with other pieces of content. For
instance, a media object may have to be presented after (or at the
same time as) another one. These relations are typically those de-
fined by Allen [1].

3. STATE OF THE ART
3.1 Multimedia Web Authoring
The issue of integrating multimedia content into web pages dates
back from the early days of the web. In the initial version of World-
WideWeb, the first web browser ever (1990), even still pictures
where displayed in separate windows. They were included in the
text later on (1993), when the NCSA-Mosaic browser introduced
the img tag in HTML. Integration of continuous media objects,
in particular video, followed the same way, but much later. For a
long time, these objects were handled by separate programs (plug-
ins) and were therefore difficult to integrate in the document. Only
when SMIL introduced the video and audio elements could web
documents really include continuous media. SMIL was followed in
this direction by SVG and more recently by HTML5. All three lan-
guages now support audio and video objects natively.

The time dimension of documents was not the priority in the first
solutions developed for multimedia web content. Web formats have
left aside the issue of synchronization for a long time. Plug-ins did
not allow the various components of a web page to be synchronized
with continuous media through a standard API. The first step in
this direction was made with SMIL, with a rather radical approach:
time is the main (and almost the only) dimension for structuring
a document. As a consequence, the hierarchical structure offered
by other web formats for representing the logical organization of
documents can hardly be expressed with SMIL.

Using an XML environment is a natural way to put the focus on
the logical dimension when creating multimedia content: the doc-
ument is structured in XML to encode its logical organization, and
time relations are expressed as part of this structure [6]. This op-
tion requires some export mechanism to produce documents in a
format that can be accepted by a web browser. The main issue
is that the authoring and the publishing languages are different.
The original XML code has to be converted to SMIL, Flash or
HTML5+JavaScript. Authors are prevented from using familiar
web languages such as HTML and CSS, and if they want to make
adjustments to the final form, they may have to do complex reverse
transformations to update the source document [15].

The drawbacks of the conversion is balanced by the advantages of
the declarative approach. Authors think in terms of a multimedia
document instead of a multimedia application they would have to
program with a scripting language. The document-oriented (declar-
ative) approach thus makes multimedia web authoring available to
a broader audience. The declarative approach also provides advan-
tages from an engineering point of view. It makes it easier to main-
tain and reuse content. Multimedia documents can then be used in
a document workflow, for instance.

3.2 Multimedia Web Technologies
There are three main classes of techniques (SMIL, Flash, HTML5)
for developing synchronized multimedia documents for the web.
Figure 2 reviews these techniques, based on the following criteria:

• Timing and synchronization: This is the most complex part
of many advanced multimedia applications. Therefore the
language must provide efficient ways to alleviate the task of
web developers in this area.

• Scriptability: Whatever the level of declarativeness of a lan-
guage, it is important to be able to go beyond the limitations
of the language by using scripts that extend its capabilities in
some particular situations (this requirement has been high-
lighted by [14]).

• Logical structure: Document formats on the web are typ-
ically declarative structured languages. By describing first
and foremost the logical organization of a document, they
facilitate accessibility, adaptability, reuse, device indepen-
dence, and processability.

• Content/presentation separation: Keeping this principle, which
is widely applied on the web with style sheets, offers flexibil-
ity in customizing and adapting content for different contexts
of use.

• Temporal links [7]: It is common practice on the web to link
to a specific position within a text document, thanks to frag-
ment identifiers in URIs. The equivalent for a timed docu-
ment is to point to a specific date or state in the execution of
the document. This feature allows timed documents to inte-
grate nicely in the web.

• Native rendering in web browsers: The browser is the main
tool for accessing the web on all devices. To make sure web
users can use multimedia applications, it is important that
applications can be run in web browsers.

• Standard compliance: W3C standards are well known to web
developers. A solution based on these standards is more
likely to be adopted by them. These standards are also widely
implemented, in particular in browsers. Applications pub-
lished according to W3C standards can meet a large audi-
ence.

• Device friendliness: Even if web browsers implementing W3C
standards are available on all devices, there are significant
differences in the capabilities of these devices. The cho-
sen technology should be compatible with as many device
classes as possible.

