archives-ouvertes

Open-PEOPLE : Architecture and Implementation

Jonathan Ponroy, Kévin Roussel, Olivier Zendra, Dominique Blouin

» To cite this version:

Jonathan Ponroy, Kévin Roussel, Olivier Zendra, Dominique Blouin. Open-PEOPLE: Architecture
and Implementation. [Technical Report] 2011, pp.31. inria-00623985

HAL 1d: inria-00623985
https://hal.inria.fr /inria-00623985

Submitted on 15 Sep 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00623985
https://hal.archives-ouvertes.fr

Open-PEOPLE D2.7- Architecture and Page 1/31

Implementation

Open-PEOPLE

Open Power and Energy Optimization Platform and Estimator

Deliverable 2.7

Architecture and Implementation

Document Contributors Checked by
Manager
Name Jonathan PONRQY Kévin ROUSSEL Kévin ROUSSEL
o INRIA NGE Dominique BLOUIN
Contact Jonathan.Ponroy@inria.fr Olivier ZENDRA
Date 28-jun-2011 (version 0.4)

Summary This document describes implementations of plugins developed by INRIA NGE for
the Open-PEOPLE SoftWare Platform (OPSWP). This document is for developers
who want to modify or extend this plugins set.

Open-PEOPLE D2.7- Architecture and Page 2/31

Implementation

Table of contents
I 2 0= i o] TP 3
) 433 10) 1 1 ST P PPNt 3
1.2.Table of references and applicable doCUMENTS........c.ciuiiiiiiiiiiiii e, 4
1.3.ACTONYMS ANA GlOSSATY ...uuiiuiiiiiiii ittt et e et e e e et e et e et e et e et e taeena et eaneeaneeaeenaeneanaen 4
2. EXECULIVE SUMMITIATTY .. ceuiiiiiiiiii ittt et et e te et e et e eta s et setnsetneatnsaansannseansanneenenssnesneen 6
3.5c0oPe Of the AOCUMIENIL......cuiieiii e e e e et e e e et et et e s e e eanann s 6
4. AuthentiCation PLUGII......iiu et et e e et e e e e et e et e et e et e eaneaaneaneans 7
I O o ol (o) 0 = 1 N Y= N 7
T N 4 o 1 7T o1 1 0 - TS 7
N T 0} (= = Yol SO 8
A 1 o) o = SRR PRNN 9
G T 1= o1 1 PN 14
V2 G T I e T3S T o) 6 F] W0) =Y [TN 14
4.3.2. PreferenCeS SECUTILY . ..iuuiiiiie et e et e e e et e et e ete et e eaneeanaeanaes 15
5.Lo0K-Up Tables (LUT) EditOr......cuniiiiiiiiiie ettt e e e e e e ens 17
S - 1 o] B =T o1 TP PRPRRPRPN 17
5.2.the LUT editor PIUGIN.....couiiiiiieie e e e e e e et e e e e e et e e e e e s esanes 18
6.Quantities and Units (QUDV) EdiLOr......uiuiiniiiniiiiiiii ettt ae e e 25
IR AN o] 1) =Yoo TSP 25
ST 1o Lo Lo [b s F= N k= To 1<) PPN 25
6.3.Wizard USET INEETTACE. ... e e e e e e e e 26
6.4. Preferences USEr iNEEI aCe......iuiiiici e e et e e e e anas 27
1Y (o 1o L=Y R =T o) PP PPRPIR 27
A AN 4 o 1) =T 1) = DT 27
8.Weaving Model @AItION.couiiiiiii e e e e e e et aaeaans 28
9.0PSWP global arChit@CtUTEc.iiiiiiiie e e et e et e et e et e e an e e e e e e anas 29
O.1.OPSWRP deSIign flOW...cuuiiiiiiiiiiiii ittt et e et e et e e et et e e e e e e e et eaeeaeans 29

9.2.Application, architecture and assOCIAtiON...........ocuiiiiiiiiiii e 31

Open-PEOPLE D2.7- Architecture and Page 3/31
Implementation

1. Preface

1.1. Versions

Version Date Description & rationale of Sections mainly
modifications modified
0.1 1 September 2010 First version —
0.2 22 october 2010 Authentication plugin description 4
0.3 9 june 2011 Adding QUDV editor description 6
0.4 28 june 2011 Made corrections All

Added the section on the LUT editor |5

Open-PEOPLE

D2.7— Architecture and
Implementation

Page 4/31

1.2. Table of references and applicable documents

Reference

Title & edition

Author

Date

Open-People project:
deliverable D2.1

Specification for the
software platform
definition (V1)

Sophie ALEXANDRE

18 May 2010

Open-People project:
deliverable D2.2

Tools Integration
Protocol

Kévin ROUSSEL

10 September
2010

Open-People project: |Basic Components Dominique BLOUIN 15 July 2010
delivrable D41 Model

Homogenizations
Open-People project: | Generic models, Dominique BLOUIN N.D.

delivrable D4.2

interoperability and

interchangeability

1.3. Acronyms and glossary

Term

Definition

OoP

Open-PEOPLE: the name of the project we're talking about, and by
extension, the name of the platform(s) developed within this project.

