
HAL Id: inria-00623780
https://hal.inria.fr/inria-00623780

Submitted on 17 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Requirements Aware Systems: Run-time
Resolution of Design-time Assumptions

Nelly Bencomo, Kristopher Welsh, Pete Sawyer

To cite this version:
Nelly Bencomo, Kristopher Welsh, Pete Sawyer. Towards Requirements Aware Systems: Run-time
Resolution of Design-time Assumptions. ASE’11 - 26th IEEE/ACM International Conference On
Automated Software Engineering, Nov 2011, Lawrence, Kansas, United States. �inria-00623780�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49961777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00623780
https://hal.archives-ouvertes.fr


Towards Requirements Aware Systems: Run-time
Resolution of Design-time Assumptions

Kristopher Welsh, Pete Sawyer
School of Computing & Communications

InfoLab21, Lancaster University
Lancaster, UK

k.welsh@lancaster.ac.uk, sawyer@comp.lancs.ac.uk

Nelly Bencomo
INRIA Paris - Rocquencourt

Le Chesnay, Franceaine de Voluceau, B.P.105
78153 Le Chesnay, France

nelly@acm.org

Abstract—In earlier work we proposed the idea of
requirements-aware systems that could introspect about the
extent to which their goals were being satisfied at runtime.
When combined with requirements monitoring and self adaptive
capabilities, requirements awareness should help optimize goal
satisfaction even in the presence of changing run-time context. In
this paper we describe initial progress towards the realization of
requirements-aware systems with REAssuRE. REAssuRE focuses
on explicit representation of assumptions made at design time.
When such assumptions are shown not to hold, REAssuRE
can trigger system adaptations to alternative goal realization
strategies.

Keywords-requirements awareness; self adaptive systems;
goals; claims;

I. INTRODUCTION

In [1] previous work, we have proposed the LoREM goal-
driven method for deriving requirements for self-adaptive
systems [2]. In this paper we extend this work to derive
the REAssuRE method (REcording of Assumtions in RE) to
support reasoning over uncertainty. REAssuRE extends the i*
[3] Strategic Rationale (SR) goal models used by LoREM to
include claims. In REAssuRE, claims record the rationale for
selection between alternative goal realization strategies.

Self-adaptation is often used to mitigate an inability to
accurately predict the range of environmental contexts that a
system will encounter at run-time. The specification and design
of self adaptive systems is thus often subject to uncertainty,
forcing the developer to make assumptions in order to identify
and define the means to achieve the system’s goals. Using
claims, an assumption made in selecting a goal realization
strategy can be made explicit. In REAssuRE, if data collected
by monitoring provides evidence that such an assumption is
false, the effects can be propagated to the goal models used
to specify the goal realization strategy, which can then be
automatically re-evaluated. This may trigger the system to
adapt by binding to an alternative means of goal realization.

The primary contribution of this paper is to demonstrate
the feasibility of maintaining goal models at runtime and their
utility for guiding principled adaptations to contexts encoun-
tered at runtime that were imperfectly understood at design
time. In succeeding sections we will describe REAssuRE in
more detail and describe its use in an adaptive flood warning

system, before briefly reviewing related work and drawing
final conclusions.

II. REASSURE

Goal modeling enables the intention (goals) of both the
computational and the non-computational agents in a domain
to be modeled. The partitioning of goal models by agent
in i* [3] is a good match for the approach recommended
by [4], and followed by LoREM [1], in which a volatile
environmental context can be conceptualized as a finite set
of discrete environmental contexts.

A further advantage of goal-oriented RE, is the ability
to model non-functional requirements (NFRs) directly as
softgoals and to represent the impact of different solution
strategies on softgoal satisficement. This feature is exploited
by LoREM, where for all contexts, the system is considered
to have a common set of goals and softgoals. However, goal
realization is specified on a per-context basis, and tailored to
what is the optimal trade-off among the softgoals in each
context. For example, in a sensor network whose goal was
to gather data about a volcano, conserving battery power
might be prioritized during quiescent periods, but frequent data
collection might be the priority when an eruption appeared
imminent.

