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Abstract. Recently, it has been proposed to use Bernstein races for
implementing non-regression testing in noisy genetic programming. We
study the population size of such a (1+λ) evolutionary algorithm applied
to a noisy fitness function optimization by a progress rate analysis and
experiment it on a policy search application.

1 Introduction

Genetic programming (GP) consists in automatically building a pro-
gram for solving a given task. The fitness function quantifies the efficiency
of a program for this task.
Non-regression testing consists in testing each new version of a pro-
gram, in order to check that it is at least as good as the previous version.
Non-regression testing is very difficult when the fitness function is noisy,
as it is uncertain. Statistical tests have to take into account the high num-
ber of tests - this is a non-trivial issue. The present work originates in
the tedious non-regression testing in a highly collaborative development,
often poorly performed by humans. They don’t care at the individual
level of the global risk due to multiple testings. Tests had to be automa-
tized, simultaneously with the development of improvements in a search
module by automatic means in order to get rid of human biases in such
developments.
Noisy GP is an important problem, related to many applications. In
particular, direct policy search with symbolic controlers is noisy genetic
programming, as well as the design of sorting algorithms faster on aver-
age on a huge number of instances. Bandits have been investigated very
early for this problem[9, 7]. However, bandits address the problem of the
load balancing between different possible mutations, but not the valida-
tion of the selection, i.e. the halting criterion for the offspring evaluation.
Races[11] have the double advantage of considering the load balancing
and the statistical validation. [11] considers the case in which we look
for all good mutations. We might, in GP, be more interested in finding
one good mutation, as µ good mutations do not necessarily cumulate to
one better mutation. Yet, the case of selecting several good mutations
is important also, but it was shown in [8] that there are frameworks in
which µ = 1 is more relevant and we focus on this case. In the case of



continuous optimization, races have been theoretically analyzed as a tool
for ensuring optimal rates (within log factors) in [12]. A partial theoreti-
cal analysis, essentially ensuring consistency, was proposed for GP in [8]:
we here extend this work by an analysis of progress rate. Importantly,
the theoretical analysis proposes a choice for λ by optimisation of the
progress rate.
Progress rate theory is classical in continuous optimization[2]. The
progress rate will be here adapted to noisy GP. We will consider T (for-
mally defined below), the number of fitness evaluations before finding a
good mutation. The progress rate is then defined as 1/T , the inverse time
before finding a good mutation. We will then, following the continuous
case, choose parameters that optimize the progress rate. Note that here,
the progress rate is a success probability; this is equivalent to classical
criteria [3] only in restricted settings (see assumptions in Section 3).

2 Framework and notations

Consider a program P , and a set M of possible mutations; let P +m be
the program after application of mutation m. Assume that the fitness
is stochastic; f(P + m) is a random variable with values in [−1, 1]. In
all the paper we consider maximization. We consider (1 + λ) genetic
programming algorithms as in Alg. 1; this is a simple (1+λ)-algorithm[8].

RBGP algorithm.
Parameters: a risk level δ, a pop. size λ, a coefficient c > 1, a
threshold ǫ > 0.
Let K = 1/(

∑

n≥1 1/n
c)

Let P be a program to be optimized
Let M be a set of possible mutations on P
Let n← 0
while There is some time left do

while no mutation accepted do
Let n← n+ 1
Randomly draw pop = {m1, . . . ,mλ} in M
Perform a Bernstein race with risk δn = Kδ/nc on pop and
threshold ǫ
if A mutation m is selected then

P ← P +m
end if

end while
end while

Algorithm 1: One-plus-lambda Racing-Based Genetic Programming. We as-
sume c > 1 so that K is finite.

All this section is written assuming that the range of fitness values is
bounded in absolute value by 1, i.e. when we compute the fitness of a



point we get an answer between −1 and 1. We assume that the fitness
is unbiased, i.e. the expected value of the measurements is equal to the
real fitness. This is standard in e.g. Monte-Carlo sampling, or in some
randomized forms of Quasi-Monte-Carlo samplings.
Hoeffding and Bernstein bounds quantify the effect of noise on empirical
averages. In noisy cases, the fitness fitness(x) of a point x is unknown:
we have only access to y1, . . . , yk, k real numbers, if fitness(x) has been

approximated k times; a natural estimate is ̂fitness(x) = 1
k

∑k
i=1 yi.