OPSWP

Open-PEOPLE software platform: the central piece of code, around
which revolve all of the software developments undertaken within the
Open-PEOPLE project.

Java

The Java programming language, and the platform on which it
executes, once compiled into bytecode (Java virtual machine). Both
created by Sun Microsystems (now Oracle), and defined respectively in:
“The Java Programming Language” and “The Java Virtual Machine
Specification” books.

JVM

Java Virtual Machine: main component of the Java platform, providing
the latter with its portability and security (among others). The OPSWP is
designed to be executed by the JVM.

Bytecode

JVM bytecode: machine code for the JVM, that is: program code directly
executable by the JVM. The OPSWP and its plug-ins will ultimately take
the form of executables coded in this format.

JCP

Java Community Process, by which Sun Microsystems/Oracle designs
the evolution of Java (both the language and the platform) in cooperation
with its users.

JSR

Java Specification Request: official proposals of evolution for Java
(both the language and the platform), made within the JCP.

Open-PEOPLE D2.7- Architecture and Page 5/31

Implementation

Term

Definition

OSGi

Formerly meaning “Open Services Gateway initiative”, it is a
framework designed by the OSGi Alliance, in order to provide dynamic
modularization and service-oriented architecture (SOA) for Java-based
applications.

CRI-NGE

Centre de Recherche INRIA — Nancy Grand-Est: the place where the
development of OPSWP is managed and—for a major part—realized.

PCMD

Power Consumption Models Development: the set of features offered
by the OP platform (hardware & software) which allow to develop and
validate new power consumption models.

PCAO

Power Consumption Analysis and Optimization: the set of features
offered by the OP platform which allow embedded system designers to
estimate and optimize the energy consumption of the systems they
create, using predefined consumption models.

GUI

Graphical User Interface: OPSWP will offer a GUI to allow for easy yet
efficient and productive use.

RCP

Rich Client Platform: a framework (comprising widgets,
desktop/workbench, extensible architecture, update management, and
other paradigms) on which one can build coherent, robust, standardized,
and feature-rich desktop stand-alone and client applications (thus named
“rich client” applications). The OPSWP is to be built on Eclipse project's
RCP.

IDE

Integrated Development Environment: a graphical
application/framework gathering tools in order to help developers and
programmers to perform more easily and efficiently their work; one of the
most advanced, best known and most used IDE for the Java platform is
the Eclipse JDT, built upon the RCP produced by the Eclipse project. A
variant of this JDT is precisely specialized in development of applications
based on Eclipse's RCP.

COP

Component Oriented Programming: Programming method which
consists to use a modular approach to build software architecture using
pre-existing components.

JAAS

Java Authentication and Authorization Service: is a Java security
framework for user-centric security to augment the Java code-based
security. Since Java Runtime Environment 1.4 JAAS has been integrated
with the JRE - previously JAAS was supplied as an extension library by
Sun.

http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Java_Virtual_Machine

Open-PEOPLE D2.7- Architecture and Page 6/31
Implementation

2. Executive summary

Our software platform is designed, from the very beginning, to be extensible : not only is
the library of available components (both hardware and software) for modeling open for
extension with user-defined data; the set of features offered by the platform is also
extensible, all of these features being provided by “plug-ins” (a.k.a. “add-ons”, i.e. code
modules) integrated into OPSWP.

The purpose of this document is to describe the implementation of the Eclipse plugins
developed by INRIA NGE within the development of the OPSWP, in collaboration with all
project partners. More specifically, it describes in further details the functionalities cited in
deliverable D2.1, at each plugin level.

This document, not planned at the beginning, is part of task 2. The task's goal is the
specification, conception and implementation of OPSWP, which is the main task of the
INRIA NGE team.

3. Scope of the document

This document is a technical one: it shall describe with all needed precision how plugins
were implemented during the project, to allow developers to modify or extend existing
plugins. This document is not to be frozen in time. It will evolve as new plugins for OPSWP
are developed during and after the end of the project.

On the other hand, it is supposed that the reader of the present document knows what OP
is, and what goals it is supposed to achieve. This document won't talk about these
subjects: this information can be found in the D1.1 to D1.4 deliverables of the project.

The purpose of this document is not to discuss about components modeling (see task 4 of
the project for this matter).

Moreover, this document focuses itself exclusively on the software platform (OPSWP). All
data concerning the project's hardware platform is located in other deliverables
(deliverables from task 3; plus D2.3 for the remote control of hardware platform).

Open-PEOPLE D2.7- Architecture and Page 7/31
Implementation

4. Authentication plugin

This plugin provides a service allowing the tools composing the OPSWP to authenticate a
user, and thus to limit accordingly the functionalities available to him (her). Consequently,
any OPSWP add-on wishing to use any “secured” feature of the platform (and especially
communication with the remote elements like the OPHWP) must use this service to meet
the ad-hoc safety requirements.