We use these criteria to review the technologies used for developing
multimedia web applications (see Figure 2):

• SMIL was designed specifically for multimedia web applica-
tions. Its main focus is a rich time structure and content syn-
chronization. Unfortunately, few media players and no web
browser support SMIL. Moreover, SMIL has not evolved
along with popular web languages such as HTML and CSS.
It does not allow to separate presentation from content, and
it is impossible to script a SMIL document in a web browser.
This makes it difficult to integrate the SMIL language into
other web applications. In addition, the structure it represents
is the time structure, not the logical structure of a document.

SMIL Flash HTML5 + CSS3
Declarative timing and sync. + - -

Scriptability - + +
Logical structure - - +

Content/presentation separation - - +
Temporal links + - -

Native rendering in web browsers - - +
W3C standard compliance + - +

Desktop friendliness +/- + +
Mobile friendliness +/- +/- +

Figure 2: Technology Comparison

• Flash is currently by far the main technology for multimedia
applications. It works well on most desktop browsers, but it
is not so widely supported on mobile devices (smartphones,
tablets). Since it comes as a binary format, it raises accessi-
bility issues and requires more work to address indexability
aspects. More generally, as Flash is not rendered natively by
web browsers there are strong limitations regarding the con-
tent/presentation separation, and the interactions between a
web page and its multimedia (Flash) content are more com-
plex.

• HTML5 was specified for the web with audio/video in mind.
HTML5 is complemented by the CSS3 style sheets language.
With HTML5 and CSS3, web developers can take advantage
of the clean content/ presentation separation, as well as many
other web features, but they have to rely on JavaScript to
handle timing, synchronization and user interactions. Con-
cerning multimedia applications, HTML5 with its audio
and video elements is supported natively by modern web
browsers and, thanks to plug-ins, fallback solutions exist for
audio/video contents in legacy browsers (Internet Explorer 6
to 8).

3.3 Declarative Solutions
As seen on Figure 2, Flash suffers from too many limitations to
be considered a good web citizen. Web developers are left with
SMIL and HTML5+CSS3 (see Figure 3), but neither solution is
completely satisfactory.

Figure 3: SMIL vs. HTML5

The latest version of SMIL, namely SMIL 3.0 [4], provides two
modules (SMIL State and SMIL Transitions) in addition to the cen-
tral SMIL Timing module, in order to better cope with advanced
multimedia requirements. It is a declarative approach to multime-
dia contents:

• Timing and Synchronization features are defined by the SMIL

Timing module. SMIL Timing brings a simple and very pow-
erful way to describe, in a declarative way, media synchro-
nization and user interaction management for multimedia ap-
plications.

• SMIL State [8] and its variant for NCL [14] aim at providing
variables inside the declarative time structure (as defined by
SMIL or NCL) to cope with the need for controlling docu-
ment playback, but the resulting syntax is a bit verbose and
requires a specific SMIL implementation. Besides, it still
cannot be extended to more complex imperative scenarios
(e.g. functions, prototypes, objects).

• SMIL Transition Effects can be used to enhance the user ex-
perience in pure SMIL documents. CSS3 transitions are the
counterpart for HTML5.

The most frequent approach is based on HTML, CSS and JavaScript
(see right part of Figure 3):

• Developers of multimedia applications rely on HTML5 to
describe the content with its logical structure, and on CSS3
for the presentation. This way, they can separate content
from presentation.

• The document playback is controlled in JavaScript by us-
ing element APIs and DOM events as defined by W3C rec-
ommendations. In particular, the HTMLMediaElement API
provides an efficient control for audio and video elements.

• Developers still have to address most timing and user interac-
tion issues with specific JavaScript code. This is the main dif-
ficulty in designing multimedia applications with HTML5:
the scripts are designed for a specific DOM structure and use
pre-defined CSS classes, which makes such JavaScript de-
velopments very difficult to maintain and reuse, unless the
relationship between classes and features is carefully docu-
mented.

• In many applications, especially in event-driven applications,
developing and debugging scripts represent a large part of the
development effort.

King et al. [9] have proposed XML language extensions to allow
multimedia systems to react to dynamic events, and to handle con-
tinuous real-time dependencies. In our solution, we take the same
implementation approach (a scheduler engine in JavaScript) but we
can now take advantage of new features of declarative web lan-
guages to partially cover the same needs.