Hoeffding or Bernstein bounds state that with probability at least 1− δ,

|fitness(x)− ̂fitness(x)| < deviation, where deviation is

deviationHoeffding =
√

log(2/δ)/k. (1)

[1, 11] has shown the efficiency of using Bernstein’s bound instead of
Hoeffding’s bound, in some settings. The deviation term is then:

deviationBernstein =
√

σ̂22 log(3/δ)/n+ 3 log(3/δ)/k. (2)

This equation depends on σ̂2, the empirical variance of the measurements
y1, . . . , yk. An interesting feature of this equation is that using σ̂2 and not
the real variance σ2 is not an approximation: the inequality is rigorous
with σ̂2 (contrarily to many asymptotical confidence intervals).
The Bernstein race is a typical one, following [11], except that we want
to validate one and only one mutation, because in our framework it is
known [8] that two good mutations do not necessarily cumulate, in the
sense that sometimes:

Ef(P +m1) > Ef(P )

Ef(P +m2) > Ef(P )

and yet Ef(P +m1 +m2) < Ef(P ).

In a (1 + λ)-GP, we look for a mutation which provides a better success
rate than the current parent, i.e. a higher fitness. However, we will here
translate the fitness by substracting the fitness of the parent; i.e. with a
fitness function with values in [−1, 1] and a parent z, we define

fitness′(x) = (fitness(x)− fitness(z))/2;

this just doubles the number of calls to the fitness. Therefore, in the
Bernstein race, and without loss of generality, we look for a mutation
which gives a positive fitness, instead of a mutation with fitness(x) >
fitness(z). The Bernstein race is as presented in Alg. 2, and the
computeBounds function is defined as shown in Alg. 3.
where # denotes the cardinal operator.
Important properties of Bernstein’s races as above, and which hold with
probability at least 1− δ, are the followings ([11]).
Properties of Bernstein races.

– Property 1. The number of evaluations in a Bernstein race

• with population size #pop;
• with parameters δ and ǫ;



BernsteinRace(pop, δ, ǫ)
while pop 6= ∅ do

for all m ∈ pop do
Let n be the number of simulations of mutation m.
Simulate m n more times (i.e. now m has been simulated 2n
times).

//this ensures nbTests(m) = O(log(n(m)))
computeBounds(m,M, δ)
if lb(m) > 0 then

Return individual corresponding to mutation m.
else if ub(m) < ǫ then

pop = pop \ {m} m is discarded.
end if

end for
end while
Return “no good individual in the offspring!”

Algorithm 2: Bernstein race for selecting good individuals in a population
pop. M is the complete set of arms (global variable; see Alg. 1).

Function computeBounds(m, pop, δ)
Static internal variable: nbTests(m), initialized at 0.
Let n = nbTests(m).
Let r be the total reward over those n simulations.
nbTests(m) = nbTests(m) + 1
lb(m) = r

n
−deviationBernstein

(

δ/(#pop× π2nbTests(m)2/6), n
)

.

ub(m) = r
n
+deviationBernstein

(

δ/(#pop× 2π
2nbTests(m)2/6), n

)

.

Algorithm 3: Function for computing a lower and an upper bound on arm m

with confidence 1− δ, where pop is the complete set of arms.



• with a population such that, with p = max(ǫ,maxm∈pop Ef(P +
m)), all expected fitness values are in [−Θ(ǫ), p] (possibly all
fitness values ≤ 0, case in which there’s no good mutation).

is

T ime(pop, δ, ǫ) = Θ(Th(#pop, δ, ǫ, p))

where

Th(#pop, δ, ǫ, p) =

(

log(
#pop log(1/p)

δ
)

)

max
(

σ2/p2, 1/p
)

(3)

with: σ2 is an upper bound on the variance of fitness values:

σ2 = sup
m

E(f(P +m)− Ef(P +m))2.