4.1. Functionalities

The authentication plugin allows to meet both of these requirements (described in D2.1):

[REQ-GNFCT-010] For any remote access by the software platform, authentication will be
required to ensure security

[REG-GNFCT-020] It will be necessary to implement an authorization control the access to
some parts or functionalities of the software platform. For that a Role-Based Authorization
mechanism could be used

This plugin is thus the mecanism that provides and manages the authentication and
authorization features on which the platform's safety relies.

4.2. Architecture

From an architectural point of view, the authentication plugin is divided into:
* an interface, package named fr.openpeople.platform.auth ;
* core packages named:
— fr.openpeople.platform.auth.internal package, for the internal mechanism,

— fr.openpeople.platform.auth.internal.ui package, for the general user
interface (U.l.), that is: the views provided by the plugin,

— the fr.openpeople.platform.auth.preferences package, for user accounts
preference page.

The plugin programming “interface” was widely described in D2.2, so we will only briefly
describe it here as a reminder.

Open-PEOPLE D2.7- Architecture and Page 8/31
Implementation

4.2.1. Interface

As we said before, the public part of the authentication plugin is implemented by the
fr.openpeople.platform.auth package, which is described in figure 4.1.

The authentication plugin provides an extension point and an interface to use the
authentication & authorization services:

» extension point: fr.openpeople.platform.auth.tokenConsumer
* interface: OPSWPAuthTokenReceptor

By using both these elements, an OPSWP plugin has the ability to request an
OPSWPAuthToken, containing all the needed information about the currently connected
user.

fr.openpeople.platform.auth

=<Interface>>

=<Interface=> =<Interface=>
] yn Acti OPSWPAuthTokenReceptor

Activator
-plugin : Activator

=<Interface>>

; OPSWPAuthToken _
|+0PSWPAuUthTokenilog : string, nam : string, cmt |
|: string, pows : set<=OPSWPUserPower=)

R

) : boolean

A

LoginCancelledByUser - <==enumeration>=>
-) OPSWP UserPower
ADM"

Figure 4.1: interface's plugin class diagram

Open-PEOPLE D2.7- Architecture and Page 9/31
Implementation

4.2.2. Core

As we said before, the plugin core is divided into 3 packages.

The fr.openpeople.platform.auth.internal.ui package (figure 4.2) implements the
views that the plugin contributes to the Eclipse workbench.

fr.openpeople.platform.auth.internal. ui

=<|nterface=> =<Interface=>
org.eclipse. ui.part. ViewPar DOPSWPAuthTokenReceptor
t
AuthClientsListView CurrentSessionView
AuthTokenReceptor
+setCumrentSessionAuthToken
(token : OPSWPAUthToken)

=<Interface=>
IHandler

RefreshAuthClientsListHandler

Figure 4.2: fr.openpeople.platform.auth.internal.ui package

The AuthClientListView class provides the authentication-plugin clients view (figure
4.3). This view shows which third party plugins are using the authentication plugin
services.

/31 Authentication-Plugin Clients 52 B current Work Session v =08
Plugin 1D Signed? Token Consumer ID Add-on Name
fropenpeople platform.auth false fr.openpeople.platform.auth.ui.auth_view_token_consumer§ OPSWP authentication plugin (session view)

fr.openpeople.example.authé false fropenpeople .example.auth.tokenConsumer Example Token Consumer Plugin

Figure 4.3: authentication plugin client view

The RefreshAuthClientsListHandler class handles the refresh of the client plugins
table within the former view; it is activated by that view's refresh button.

Open-PEOPLE D2.7- Architecture and Page 10/31
Implementation

The CurrentSessionView class provides the current work session view (figure 4.4). This
view, shows information about the currently connected user (the same information that is
provided to third party plugins via OPSWPAuthToken instances), and allows this user to
logout. It also allows to login when no work session is open.

& authentication-Plugin Clients 8% Current Work Session 3 =0

Current work session's credentials
User: Admin (Mr, &, D, MIN]

Powers: <ADM--PCAQ--PCMD=

| Logout |

Figure 4.4: current work session view

The AuthTokenReceptor class implements the OPSWPAuthTokenReceptor interface.
Reminder: this interface is to be implemented by every authentication client, in order to
receive a reference on a new 0PSWPAuthToken instance every time the information about
the current work session changes (i.e.: when a user logs in or out).

Open-PEOPLE D2.7- Architecture and Page 11/31
Implementation

The fr.openpeople.platform.auth.preferences package provides the preference
pages contributed to the Eclipse workbench, as well as the dialog boxes used from within
these preference pages.

]

fr.openpeople.platform.auth.preferences

=z=Interface>>
org.eclipse. jfface.preference.
PreferencePage

A S

OPSWP MainPrefPage OPSWP UsersAccountsPrefPage

OPSWPClientPrefPage

==|nterface==
org.eclipse. fface.dialogs.Dialog |

OPSWP UserPropertiesDialog OPSWP SignaturelnfoDialog

The OPSWPMainPrefPage, OPSWPClientPrefPage and OPSWPUsersAccountsPrefPage
classes are the implementations of the cited preference pages. They respectively provide
the OPSWP preference group introduction (figure 4.5), user accounts management
interface (figure 4.6) and client plugins' authorizations management (figure 4.7).