In i*, reasoning about the best goal satisfaction strategy is
informed by the values that the analyst gives to the contribu-
tion links that record the expected effect of each realization
strategy on the softgoals. Realization strategies are modeled
as tasks. In its simplest form, a task can make, help,
hurt, break or have a neutral effect on satisficement of a
softgoal. However, where uncertainty exists, perhaps because
of imperfect knowledge about the environment, the effect of
different goal realization strategies on the softgoals may be
uncertain, forcing the analyst to make assumptions.

In REAssuRE, we extend the i* strategic rationale (SR)
models used in LoREM with claims, a concept borrowed from
the NFR framework [5]. Claims are attached to softgoal contri-
bution links and are used to record the rationale for a choice
of goal realization strategy when there is uncertainty about
the optimum choice. Claims serve as markers for uncertainty,
helping the analyst evaluate the consequences of assumptions
proving false.



Claims thus serve a static purpose of making the assump-
tions that may underly key design decisions implicit and
traceable [6]. However, claims also have dynamic utility.
By maintaining run-time representations of the goal models
and monitoring claims via context variables, the effects of
a claim proving false can be propagated to the goal model
and the merits of the competing goal realization strategies
can be dynamically reevaluated. Thus, a system may mitigate
the corresponding mistaken assumption by self-adapting to a
configuration that represents a better solution strategy.

The semantics of claim propagation are simple. The impact
of the truth of claims on the contribution links to which they
attach is boolean; they either make or break them resulting
in make, neutral or break contributions:

claim = break ⇒ c′ = neutral

claim = make ∧ (c = hurt ∨ c = break) ⇒ c′ = break

claim = make ∧ (c = help ∨ c = make) ⇒ c′ = make

Where c is the value that annotates the contribution link
to which the claims is attached and c’ is the value of the
contribution link when combined with the effect of the claim.
Thus, revising the truth value of a claim can affect the extent
to which a task satisfices a softgoal, and this in turn can (e.g.)
change the task from representing the optimal goal realization
strategy to one that is no longer the best of those available.

The above makes a number of simplifying assumptions
about the complexity of the i* models used. In particular, we
assume that each alternative solution strategy is represented by
a claim which is in turn modelled as a leaf of the goal tree.
Moreover, for each such claim, its impact on satisficement of
the relevant softgoals is represented by a contribution link. It
is to these contribution links to which claims may be attached.

Thus, to exploit REAssuRE for run-time reasoning, the
expressiveness of i* goal models is restricted to a constrained
subset. The payoff of the these constraints is that an auto-
matic reasoning system can evaluate softgoal satisficement at
runtime which, when coupled with a self-adaptive capability
in the system under design, should help guarantee adaptation
decisions that are principled and taken explicitly to further the
system’s goals.

III. EXAMPLE REASSURE IMPLEMENTATION

We have applied REAssuRE to GridStix [7, 8], an experi-
mental flood warning system. GridStix was a sensor network
of smart nodes capable of sensing the state of the river,
processing the data and communicating it across the network.
Flow rate and river depth data was used by a stochastic
model which predicted the likelihood of the river flooding.
GridStix acted as a lightweight Grid, capable of distributing
tasks such as the processing of the digital camera images used
for estimating surface river flow.

GridStix has been decomissioned but a simulator has been
constructed that embodies the experience gained and which al-
lows us to run scenarios and simulate events. System behaviour

is defined by the configuration of components managed by
an adaptive middleware system. Adaptation is achieved by
swapping components in and out, binding them dynamically.

Run-time reasoning in REAssuRE focuses on identifying
goals that act as variation points (e.g. Transmit Data in Fig
1), each of which may be satisfied by two or more i* tasks (e.g.
Use Bluetooth and Use WiFi in Fig 1) representing alternative
goal realization strategies. Each such task is mapped onto a
particular component configuration.

Figure 1 shows one of the i* goal models developed for
GridStix. It represents the agent S3, which is responsible for
satisfying the goals of GridStix when the stochastic model
indicates that the river is about to flood. The figure shows that
S3’s primary goal is to Predict Flooding, while it has three
softgoals Fault Tolerance, Energy Efficiency and Prediction
Accuracy. All the softgoals are to some extent in competition.
For example, the choice of wireless communication technol-
ogy entails a trade-off between Fault Tolerance and Energy
Efficiency. Bluetooth consumes significantly less energy than
Wi-Fi but has a much shorter range. Thus, if Bluetooth is
chosen to satisfice the Energy Efficiency goal, Fault Tolerance
may suffer because, depending on the physical topology of
the network, the failure of a node is more likely to leave its
neighbours isolated and unable to communicate than would be
the case if S3 had been configured to use Wi-Fi.