4. PROPOSED SOLUTION
4.1 SMIL Timing and Timesheets
Based on the observations above, it appears that combining HTML5+CSS3
and SMIL Timing would bring a good solution (see Figure 4).
SMIL Timing specifies two attributes, timeContainer and timeAction
for integrating timing and synchronization features into HTML and
XML documents.2 Basically, SMIL Timing allows an a-temporal
language such as HTML5 to be extended with timing features.

Figure 4: SMIL with HTML5+CSS3

SMIL Timesheets reuses a significant subset of SMIL Timing and
allows timing and synchronization to be separated from content
and presentation. This can be seen as the counterpart of CSS style
sheets in the timing domain: like in CSS, these features are gath-
ered either in an external resource linked to the document, or in
a timesheet element in the document itself. Like CSS style
sheets, timesheets can be associated not only to HTML pages but
also to other types of documents such as SVG drawings, for in-
stance, or even to compound documents made of HTML and SVG.

Our approach [5] is based on SMIL Timesheets and can be summed
up in three points:

• use HTML5+CSS3 for structuring the content and for ren-
dering it natively in the browser with a clean content/presentation
separation;

• rely on SMIL Timing to handle timing, media synchroniza-
tion and user interaction;

• do not ever redefine what already exists in HTML, SVG and
CSS (e.g. animations and transitions), as illustrated in Fig-
ure 7.

4.2 Timesheet Engine
As SMIL Timing and Timesheets are not supported natively by web
browsers, a JavaScript implementation of these specifications is re-
quired. We have developed timesheets.js,3 which is an open-source,
cross-browser, dependency-free library that supports the common
subset of the SMIL Timing and SMIL Timesheets specifications.

This still relies on JavaScript, but no specific JavaScript develop-
ment is required from a web developer for most multimedia ap-
plications: the whole application is created using only declarative
languages. When such an application is running, some parts of it
(HTML and CSS) are executed natively by the browser, some other
parts are executed by the browser’s JavaScript engine.

2http://www.w3.org/TR/SMIL3/smil-timing.html#Timing-
IntegrationAttributes
3http://wam.inrialpes.fr/timesheets/public/timesheets.js

Timesheets.js is not the first SMIL Timesheets engine running in
the browser. Vuorimaa has developed a Timesheets JavaScript En-
gine [16] but it has a few limitations for our use cases:

• As it has been developed in 2007, before the raise of SVG 1.2
and HTML 5, it does not support continuous media. In the
LimSee3 project [10] (2008), this timesheet engine was adopted
to handle the Timing module better and to play continuous
media elements through a VLC plug-in, but it still cannot
use any event sent by these continuous media, which leads to
weak synchronization.

• Both implementations handle only internal timesheets; the
W3C Timesheets 1.0 specification does not mention explic-
itly any other way to use timesheets with a-temporal lan-
guages, but we wanted to support both internal and external
timesheets, as well as inline SMIL Timing markup, within
the same parser.

• Both implementations rely on clock arrays and try to deter-
mine begin/end values as soon as possible, which is fine in a
fully declarative approach, but is limitative when it comes to
adjusting time containers dynamically with JavaScript.

The FakeSmile project has also experimented with SMIL Timesheets,
but this implementation is focused on SVG animations and could
not be easily reused in a broader scope.

For these reasons, we felt it was preferable to start a new devel-
opment. After all, our implementation is only about 2000 lines
of code, and the whole engine is less than 10 Kbytes in the mini-
fied/gzipped version. Technically speaking, the timesheet sched-
uler is very modular by design:

• Each node declared in the timesheet as a time container has
its own clock, methods, properties and event handlers.

• Each time container parses its own descendants (time nodes)
and pre-calculates the begin/end time values according to its
temporal behavior: seq, par or excl.

• All time containers expose a significant part of the HTML-
MediaElement API (which is exposed by the audio and
video elements): web developers can control SMIL time
containers with the usual .play() / .pause() methods,
check the time with the .currentTime property and reg-
ister to standard timeupdate DOM events.

To put it another way, we wanted the timesheets.js library to be
more than just an implementation of the SMIL Timing and Syn-
chronization module. It actually offers a declarative framework for
web-based multimedia applications, which can easily be extended
to fit specific needs (see Section 5).