Preferences

Open-PEOPLE Software Platform =t -
+ General
+ Help This group gathers the operating parameters of the Open-PEOPLE
Software Platform (OPSWP),
+ InstalllUpdate Please select the appropriate child preference page according to the
+ Java kind of options you wish to adjust.

— Open-PEOPLE Software Platfarm
Clients preferences

Users Accounts

/-H.
(?) | Cancel I| oK

s

PI:'i_g-ufé-c'l-. 5: Main prefe“rence page

Open-PEOPLE D2.7— Architecture and Page 12/31
Implementation

® Preferences

Users Accounts =t o
+ General
You can add, edit and rernove user accounts here:
+ Help TS
{ + Installupdate ID Login MName Powers W
1+ java 1 | Admin ;| Mr. A.D. MIN | <ADM--PCAQ--PCMD>
— Open-PEOPLE Software Platform 5 E—
Clients preferences W
sers Accounts
[N

Figure 4.6: User account preference page

8 Preferences

Clients preferences Gw -
+ General
+ Help You can choose which plugins are allowed to connect to the software plaform here:
+ InstalljUpdate Plugin ID Signature Authorized?
+| Java fropenpeople.example.auth IZ.:I No | Yes
— Open-PECPLE Software Platform fr.openpeople.platform.auth {E1 No Yes

Clients preferences

Users Accounts

@ LGancel | ok |

Figure 4.7: Client plugins preference page

Open-PEOPLE D2.7— Architecture and Page 13/31
Implementation

The fr.openpeople.platform.auth.internal package (figure 4.7) gathers the plugin
internal mechanism classes; this includes: user accounts and client plugins authorizations
management (based on JAAS technology) and serialization, plus cryptology-related tools.

We can simplify this package with the following concept schema (figure 4.8) :

Figure 4.8: fr.openpeople.platform.auth.internal concept schema

Open-PEOPLE D2.7—- Architecture and Page 14/31
Implementation

We can thus consider 2 main functionalities for this package: session management
(centered around the OPSWPSessionManager class) and client plugins authorizations
management (centered around the OPSWPCertificateClientManager class).

Session managament mainly consists in an authentication system for the OPSWP. This
authentication is based on Java's standard JAAS technology (the JAAS LoginModule
interface being implemented by our OPSWPLoginModule class), while user accounts data
is persisted by our own flexible mechanisms (UserDatabaseBackend interface, and the
XMLUserDatabaseBackend implementing class). As soon as an user is authenticated, the
session manager creates an adequate token, representing the current work session, and
provides a reference on this token to all the registered client plugins.

Client plugins are allowed to receive authentication tokens if and only if they have the
corresponding authorization; these authorizations are managed and checked by the
OPSWPCertificateClientManager class. Authorizations are granted by OPSWP users
each time a new client plugin try to use the authentication service. The user can at that
moment choose to grant or deny authorization to the requesting plugin, after seeing this
plugin's signature if it exists (since OPSWP plugins are specialized JARs, we make use of
Java's JAR signing mechanism as a standardized way to authentify OPSWP plugins'
contents and origins). These decisions are persisted into custom XML files via the
XmlClientPreferences class.

CryptoUtility is a tool class that provides us with several convenient, easy-to-use
cryptology-related methods (especially MD5 and SHA* hash computations) that we rely on
to manage passwords. OPSWPUser is a model class, whose instances represent the
OPSWP authenticated users.

4.3. Security

Security is an important aspect in the development of the OPSWP and its services.
Concerning that the authentication plugin is a sensitive element , we employ several
mechanisms to protect passwords and client plugins authorizations.

4.3.1. Passwords storage

The mechanism used to protect passwords storage (currently in an XML file) is a widely
used one. We will thus explain it only briefly.

To avoid keeping passwords in clear-text form, we use cryptographic hash functions
(example: MD5, SHA1, SHA-256, etc.) to obtain an unique “fingerprint” for each entered
password. Algorithms of this kind are designed to provide a unique digest for every
different possible input (bitstream) of any size; more precisely:

l. they allow to easily compute the digest for a given input, but it is (normally) impossible to
regenerate the input from its computed hash;

Il. moreover, it is (normally) impossible to obtain the same hash for two different inputs.

Open-PEOPLE D2.7- Architecture and Page 15/31
Implementation

HASH algorithm >
“AEK67FAP”

“MyPassWord”

Figure 4.9: the main properties of cryptographic hash functions

We specifically take advantage of the two properties cited above (see also figure 4.9) to
safely check that a user entered its expected password: if the hashes of an entered string
(password) is equal to the hash of another stored string, then these two strings are
necessarily equals.

So, instead of recording the passwords themselves, we record their hashes (we could say:
their “fingerprints”) in our users database. These hashes are easily computed thanks to
our fr.openpeople.platform.auth.internal.CryptoUtility class.