S3 represents a situation in which there is a high risk of
nodes failing by submersion or water-borne debris so Fault
Tolerance is prioritized over Energy Efficiency. Similarly,
frequent and accurate data about river flow is required so
Prediction Accuracy is also prioritized over Energy Efficiency.
Thus Figure 1 shows that the tasks use Wi-Fi, Use FH
Topology and Multi Node Image Processing are selected as
the goal realization strategies for the variation point subgoals
Transmit Data, Organize Network and Calculate Flow Rate,
respectively.

Each variation point has a claim attached to one of the
tasks’ contribution links providing the rationale for the choice
of goal realization strategy. Thus, for example, SP too risky
for S3 represents an assumption that node failure is likely
to lead to fragmentation of the network if a shortest-path
(SP) spanning tree is selected, rather than the normally more
resilient fewest-hop (FH) spanning tree. The effect of the claim
is to Make the Hurt contribution link between the Use
Bluetooth task and the Fault Tolerance. As explained above,
this in turn has the effect of Break-ing the link, so making the
balance of contributions favour the Use WiFi goal realization
strategy. Crucially, however, SP topologies aren’t always prone
to network fragmentation, particularly if the individual nodes
fail only infrequently. This uncertainty over whether SP will
really lead to poor resilience is what that motivates our making
it explicit in the form of a claim.

Claims can derive other claims in a Claim Refinement Model
(Fig 2) in which claims are organized in a hierarchy. Claims
can be AND-ed or OR-ed, allowing the effect of refuted claims
to be propagated down the tree to the bottom-level claims;
the ones used to annotate softgoal contribution links. Claim



Fig. 1. GrdiStix SR Model

refinement allows the derivation of claims to be made explicit.
It also allows high-level claims to be decomposed to primitive
claims that can in turn be mapped onto context variables that
can be readily monitored.

Fig. 2. S3 Claim Refinement Model

To date, we have evaluated the performance of REAssuRE
by measuring the network’s life; the time taken for fragmen-
tation of the network to reach a point where no result was
returned in response to the prevailing river conditions. The
results show a consistent improvement in longevity when Grid-
stix uses claims than when the assumptions made at design
time are fixed. The improvement is small, however (typically
of the order of a 5% improvement), so further evaluation will
be necessary to determine whether the added complexity of the
run-time model is justified by the improvement in longevity.

IV. RELATED WORK

DeLoach and Miller [9] explore how to maintain a run-
time representation of goals. However, they do not deal with
the run-time representation of softgoals or goal realization
strategies. The main utility of their work has been for un-
derstanding what the systems is doing in terms of goals. No
reasoning about partial satisfaction is done. This contrasts with
[10], which formalizes a means for representing partial goal
satisfaction based on KAOS [11]. A contrasting approach to
partial goal satisfaction is taken by RELAX [12]. Although
RELAX is not goal-based per-se, [13] illustrates the use of
RELAX, with KAOS goal models, using obstacle analysis
to identify when to RELAX a goal. [14] propose adaptive
goals that are aware of their own degree of satisfaction during
runtime and a means to trigger adaptation.

All of the above work represents in some way a blurring of
the boundary between design and runtime [15, 16] and this is
a trend that inspires our own work.

V. CONCLUSION

REAssuRE is a technique for making explicit where un-
certainty underpins design decisions in goal models for self-
adaptive systems. Our aim with REAssuRE was to investigate
the feasibility of run-time goal models as a means to ensure
that adaptations are principled and sensitive to changing con-
text. Its application to GridStix has demonstrated that REAs-
suRE is able to reason about how design-time assumptions
affect goal realization strategies, as evidence for or against
design-time assumptions is gathered by claim monitoring. This
in turn is used to drive run-time adaptation between alternative



goal realizations as determined by the balance of softgoal
trade-offs.