It is worth to mention that, as SMIL Timesheets and SMIL Tim-
ing are not intended only for HTML documents, the timesheets.js
library can be used with SVG content too, and therefore with com-
pound documents. This allows synchronized multimedia applica-
tions to include vector graphics in addition to the usual HTML
content, and to use time constraints within drawings and between
(parts) of drawings and other parts of a HTML document.

4.3 A Basic Example
As an example, here is the very simple case of a rotating banner
where three images are displayed one after another:

<script type="text/javascript" src="timesheets.js"/>
<div smil:timeContainer = "seq"

smil:timeAction = "display"
smil:repeatCount = "indefinite">

</div>

• The smil:timeContainer attribute turns the div ele-
ment into a SMIL time container. Value seq defines a se-
quence in which elements play one after the other.

• The smil:timeAction attribute defines how the element
is to be activated. In this case, the display CSS property
is set to block when the element is active, none otherwise.
The same mechanism can be used to trigger CSS transitions
and animations.

• The smil:repeatCount attribute indicates the number
of iterations.

• The smil:dur attribute specifies the duration of the ele-
ment.

As a result, the three images are displayed one after the other, each
one during 3 seconds, and this is repeated indefinitely, thus creating
a rotating banner. The same result may be achieved with an exter-
nal timesheet, clearly separating timing from content. Here is an
equivalent markup:

<script type="text/javascript" src="timesheets.js"/>
<link href="banner.smil" rel="timesheet"

type="application/smil+xml"/>
<div id="banner">

</div>

where the external timesheet banner.smil contains:

<?xml version="1.0" encoding="UTF-8"?>
<timesheet xmlns="http://www.w3.org/ns/SMIL">

<seq repeatCount="indefinite">
<item select="#banner img" dur="3s"/>

</seq>
</timesheet>

Attribute select of item performs a querySelectorAll()
action: for each DOM node that is matched by the #banner img
selector, a SMIL item is created. This allows the same timesheet
to be reused for several HTML pages: the SMIL markup above
always works whatever the number of images in the banner.

4.4 Supported SMIL Features
Our timesheet scheduler supports a significant subset of both SMIL
Timing and SMIL Timesheets (see Figure 5). As the same parser
is used for both inline timing and timesheets (internal or external),
a few SMIL Timing features are also supported in timesheets, and
vice-versa.

The timeContainer and timeAction attributes are the two
“integration attributes”, as mentioned in the SMIL Timing speci-
fication. However, the SMIL Timesheets draft does not mention
any timeAction attribute. This attribute is essential because it
specifies how an element is activated in terms of CSS properties.

The begin and end attributes are supported with two restrictions:
only positive values are taken into account; all time formats and
event-values (e.g. “button.click”) are supported, but there is no sup-
port for mixed time and event-value yet (e.g. “button.click+5s”).

The item element and its select attribute are very specific to
SMIL Timesheets and are thus ignored by our implementation in
inline timing markup. On the other hand, the first, prev, next,
and last attributes, which have been proposed by the SMIL Timesheets
specification to control excl containers easily (for “lazy user inter-
action”), do make sense in an inline timing context, and are there-
fore supported.

4.5 Proposal: Transition Triggers
Timesheets.js fully supports the SMIL timeAction attribute, as
defined in the SMIL Timing recommendation.4 To get a sharper
control on the way elements are activated, our timesheet scheduler
sets a 3-state smil custom attribute to targeted elements, contain-
ing values idle | active | done, before | during | after element
activation respectively.

This attribute can be used in CSS selectors to specify asymmetric
transitions like in the following example which defines a carousel
effect:

div[smil=idle] { /* state before transition */
opacity: 0;
transform: scale(0.3) translate(+200%);

}
div[smil=done] { /* state after transition */

opacity: 0;
transform: scale(0.3) translate(-200%);

}
div[smil=active] { /* state when active */

opacity: 1;
/* "transform: none;" is implicit */

}

Setting a custom attribute is a working solution, but a more satis-
fying solution would be to define SMIL-specific pseudo-classes in
CSS.