4.3.2. Preferences security

Eclipse is an open system that stores its client preferences in clear-text form (generally
within custom XML files). Even if it is impossible to totally secure such a system (protection
of files is a function that ultimately depends on the operating system, not on applications),
we introduced a mechanism to detect unexpected modifications of some of our
configuration files (more precisely the file containing the client plugins authorizations); this
mechanism can be summarized by figure 4.10 below:

Open-PEOPLE D2.7- Architecture and Page 16/31
Implementation

Original Ta‘l;npered f’ile
Preferences (“hacked”)
file @
key o ; '
(128 bits...) ‘
2 /
S/ Y
N
& %
e A :
g/ % @
Arbi / Proof of file
I ltrary - . .
(publicly known) y ’ mteg”ty
"=OP8WP=" ~
Detection of
tampered file!
Figure 4.10: hacking detection mechanism

This mechanism uses once again cryptographic hash functions, this time coupled with a
symmetric encryption algorithm, to detect easily and safely any tampering of our
configuration file.

As soon as tampering of our authorizations file is detected, this file is reseted by the the
OPSWP; then, users will be asked to grant or deny authorizations again to third party
plugins once after another when they activate.

Open-PEOPLE D2.7- Architecture and Page 17/31
Implementation

5. Look-Up Tables (LUT) Editor

This role of this editor is to provide an easy and efficient way to edit Look-Up Tables (LUT)
that constitute the raw materials from which energy consumption models will be built in the
OPSWHP.

The editor allows to manage not only the LUTs metadata (for example: columns names
and units), but also the LUTs data themselves, using a specifically built interface
summarized hereafter (and further detailed in deliverable D2.8).

This editor is also packaged with an OPTR importation wizard, that allows to create LUTs
directly from raw material provided by the OP HardWare Platform (OPHWP).

5.1. Architecture

The LUT editor is based on two different plugins:

* the fr.openpeople.model.lutml plugin, providing the LUTML model that is
summarized in figure 5.1 hereafter:
<<datatype>=>
& ELookupKeyList
<<javaclass>> java.util.List

H LookupKeyDescriptor
T name : EString
2 unit : EString
7 interpolationPossible : EBoolean
= overDomainPossible : EBoolean
2 underDomainPossible : EBoolean
@ hashCode() : EInt
@ equals(EJavaObject) : EBoolean
@ toString() : EString

variablesDescr | 1.* E LookupResultSetDescriptor

/ = final : EBoolean

E LookupTable resultSetDescr s
= nbDimension : Elnt = unit : EString

= values : EObjectObjectMap 1 = precision : EInt
@ hashCode() : EInt

& equals(EJavaObject) : EBoolean
@ toString() : EString

t

<<datatype>=>
EObjectObjectMap
<<javaclass>> java.util.Map

Figure 5.1: the LUTML model diagram
please refer to deliverable D4.1 for further details on this LUTML model

» the fr.openpeople.ui.lutml plugin, implementing and contributing the LUT editor
itself — as well as the OPTR import wizard — to the Eclipse workbench: it is this plugin
that we will now describe in the next section

Open-PEOPLE D2.7—- Architecture and Page 18/31
Implementation

5.2. The LUT editor plugin

This plugin, named fr.openpeople.ui.lutml, named contains only one Java package
with the same name. The structure of this package is described in the figure hereafter:

fr.openpeople.ui.lutml

LookUpTableEditor

| ¢ ¢ ¢
I
|
i

OPTRImportWizard X
I

\:/ pagel
’ LookupTableEditorinput

pagel

page2

OPTRFileSelectionWizardPage

page3

page2

LookUpTablePropertiesEditor

OPTRDataSelectionWizardPage

page3

|
I
LUTFileSelectionWizardPage :
|
I
.

)
ColumnMatchingDetail Dialog LUTVariableDetailDialog

T
1
]
AV
DestinationlnLUT

LookUpTableValuesEditor

kind

<<enumeration>=>
DestinationKindInLUT

LookUpTableStatsEditor

Figure 5.2: the fr.openpeople.ui.lutml package

As one can see, the package is subdivided into two parts, corresponding to the two main
features it implements:

* the first part corresponds to the OPTR importation mechanism: the central class of this
part is OPTRImportWizard that extends the standard Eclipse Wizard class; this wizard
comprises three successive pages, that are respectively: OPTRFileSelectionPage,
OPTRDataSelectionPage, and LUTFileSelectionPage; these three pages are shown
respectively in the screenshots in figures 5.3, 5.4 and 5.5 below; the second page uses
the ColumnMatchingDetailDialog class to edit the details corresponding to the way a
column in the source file will be imported (see figure 5.6 for a screenshot), this dialog
itself uses the DestinationInLUT as a model class, whose kind is represented by the
DestinationKindInLUT enum;

Open-PEOPLE D2.7— Architecture and Page 19/31
Implementation

OPTR File Selection
Select the OPTR file (i.e.: OPHWP results archive), and the results’ file to import.

Source OPTR file: [,-’home,-’rousselffr—Iabsticc-xupv2p-300mhz-2ppc-prime-nl Browse...

Select the data to import from the source archive:

archive:fresources/1302515233855_xilinx-detection.log
archive:fresources/1302515233855_xilinx-impact.log
archive:fresources/1302515233855_power.csv
archive:fresources/1302515233855_rs232.log
archive:fresources/execution.log

@ | < Back | | Next = | | Cancel

Figure 5.3: the first page of the OPTR import wizard

OPTR Data Selection
Select the data to be loaded in order to build a new Look-Up Table.