– Property 2. If a mutation is selected, then it has fitness > 0.

– Property 3. If there is a mutation with fitness ≥ ǫ then the race will
return a mutation.

We will here focus on the case σ2 = Θ(1) (which corresponds to the
applicative framework in which variance does not decrease; this is con-
sistent with many applicative fields, in particular when optimizing the
parameters of a strategy with optimal success rate < 100% - yet, other
cases might be considered in a future work), and therefore Eq. 3 can be
replaced by Eq. 4 without significant loss:

Th(#pop, δ, ǫ, p) =

(

log(
#pop log(1/p)

δ
)

)

/p2. (4)

Properties of RBGP. Eq. 4 and properties of Bernstein races above
lead to the following properties of RBGP, which hold (all simultaneously)
with probability at least 1− δ: if there are

– n−1 iterations of RBGP in which all mutations have expected fitness
∈ [−ǫ, 0];

– and thereafter, 1 iteration of RBGP with at least one mutation with
expected fitness p and all other mutations with expected fitness in
[−ǫ, p].

then

– Property A: RBGP will not return a bad mutation (i.e. a mutation
with fitness ≤ 0);

– Property B: If there is a mutation with fitness ≥ ǫ then a mutation
will be found;

– Properby C: And in that case the halting time is at most

O

(

n−1
∑

i=1

Th(λ,Kδ/ic, ǫ, p) + Th(λ,Kδ/nc, p)

)

(5)

Eq. 5 will be central in the progress rate analysis below.



3 Progress rate of Racing-based GP

We consider that randomly drawn mutation have fitness1:

– q > 0 with probability f > 0;

– ≤ 0 otherwise.

We will study the behavior of (1 + λ)-GP depending on q and f . The
other relevant parameters are:

– λ (the offspring size);

– ǫ, the threshold of the Bernstein races (see Alg. 1);

– c, a parameter used in Alg. 1 and which is of moderate importance
as shown below.

The different cases under analysis are (i) q = ǫ (ii) q >> ǫ. We will
investigate the running time, i.e. the number T of fitness evaluations
before finding a good mutation with probability at least 1 − 2δ. It is
already known[8] that with probability at least 1− δ,

– if there is a good mutation (fitness ≥ q), it will be found;

– no bad mutation (fitness < 0) will be selected. Possibly, the race
replies that it did not find any good mutation.

We will show (i) that a too mild rejection threshold ǫ has bad effects
(section 3.1); (ii) that a good tuning provides significant improvements
(section 3.2); (iii) that there is a parameter free version with ensures that
there’s no infinite loop (section 3.3).

3.1 Too mild rejection: q >> ǫ

Here, the precision required for rejecting a bad mutation is very small in
front of the quality of good mutations. The following result shows that
in that case the choice of λ is crucial: λ should be of the order

log(δ)/ log(1− f) (6)

Theorem 1: rejection pressure too small (ǫ too small). Assume
that q > ǫ. Then,

– If λ ≥ ⌈ log(δ)
log(1−f)

⌉, then T = Θ(λ log(λ/(qδ))/q2).

– If λ ≤ log(1/2)
log(1−f)

, then T = Ω(log(1/(f2ǫδ)/ǫ2).

Proof: Eq. 5 shows that the computational cost is

O

(

n−1
∑

i=1

Th(λ,Kδ/ic, ǫ, q)Th(λ,Kδ/nc, ǫ, q)

)

. (7)

where n is the number of iterations before a good mutation is in an
offspring.

The basic fact for the following is that the probability, for an offspring,
to contain no good mutation is exactly (1− f)λ.

We distinguish the two cases of the theorem:

1 We recall that fitnesses are translated as explained in section 2 so that the parent
has fitness 0 and therefore “good” mutations are mutations with value > 0.



– If λ ≥ ⌈ log(δ)
log(1−f)

⌉, then

(1− f)λ ≤ δ.

This implies that with probability at least 1− δ, there’s at least one
good mutation in the first offspring. Therefore, n = 1; this and Eq.
7 yield the expected result.