4.6 Proposal: mediaSync Attribute
The SMIL Timesheets draft does not mention any way to synchro-
nize explicitly a time container with a continuous media. The SMIL

4http://www.w3.org/TR/SMIL3/smil-timing.html#Timing-
timeActionAttribute

Node SMIL Timing SMIL Timesheets timesheets.js
timeContainer + + +

timeAction + - +
begin, end + + +/-

dur + + +
fill, endSync + + +/-

repeatDur, repeatCount + + +/-
item, select N/A + +

first, prev, next, last - + +

Figure 5: SMIL Timing and Timesheets Support in timesheets.js

Timing recommendation defines a boolean syncMaster attribute
on media elements and time containers, that forces other elements
in the time container to synchronize their playback to this element.5

However, as the audio and video elements do not exist in SMIL
timesheets, this syncMaster attribute is usable only with inline
markup, and not with timesheets.

In order to define the same synchronization feature with timesheets
we have introduced the mediaSync attribute, that can be used
either with inline markup or within timesheets, which refers to a
continuous media element through a CSS selector (in order to be
consistent with the timesheet-specific select attribute).

The markup below is an example of a captioned movie that uses
the mediaSync attribute and inline timing markup: each caption
is an HTML paragraph synchronized with the video element.

<video src="myvideo.webm" />
<div smil:timeContainer = "excl"

smil:timeAction = "display"
smil:mediaSync = "video">

<p smil:begin="0:00.00" id="intro">
Title

by Director

</p>
<p smil:begin="0:04.93" smil:end="0:10">...</p>
<p smil:begin="0:11.14"> ...</p>
...
<p smil:begin="1:05.00" id="conclusion">...</p>

</div>

The timesheet scheduler parses the value of the mediaSync at-
tribute and performs a querySelector() on its value. As there
is only one video element in this page, value video is enough.
This could also be done with syncMaster, but the main point is
that the proposed markup is suitable for timesheets as well. An-
other benefit is that the video element does not have to be nested
in the time container, which helps separate the content from the
timing logic.

The SMIL Timing module includes a note about hyperlink impli-
cation on the seq and excl time containers.6 It allows links
to activate a particular time node in these time containers. URI

5http://www.w3.org/TR/SMIL3/smil-timing.html#Timing-
ControllingRuntimeSync
6http://www.w3.org/TR/SMIL3/smil-timing.html#Timing-
HyperlinkImplicationsOnSeqExcl

http://website.tld/page.html#conclusion, for in-
stance, refers to the element with a conclusion id in the above
example and sets the video playback to the corresponding time
value (1:05.00 in this case). This is an easy way to create temporal
pointers.

5. EXTENSIBILITY
A declarative language describing the time structure and user inter-
actions may be enough for most cases, but in more complex sce-
narios, an imperative language like JavaScript is necessary. Instead
of having to choose between JavaScript and SMIL Timing, our im-
plementation allows developers to define the main time structure
declaratively and to extend it with JavaScript code when necessary.

5.1 DOM Event Listeners
As mentioned in the SMIL Timing module, SMIL target nodes fire
begin and end DOM events when activated and deactivated, re-
spectively. Web authors are used to set DOM event listeners to trig-
ger specific actions. These begin and end events are already well
known to SVG authors who use declarative SVG animations. Note
that these begin and end events can also be used as event values
in the begin and end SMIL attributes – again, like in declarative
SVG animations.

5.2 JavaScript API
In our implementation, SMIL time containers can be controlled dy-
namically through two kinds of JavaScript APIs:

• seq and excl containers expose the same API as the HTML
select element, i.e. mainly the selectedIndex prop-
erty and the onchange DOM event.

• all time containers expose a significant subset of the HTML-
MediaElement API (same as audio and video elements in
HTML5), e.g.: .currentTime, .duration properties,
.play(), .pause()methods, timeupdate, playing,
paused DOM events.

We rely on existing web APIs wherever it makes sense. The seq
and excl containers can be seen as HTML block level select
elements, and all SMIL containers can be seen as general media el-
ements – especially when synchronized with an audio or video
element.

Besides, the SMIL Timing implementation comes with a JavaScript
API that can be used to retrieve or create SMIL time containers
dynamically.

5.3 Custom Timing Attributes
To keep the benefit of a declarative approach the timesheet sched-
uler can also be dynamically extended to support custom timing at-
tributes that are too specific to be addressed by the SMIL specifica-
tion. Timesheets.js provides a way to parse such custom attributes
when time containers are initialized. Every custom attribute can
be defined by a JavaScript file; we introduce two new attributes,
navigation and controls, which are defined by two libraries.