Selected source data (view):

{ a [=! c3 ca |2
N6705A exported datalog

1

2

3 "Samﬁle interval: 0.00018432" v
] 3

Chose the columns to enter into the new LUT:

{ Source data file New LUT matching

From column C1 (from line 7 only) to Variable #1
From column C2 (from line 7 only) to Result set

@ | < Back | | Next > | | Cancel | Finish

Figure 5.4: the second page of the OPTR import wizard

Open-PEOPLE D2.7- Architecture and Page 20/31
Implementation

LUT File Selection
Select the file into which the new Look-Up Table (LUT) shall be saved.

Destination LUT file:

| /homefrousselftest2.lut] Browse...

® ' Next > | | Cancel | | Einish |

Figure 5.5: the third page of the OPTR import wizard

Column Matching

Define the destination into the new Look-Up Table (LUT) for
an imported set of data.

Source data set
[Import the data from column: |1 *

...Only from line: | 7 S
O ...Only up to line: | 1 :

Store the imported data set...
[@® in a variable ("key") of the new LUT,

variable number: | 1 *

) in the result set of the new LUT.

@ | Cancel | | OK |

Figure 5.6: the column matching dialog box

Open-PEOPLE D2.7- Architecture and Page 21/31
Implementation

» the second part corresponds to the LUT editor itself: the central class of this part is
LookupTableEditor that extends the standard Eclipse MultiPageEditorPart class;
this editor comprises three pages, that are: LookupTablePropertiesEditor,
LookupTableValuesEditor, and LookupStatsEditor; these three pages are shown
respectively in the screenshots in figures 5.7, 5.8 and 5.9 below; the first page uses the
LUTVariableDetailDialog class to edit the details corresponding to a column of the
currently edited LUT (see figure 5.10 for a screenshot); finally, since all Eclipse editors
work on specific objects implementing the standard IEditorInput interface, a specific
LookupTableEditorInput class is defined to encapsulate a LUT object as required.

£ LookUp Table Editor &2 =8

-Dimension
Number of variables (keys): 2

Variables properties

Var. # | Name Unit Interpolation possible? | Under domain possible? Over domain possible?
1 Frequency | MHz | YES NO NO
2, Voltage v YES NO NO

(Result set properties

Result column name: | Power consumption | Unit: | v

[Set result precision to: decimal digits
Properties | Values | Stats

Figure 5.7: the first page of the LUT editor

Open-PEOPLE

D2.7—- Architecture and Page 22/31
Implementation
£ LookUp Table Editor &2

Frequency (MHz) Voltage (V) Power consumption

200 1.1 120

400 1.8 240

100 1.6 200

300
T =
Properties | Values| Stats |

Figure 5.8: the second page of the LUT editor

Open-PEOPLE D2.7—- Architecture and
Implementation

Page 23/31

H LookUp Table Editor &2

=08

~Columns statistics

Column Size (n) Average/Mean (p) Standard dev. (g)
Frequency 4 250.0 111.80339887498948
Voltage 11 2.0727272727272728 1.1209500103126073
Power consumption 11 396.3636363636364 447.0971569676942

Linear regressions.

Reference variable: | Voltage |v

Linear regression equation (computed):
R = 385,398579 - V - 402,462510
with: R: Power consumption (result set)
V: Voltage (chosen ref. variable)
Correlation coeff. p = 0,966261

Properties |Values |Stats

Figure 5.9: the third page of the LUT editor

Open-PEOPLE D2.7— Architecture and Page 24/31
Implementation

LUT Variable

Define the characteristics of the given LUT variable.

Variable #1

{

General

Name: | Frequency

Unit: | MHz E2

Unknown Values Determination Policies
[Accept and interpolate unknown values in definition domain

[Accept and compute unknown values under definition domain

[Accept and compute unknown values over definition domain

| Cancel | | OK |

Figure 5.10: the LUT variable dialog box

Open-PEOPLE D2.7—- Architecture and Page 25/31
Implementation

6. Quantities and Units (QUDV) Editor

This editor provides the management functions (creation, deletion, modification) of the
quantities and units' used by the various consumption models manipulated by the OPSWP.

6.1. Architecture

The architecture of this editor is based on Model-View-Controller (MVC) pattern.

The model use the Eclipse Modeling Framework (EMF) to persist its data, while a model
manager class provides convenience methods. The model is provided by the
org.omgsysml.qudv plugin, the model manager classes and its support classes and
interfaces are in the fr.openpeople.ui.qudv.manager package.