– If λ ≤ log(1/2)
log(1−f)

, then

(1− f)λ ≥
1

2
.

Therefore with probability at least 1
2
, there’s no good mutation in

the first offspring. Then, Eq. 7 (the first term) is enough for showing
that

T = Ω(log(1/(f2ǫδ)/ǫ2)

which is the expected result.

Remark: In the case q >> ǫ, this theorem implies that λ ≥ ⌈ log(δ)
log(1−f)

⌉

is much better than λ ≤ log(1/2)
log(1−f)

.

3.2 Well tuned parameters: q = ǫ

Theorem 2: population size with well tuned parameters. Assume
that q = ǫ > 0. Then,

T = Θ(
λ log(λ log( 1

ǫ
)/δ)

(1− (1− f)λ)ǫ2
). (8)

Proof: We use Eq. 5, which shows that

O

(

n−1
∑

i=1

Th(λ,Kδ/ic, ǫ, q) + Th(λ,Kδ/nc, ǫ, q)

)

. (9)

Then, we compute n, the number of offsprings before we have a good
mutation. A good mutation is found in an offspring with probability
1 − (1 − f)λ. Therefore, n is a geometric random variable with param-
eter z−1 =

(

1− (1− f)λ
)

: its expected value is Θ(z), and its standard

deviation is Θ(z). So, with probability 1 − δ, n = Θ(1/
(

1− (1− f)λ
)

.
This and Eq. 9 lead to

T = Θ

(

n
∑

i=1

Th(λ,Kδ/ic, ǫ, q)

)

.

(10)

This is equivalent to

T = Θ (nTh(λ,Kδ/nc, ǫ, q)) .

(11)

which in turn is equivalent to Eq. 8 for a fixed c.
Remark: Theorem 2 provides an evaluation of the cost

T = Θ(
λ log(λ log( 1

ǫ
)/δ)

(1− (1− f)λ)ǫ2
).

If we neglect all logarithmic factors,



– this is linear as a function of λ if λ ≃ 1/n, i.e. the overall cost is
linear as a function of 1/(fǫ2).

– this is linear as a function of 1/(fǫ2) if λ = 1.
We therefore see that the population size does not matter a lot when the
parameter ǫ is chosen so that it nearly matches q.

3.3 No prior knowledge

The analysis above has the weakness that it requires some knowledge on
the fitnesses of possible mutations, in order to choose ǫ, the parameter
used in the rejection rule. The main risk is a too strong rejection: q << ǫ
would lead to the rejection of the best mutations. We here investigate
results possible with no knowledge at all.

BernsteinRace(pop, δ, ǫ)
while pop 6= ∅ do

for all m ∈ pop do
Let n be the number of simulations of mutation m.
Simulate m, n more times

(i.e. now m has been simulated 2n times).
//this ensures nbTests(m) = O(log(n(m)))

computeBounds(m,M, δ)
if lb(m) > 0 then

Return individual corresponding to mutation m.
else if average fitness(m) < 0 then

pop = pop \ {m} m is discarded.
end if

end for
end while
Return “no good individual in the offspring!”

Algorithm 4: Variant of Bernstein race: a pattern is rejected as soon as its
average fitness is below 0.

Theorem 3: population size with q << ǫ. Consider RBGP with the
Bernstein race as in Alg. 4. Then, with probability 1−δ, no bad mutation
is accepted, and if the probability of a good mutation is positive, then

T <∞. (12)

Proof: The fact that no bad mutation is accepted (with probability at
least 1 − δ) follows the same lines as in other cases, as the acceptance
criterion has not been modified.
We have to show T <∞. This is proved as follows:
– A mutation with fitness > q is selected infinitely often, as such a

mutation is in the population with positive probability by assumption.
– Such a mutation has a non-zero probability of having always a posi-

tive empirical average.