5.3.1 Example: “navigation”
When using SMIL Timing for interactive presentations, a simple
and common case is to ease navigation within the main time con-
tainer. We are proposing a non-standard navigation attribute
for this, with the following values:

arrows lets arrow keys control the execution of the time con-
tainer: left/right to select the previous/next time node, up to
reset the current time node, and down to emulate a mouse
click on the current time node target;

click detects mouse clicks on the time container: the left/ middle
buttons select the next/previous time node;

scroll selects the previous/next time node on mouse scroll;

hash updates the fragment identifier (#id) in the URI when a
time node target has an id attribute.

A single navigation attribute may have multiple values (which
must be separated by semi-colons). For instance, navigation="arrows;
hash;" activates the arrow-key navigation mode and updates the
fragment identifier every time a time node target has an id at-
tribute. When this JavaScript extension is loaded, all time contain-
ers are checked and mouse/keyboard event listeners are dynami-
cally attached to the target time containers.

Though the navigation extension has proven to be useful for slide
shows,7 it is mainly proposed as a simple code base (less than 150
significant lines of code) for developers intending to write their own
custom timing features.

5.3.2 Example: “controls”
Another very frequent need is a user interface for handling time
containers: as modern web browsers provide native controls for
continuous media, we offer similar but richer controls that take
advantage of time container features. Such time controllers typi-
cally include (see bottom of Figure 1): a play/pause toggle button;
first/prev/next/last buttons (sequential access); a table of contents,
i.e. a nested list of links pointing to time nodes (direct access);
a graphical timeline, either continuous (like for usual audio/video
players) or segmented, where each segment is a link to a time node.

Instead of providing a single UI component, and in order to keep
the flexibility of SMIL time containers, these controller elements
are defined by a microformat: each UI component has a class name
that is used both to define its presentation (in CSS) and its behavior
(in JavaScript).

To highlight the current active time node (e.g. a timeline segment
or table of contents item) when the time container is running, a
7see http://wam.inrialpes.fr/timesheets/slideshows/slidy

time container is created dynamically with a mediaSync attribute
pointing to the main time container.

A typical use case of such a time controller is a recorded talk8

where slides are synchronized with the audio track. The timeline
may be segmented to display the corresponding slide heading when
the mouse hovers over it.

6. USING TIMESHEETS
In this section, we present real applications that were developed
using the technology discussed above.

6.1 Media-Driven Applications
A captioned video9 is a simple example of the category of appli-
cations presented in section 2.1. The whole application is imple-
mented in a single HTML5 file, whose content is basically the same
as in section 4.6.

In that example, the HTML div element is a time container for
the video and all captions. Each caption is a HTML p element
which contains the time when it must be displayed (smil:begin
attribute) relatively to the beginning of the video. If a caption must
disappear exactly when the next one is displayed, that is enough, as
the container is exclusive, but if it must disappear earlier, its end
date has to be explicitly stated.

The full HTML5 language may be used in each caption. The first
caption takes advantage of this feature to add a link to the home
page of the director and to split the text into two lines. CSS may
also be used to select a particular font, its size and color, or to set the
position of captions within the div element, i.e. over the movie.

6.2 Event-Driven Applications
We have worked with INA, the French national archive of audio-
visual, to publish on the web archived radio programs enhanced
with associated material.10 At first glance, the time structure could
look similar to the captioned video example discussed above, but
the goal here is not only to synchronize pictures or text with the au-
dio content. The objective is really to create an application where
the user receives help for moving across the audio recording and is
free to choose the associated information s/he wants, which could
be multimedia too, with other audio recordings, for example. This
is an example of an event-driven application as defined in section
2.2.