The Ul is divided among these packages:
* fr.openpeople.ui.qudv.wizard: wizard user interface

« fr.openpeople.ui.qudv.preferences: preferences user interface
6.2. Model manager

fr.openpecple.ui.qudv.manager

QudvManagerException
CREATE_UNIT _ALREADY EXIST :int
-REMOVE_LUNIT_USED _BY OTHER : int
-CREATE_PREFIX_ALREADY EXIST :int
-CREATE_DERIVED QUANTITY WITHOUT SIMPLE_QUANTITY @ int
-REMOVE_QUANTITY ALREADY EXIST : int

+getTypei) @ int

QudvManager
+getQudvManager()
+saveModel() <<Interface==
+loadModel() QudvManagerListenar
+resetModel() +basellnitChanged(}
+addUnitWithPrefixedUniti) +derivedUnitChanged|()
+addDerivedUnitWithPrefixedlUnit(} +baseQuantityChangedi)
+addAffineConversionUnitWithPrefixed Unit(} +derivedQuantityChangedi
+remowvelnit()
+addQuantitykindi}
+removeQuantity Kind(}

+addQudvManagerlistener()
+removeQudvManagerListener()

The QudvManager class provides utility functions that:

1 As areminder, a quantity is the kind of a value (for example: a length, or a weight), whereas a unit is the
reference used to quantify such a value (in our example: respectively the meter and the kilogram).

Open-PEOPLE D2.7—- Architecture and Page 26/31
Implementation

* add and remove Units and Quantities (QUDV elements),
* load and save the model.

It also sends messages to notify registered listeners when the state of a model change,
thanks to QudvManagerListener interface.

Moreover, a new, specific kind of exception related to QUDV model manager
(QudvManagerException) is defined.

6.3. Wizard user interface

fr.openpeople.ui.qudv.wizard

UnitWizard

QuantityWizard

createUnitWizardPage
createQuatityWizardPage

CreateUnitWizardPage
+getFactor()

+getoffset() UnitExpressionDialog
+getUnitName() g | g
+getUnitSymbol()

+getUnitsFactors()

¢

CreateQuantityWizardPage

| AvailableUnitLabelProvider DerivedUnitExprassion

-expressionUnitFactors @
List=UnitFactor=
-factor : Rational

AvailableUnitContentProvider ==Interface=> -offset : Rational
— [: DerivedUnitExpressionListener +addUnitFactors()
+DerivedUnitExpressionListener() +modifyPrefixUnitFactor()

+modifyExponentUnitFactor)
+removelnitFactorsi}
+setFactor()

+setOffset()
+addDerivedUnitExpression()
+removeDerivedUnitExpression()

DerivedUnitExpressionLabelProvider

DerivedUnitExpressionContentProvider

Two new creation wizards are contributed to the Eclipse workbench: a Unit creation wizard,
and a Quantity creation wizard. These wizards both contain only one page (single-step
wizards), respectively CreateUnitWizardPage and CreateQuantityWizardPage.

DerivedUnitExpressionis a UnitFactor objects manager, used during the creation of
derived units.

Finally, AvailableUnitLabelProvider, AvailableUnitContentProvider,
DerivedUnitExpressionLabelProvider and
DerivedUnitExpressionContentProvider are the support classes used by the JFace
TableViewer control used within CreateUnitWizardPage.

Open-PEOPLE D2.7—- Architecture and Page 27/31
Implementation

6.4. Preferences user interface

fr.openpeople.ui.qudv.preferences

QuantitesPreferencePage

UnitsPreferencePage BaseUnitDialog

v '

BaseUnitLabelProvider DerivedUnitLabelProvider]

QuantityLabelProvider

QuantityContentProvider

BaseUnitContentProvider

DerivedUnitContentProvider

\ We contribute two new preference pages, that show the list of all defined units and
quantities, and allow to remove them as needed. These preference pages also contain
TableViewers, for which ContentProvider and LabelProvider classes are defined. Finally,
BaseUnitDialog is a creation dialog for SimpleUnits (i.e.: base units that are used to
define DerivedUnits by combination).

7. Model editors

These editors allow — among others — to create power consumption estimation models,
that can be used directly on the local software platform or exported in remote databases.

7.1. Architecture

The architecture is, as usual, based on MVC paradigm. The EstimationLawEditor,
AggregationLawEditor, and ConsumptionModelEditor classes, contained in the
fr.openpeople.ui.consumptionModel.editor package, implement all the editors
related to the PCMD features. These editors make use of an utility class,
PCMDModelManager, that provides several useful functions, especially those related to
models serialization.

The NewLawWizard class implements the creation wizard dedicated to mathematical
estimation laws. This wizard contains three pages: LawKindChoiceWizardPage,
EstimationLawWizardPage, and AggregationLawWizardPage: both of the two latter
pages serve as alternatives for the second and last creation step, which varies according
to the choice made during the first step (in LawkindChoiceWizardPage).

Open-PEOPLE D2.7— Architecture and Page 28/31
Implementation

8. Weaving model edition

The user, thanks to the weaving model, can attach (“link”) a consumption model to each
component of a system architecture. The WeavingModelManager class is the utility class
dedicated to these weaving models, while the WeavingModellnspectorView class
implements the view (in Eclipse workbench Ul) that allows the user to perform the
attachment operations.

Open-PEOPLE D2.7— Architecture and Page 29/31
Implementation

9. OPSWP global architecture

In this section, we briefly describe the OPSWP general architecture.