4 Experimental results

The theoretical results above for choosing the population size are rather
preliminary; the population size can be chosen optimally only if we have
many informations. On the other hand, it proposes a criterion different
from classical Bernstein races: acceptance is based on the same crite-
rion as usual Bernstein races, but rejection is based on a simple naive
empirical average, and with this criterion we have T finite without any
prior knowledge. We here experiment rules a bit more complicated than
algorithms above.
We have already tried the algorithm on the program MoGo (a software of
Go) without real success against the full version of the software. We have
decided to compare with another testbed. The testbed is Monte-Carlo
Tree Search (MCTS [4, 6]) on the game NoGo [5]. It is a two-player board
game. It is a variant of the game of Go. The rule is the following : the
first player which captures one or several stone(s) has lost and the pass
move is forbidden. This game has been designed by the Birs seminar on
games as a nice challenge for game developpers. In all our experiments,
we have worked on the size 7x7 of the game.
The baseline is the program NoGo (adapted from MoGo[10]) without
mutation. In our experiments, we have added some rules in order to reject
more rapidly some bad mutations, combining Algo. 2 (which requires
some knowledge on the distributions) and Algo. 4 (which requires no
knowledge). This leads to Algo. 5, which is somehow a combination of
these two algorithms, empirically developped for our problem.

BernsteinRace(pop, δ, ǫ)
while pop 6= ∅ do

for all m ∈ pop do
Let n be the number of simulations of mutation m.
Simulate m n more times (i.e. now m has been simulated 2n
times).

//this ensures nbTests(m) = O(log(n(m)))
computeBounds(m,M, δ)
if lb(m) > 0 then

Return individual corresponding to mutation m.
else if average fitness(m) < 0.004 or (average fitness <
0.006 and n > 105) then

pop = pop \ {m} m is discarded.
end if

end for
end while
Return “no good individual in the offspring!”

Algorithm 5: Empirically modified version of Bernstein race for our problem.
It is essentially Alg. 4, with a bit more of rejection for fastening the algorithm.
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Fig. 1. Top: win rate of NoGo+mutations against the baseline (i.e. NoGo without
mutation). Win rates are given with a precision of +/-0.3%. Bottom: the “running
time“ (measured by the cumulated number of simulations) for finding a good mutation.



Fig. 1 shows a slightly better result for λ = 16, for a fixed number of
mutations compared to λ = 1 and λ = 2; but more extensive experiments
(possibly on toy datasets) are required; results are nearly the same for
all λ in our real-world case. In all cases, we could get a nice curve, with
a very significant (almost 70%) success rate against the baseline, which
is still clearly increasing (yet, in a slower manner).

Another question is about the best population size λ in our experi-
ments. It seems that we have generally a good mutation with frequency
1/15. Using Eq. 6, with δ = 0.05 and assuming f ≃ 1/15, we get
λ ≃ log(0.05)/ log(1 − 1/15) ≃ 43. Therefore our analysis suggests a
population size λ ≃ 43.

5 Conclusion

The use of Bernstein races for rigorously performing non-regression test-
ing was already proposed in [8]. We here investigate the natural question
of the choice of the population size λ, and the modification of Bernstein
races when no prior knowledge is available:

– Choosing the population size. The good news is that we find a
formula for optimaly choosing λ, equal to log(δ)/ log(1 − f) where
f is the frequency of good mutations and δ the risk level chosen by
the user. Unfortunately, f is unlikely to be known unless the fitness
improvement q that one can expect from good mutations is nearly
known, and in this case the user is likely to choose ǫ of the order
of q, and we show that in this case there is little to win by a good
choice of λ: λ = 1 performs at least nearly as well as all values of λ.

– What if we have no prior knowledge ? We could propose a
modified Bernstein race (Alg. 4) which has the advantage that it
always converges (T <∞), independently of all parameters.

In the experiments, we heuristically combined our various tools for opti-
mizing the performance, proposing Algo. 5. Importantly, we got a very
significant result on a new game, NoGo, recently proposed by the Birs
seminar on games - the curve shows a regular improvement, for each
parametrization of the algorithm. Importantly, we made this work with
applications in minds; further investigations, on toy datasets for conve-
nience and clarity, are necessary - so that we can see experimental results
with confidence intervals, bridging the gap between our maths and our
real-world experiments.
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