In this application (see screenshot on Figure 6), all the content is
specified by a HTML5 document, while timing and user interac-
tions are defined in a separate timesheet that refers to elements
in the HTML5 file through attributes select, mediaSync and
controls, as can be seen in this simplified version:

<timesheet xmlns="http://www.w3.org/ns/SMIL">
<!-- slide show / main section -->
<excl timeAction="display" mediaSync="#main"

controls="#timeController" dur="20:47">
<item select="#section1" begin="00:00.000"/>
<item select="#section2" begin="01:12.120"/>
<item select="#section3" begin="04:41.742"/>

8see http://wam.inrialpes.fr/timesheets/slideshows/audio
9see http://wam.inrialpes.fr/timesheets/annotations/video

10see http://wam.inrialpes.fr/timesheets/public/webRadio/

Figure 6: Enhanced radio program

</excl>
<!-- extra material: multimedia pages -->
<excl>

<item select="#extra2"
begin="open2.click; toc-extra2.click"
end="close2.click; section2.end"/>

<item select="#extra3"
begin="open3.click; toc-extra3.click"
end="close3.click; section3.end"/>

</excl>
<!-- extra material: audio -->
<par mediaSync="#track2a" controls="#timeline2a"

dur="2:24.039"/>
<par mediaSync="#track2b" controls="#timeline2b"

dur="3:59.928"/>
<!-- extra material: rotating pictures -->
<seq timeAction="display"

repeatCount="indefinite">
<item select="#extra4 img" dur="3s"/>

</seq>
</timesheet>

In this timesheet, the first excl element specifies a slide show syn-
chronized with the audio recording (the audio element identified
by the main id in the HTML5 file). The time structure of this part
is similar to the captioned video example. Elements identified as
sectionn are divisions in the HTML5 file that contain text and
pictures. They define the main slides of the slide show.

The second excl element allows the user to display additional
slides (identified as extran in the HTML5 file) on request. This
is achieved through buttons included in the main slides (ids openn
refer to button elements which are part of the main slides). The
right part of Figure 6 shows such a button. Similarly, additional
slides contain buttons (ids closen) the user can click for closing
them.

The element identified as timeController in the HTML5 file
and referred by the first excl element specifies, in addition to the
usual controls for an audio stream, a table of contents that the user
can display with a button. The items of this table of contents have
ids toc-extran. Clicking them not only skips to the correspond-
ing section of the main audio track, but also displays the corre-
sponding additional slide, as specified in the second excl element.

The role of the par elements is to associate controls with the ad-
ditional audio tracks, which are part of an additional slide in the
HTML5 file. These audio tracks are activated as soon as the user
opens the additional slide that contains them. S/he is then free to
use the controls for listening to one of these oral comments.

Finally, the seq element at the end of the sample code specifies
that all images contained in the extra4 additional slide must be
presented one after the other, each during 3 seconds, repeatedly.
This automatic picture show starts as soon as the user clicks the
button displaying the fourth additional slide.

7. CONCLUSION
Because most web developers are used to the HTML-CSS-JS triple,
we have extended its capabilities with timing features borrowed
from the SMIL language for enabling multimedia web applications.
This approach fully preserves the declarative nature of web formats
and their structural model for most applications, while scripts are
still available to cover the most complex cases.

Developers do not have to choose between a logical and a temporal
structure. Both kinds of structure can co-exist in the same docu-
ment. In addition, temporal references can be used easily. DOM
events, including SMIL time events, are available, which allows
complex temporal and interaction behaviors to be defined. Content
can be dynamically generated when necessary (e.g. timeController
structures). Rich media navigation, as well as table of contents
navigation, can be provided thanks to additional libraries. Content
reusability and multi-device rendering are possible (the videotaped
talk of Figure 1, for instance, runs on the iPhone and the iPad too).
Components defining common behavior can be used in a declara-
tive way.

Figure 7: HTML5, CSS3, SVG and timesheets.js

The approach developed here and the timesheets.js library are not
restricted to HTML5 documents. They can be used in graphic
applications based on SVG, or in compound documents mixing
HTML5 and SVG. This is illustrated by Figure 7 (a timed version is
also available on-line11). The gray disc represents the main features

11 http://wam.inrialpes.fr/timesheets/slideshows/svg.html

expected from web multimedia languages, which are covered by
SMIL to a large extent; the curved arrows show how they have been
adopted by (or transposed in) other web languages. Timesheets.js
closes the loop, thus bringing the full power of SMIL to usual web
compound documents that can be rendered natively in the browser.