Our intention with REAssuRE was to test whether main-
taining and reasoning over goal models at runtime was fea-
sible. The early results are promising. However, there remain
many unanswered research questions about the achievement
of requirements-aware systems. We need to analyze in detail
the results of our initial evaluation and enrich our set of
experimental results. We then need to incrementally eliminate
the i* modeling restrictions that currently apply to REAssuRE.
Ultimately, we will want to propagate the effects of claim
refutation up the goal tree, which will involve reasoning over
goal satisfaction, with an implication that mitigation of an
unsatisfiable goal may require the goal model to be modified.

At the current time, however, REAssuRE represents a first
step towards maintaining run-time requirements models on
which the system may act. True requirements awareness is
still some way off, but our confidence has increased in it being
achievable.

ACKNOWLEDGMENT

This research is partially supported by EU FP7 CON-
NECT project and the Marie Curie Fellowship Require-
ments@run.time.

REFERENCES

[1] H. J. Goldsby, P. Sawyer, N. Bencomo, D. Hughes,
and B. H. Cheng, “Goal-based modeling of dynamically
adaptive system requirements,” in 15th Annual IEEE In-
ternational Conference on the Engineering of Computer
Based Systems (ECBS), 2008.

[2] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and
A. Finkelstein, “Requirements-aware systems: A research
agenda for re for self-adaptive systems,” Requirements
Engineering, IEEE International Conference on, vol. 0,
pp. 95–103, 2010.

[3] E. S. K. Yu, “Towards modeling and reasoning support
for early-phase requirements engineering,” in Proceed-
ings of the 3rd IEEE International Symposium on Re-
quirements Engineering (RE97), USA, 1997.

[4] D. Berry, B. Cheng, and J. Zhang, “The four levels of
requirements engineering for and in dynamic adaptive
systems,” in 11th International Workshop on Require-
ments Engineering: Foundation for Software Quality
(REFSQ’05), Porto, Portugal, 2005.

[5] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos,
Non-Functional Requirements in Software Engineering.
Springer, 1999, vol. 5.

[6] K. Welsh and P. Sawyer, “Requirements tracing to sup-
port change in dynamically adaptive systems,” in REFSQ,
2009.

[7] D. Hughes, P. Greenwood, G. Coulson, G. Blair, F. Pap-
penberger, P. Smith, and K. Beven, “Gridstix:: Sup-
porting flood prediction using embedded hardware and
next generation grid middleware,” in 4th International
Workshop on Mobile Distributed Computing (MDC’06),
Niagara Falls, USA, 2006.

[8] N. Bencomo, P. Grace, C. Flores, D. Hughes, and
G. Blair, “Genie: Supporting the model driven develop-
ment of reflective, component-based adaptive systems,”
in ICSE 2008 - Formal Research Demonstrations Track,
2008.

[9] S. A. DeLoach and M. Miller, “A goal model for adaptive
complex systems,” International Journal of Computa-
tional Intelligence: Theory and Practice., vol. 5, no. 2,
2010.

[10] E. Letier and A. van Lamsweerde, “Reasoning about
partial goal satisfaction for requirements and design en-
gineering,” in Proc. of 12th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
2004, pp. 53–62.

[11] A. van Lamsweerde, Requirements Engineering: From
System Goals to UML Models to Software Specifications.
John Wiley & Sons, 2009.

[12] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and
J.-M. Bruel, “Relax: a language to address uncertainty in
self-adaptive systems requirement,” Requirements Engi-
neering, vol. 15, no. 2, pp. 177–196, 2010.

[13] B. H. Cheng, P. Sawyer, N. Bencomo, and J. Whittle,
“Goal-based modeling approach to develop requirements
for adaptive systems with environmental uncertainty,”
in ACM/IEEE 12th International Conference On Model
Driven Engineering Languages And Systems, MOD-
ELS’09, 2009.

[14] L. Baresi and L. Pasquale, “Fuzzy goals for
requirements-driven adaptatio,” in 18th International
IEEE Requirements Engineering Conference, RE’10,
2010.

[15] L. Baresi and C. Ghezzi, “The disappearing boundary
between development-time and run-time,” in Proceedings
of the FSE/SDP workshop on Future of software engi-
neering research, 2010.

[16] G. Blair, N. Bencomo, and R. B. France, “Models@
run.time: Guest editors,” Computer, vol. 42, no. 10, pp.
22–27, 2009.