9.1. OPSWP design flow

Because the design of the OPSWP is based on the Model Driven Engineering (MDE)
design methodology, the design flow is divided into different stages — each stage
corresponding to a different kind of model — and every transition between two successive
stages is actually a model transformation.

Each one of these model transformations consists in adding more and more details to the
treated model:

The first part — processing of the Platform-Independent architecture Model (PIM) —
consists in defining the application, and choosing the general architecture that will execute
this application;

The second part (Deployment Model) consist in choosing the components (IP blocks) of
the underlying architecture;

The third part (Estimated Model) consist in associating (“weaving”) each consumption
model of the application with the related chosen component of architecture.

The last part finally consist in translating the obtained generic model in any needed third-
party model (VHDL, SystemC, etc).

Open-PEOPLE D2.7— Architecture and Page 30/31
Implementation

AADL

PIM

> €

Deployment

Estimation

PSM

- - - v

Figure 9.1: The design flow for multi-target platform power estimation in the Open-PEOPLE
project

Open-PEOPLE D2.7- Architecture and Page 31/31
Implementation

9.2. Application, architecture and association

As we said before, this part consists in defining the application, the underlying system
architecture, and associating both of them. This, in the OPSWHP, is to be done in the
reference platform language: AADL.

There are three available ways to build and edit the AADL description of an architecture:
* a purely textual way, by editing directly the AADL source file;

* an object-oriented way, using a standard, tree-based Eclipse editor;

* and a graphical way, using a dedicated graphical editor.

In the picture hereafter, we can see the three possible representations of the same AADL
architecture: textual on the left, object-oriented in the middle, and graphical on the right.

Helloworld .aad| 28 B2 Helloworld aax| 2 & *Helloworld.adeledi £2
© pack..aqe Helloworld platform:frescurce/Helloworld/Helloworld/Helloworld.aax| /Helloworld/Helloworld/Helloworld zdeledi
public 0 Select
process node_a = 4 Aadl Spec Helloworld %1 complete
end node_a; - # Aadl Package Helloworld v {4 Marquee
—| 1 Public [Note complete helloworld &
system complete
end complete; 7 Process Type Helloworld::node_a = Components
O System Type Helloworld::.complete Ol Data
thread Task .
end Task.: 47 Thread Type Helloworld::Task & subprogram
> Subprogram Type Helloworld: hellolProgram @ Subprogram cpurm
subprogram hellolProgram — 7 Process Impl Helloworld::node_a.impl Group
GOt | AN = 4 Process Subcomponents 27 Thread cpurm.iml
process implementation node_a.impl 7 Thread Subcompaonent Task_1 : 3 Thread Group
subcomponents £7 Thread Subcempenent Task_2 ¢ 7 Process
Task_1: thread; B
Task_2: thread: - O System Impl Helloworld::.complete helloworld 5 Processor
end node_a.1impl; = < System Subcomponents £5 Virtual
- helle1Program
. . 7 Process Subcomponent node_a ¢ Processor
system implementation complete.helloworld - b . = Mermo
subcomponents Processor Subcomponent cpu_rm : y
node_a: process; = £7 Thread Impl Helloworld: Task.impl_1 = Bus
G Ml (AL TR + Thread Subcomponents s \firtual Bus
end complete.helloworld; - P e I
£7 Thread Impl Helloworld: Task.impl_2 = Features <
thread implementation Task.impl_1 7 Processor Type Helloworld::icpurm + T In Event Port node_a
subcomponents none ; B Processor Impl Helloworld::cpurm.impl
end Task.impl_1; P P P + B In Data Port
E= |n Event Data nede_a.impl
. . . '
thread implementation Task.impl 2 Port
end Task.impl_2; @ Feature
Group
processor cpurm
end cpurm; 4 Provides data Task
access
processor implementation cpurm.impl & provides .
end cpurm.impl; + subprogram Tasklmpl_lﬁb :
end HellowWorld; access Tasklmp|_2
@ Provides
subprogram
group access
TR

Tools allowing to edit AADL representations, using these different ways, already exist.
Thus, Osate will provide us with textual (source) and object-oriented ADDL editors;
whereas the Topcased Adele project offers a graphical AADL editor. Note, however, that
Adele is not ready for production use yet (as of summer 2011), because its ergonomics are
vastly perfectible, and — especially! — because we can't create a graphical diagram directly
by importing a pre-existing AADL source file.

	1. Preface
	1.1. Versions
	1.2. Table of references and applicable documents
	1.3. Acronyms and glossary

	2. Executive summary
	3. Scope of the document
	4. Authentication plugin
	4.1. Functionalities
	4.2. Architecture
	4.2.1. Interface
	4.2.2. Core

	4.3. Security
	4.3.1. Passwords storage
	4.3.2. Preferences security

	5. Look-Up Tables (LUT) Editor
	5.1. Architecture
	5.2. The LUT editor plugin

	6. Quantities and Units (QUDV) Editor
	6.1. Architecture
	6.2. Model manager
	6.3. Wizard user interface
	6.4. Preferences user interface

	7. Model editors
	7.1. Architecture

	8. Weaving model edition
	9. OPSWP global architecture
	9.1. OPSWP design flow
	9.2. Application, architecture and association