Several multimedia applications based on timesheets.js are pre-
sented in this paper. These are not just examples; most of them are
deployed on varions web sites. As an example, multiple videotaped
talks such as the one of Figure 1 are published by ENS-Lyon.12

A further step would be to introduce the features implemented by
timesheets.js directly in the document languages of Figure 7. Most
timing attributes are already part of the future SVG 2.0 language.
Adding three more attributes, mediaSync, timeAction and
timeContainer, would enable SVG applications such as slide
shows or media annotation. This would also help to put tempo-
ral structures on SVG animations. There would be more work for
HTML5, but reserving a prefix such as smil- could facilitate the
integration of timing attributes later. CSS3 already includes transi-
tions and animations, but it would be easier if the three states (idle,
active, done) where available as pseudo-classes in selectors.

Because they are so close to usual web documents, multimedia doc-
uments based on the timesheets.js library may be developed in the
same way as any web page, and can even be hand-coded. But, they
could also benefit from specialized tools that would help develop-
ers to handle time information in documents. Now that a robust
scheduler engine is available, the next step in our work is to de-
velop specialized authoring tools.

8. ACKNOWLEDGEMENTS
The research presented in this paper was conducted in the C2M
project, funded by ANR, the French National Research Agency,
under its CONTINT 2009 programme.

The authors are grateful to Dominique Saint-Martin from INA-
GRM for providing the web radio application and to Gérard Vidal
from ENS Lyon for the videotaped talk application. Both have pro-
vided real use cases and valuable feedback that were key in testing
and validating timesheets.js.

9. REFERENCES
[1] J. F. Allen. Maintaining knowledge about temporal intervals.

Comm. ACM, 26:832–843, Nov. 1983.
[2] Ambulant. Ambulant open SMIL player,

http://www.ambulantplayer.org/.
[3] O. Aubert, P.-A. Champin, Y. Prié, and B. Richard.

Canonical processes in active reading and hypervideo
production. Multimedia Systems, 14:427–433, 2008.

12see http://html5.ens-lyon.fr/

[4] D. Bulterman et al. Synchronized Multimedia Integration
Language (SMIL 3.0). W3C Recommendation, Dec. 2008.

[5] F. Cazenave. A declarative approach for HTML Timing using
SMIL Timesheets, http://wam.inrialpes.fr/timesheets/, 2011.

[6] R. Deltour and C. Roisin. The LimSee3 multimedia
authoring model. In D. Brailsford, editor, Proceedings of the
2006 ACM Symposium on Document Engineering, DocEng
2006, pages 173–175. ACM Press, Oct. 2006.

[7] ISO. Iso/iec 10744:1992 - information technology –
hypermedia/time-based structuring language (hytime).

[8] J. Jansen and D. Bulterman. SMIL State: an architecture and
implementation for adaptive time-based web applications.
Multimedia Tools and Applications, 43:203–224, 2009.

[9] P. King, P. Schmitz, and S. Thompson. Behavioral reactivity
and real time programming in XML: functional
programming meets SMIL animation. In Proceedings of the
2004 ACM Symposium on Document Engineering, DocEng
’04, pages 57–66, New York, NY, USA, 2004. ACM.

[10] J. Mikác, C. Roisin, and B. Le Duc. An export architecture
for a multimedia authoring environment. In Proceeding of the
eighth ACM Symposium on Document Engineering, DocEng
’08, pages 28–31, New York, NY, USA, 2008. ACM.

[11] MIT. Infinite history, http://mit150.mit.edu/infinite-history,
2011.

[12] K. Pihkala and P. Vuorimaa. Nine methods to extend SMIL
for multimedia applications. Multimedia Tools and
Applications, 28:51–67, 2006.

[13] D. Raggett. HTML Slidy: Slide shows in HTML and
XHTML, http://www.w3.org/talks/tools/slidy2/, 2005.

[14] L. F. Soares, R. F. Rodrigues, R. Cerqueira, and S. D.
Barbosa. Variable and state handling in NCL. Multimedia
Tools and Applications, 50:465–489, Dec. 2010.

[15] L. Villard. Authoring transformations by direct manipulation
for adaptable multimedia presentations. In Proceedings of the
2001 ACM Symposium on Document Engineering, DocEng
’01, pages 125–134, New York, NY, USA, 2001. ACM.

[16] P. Vuorimaa. Timesheets JavaScript Engine,
http://www.tml.tkk.fi/˜pv/timesheets/, 2007.

[17] P. Vuorimaa, D. Bulterman, and P. Cesar. SMIL Timesheets
1.0. W3C Working Draft, Jan. 2008.

