archives-ouvertes

Open-PEOPLE : Ergonomics

Jonathan Ponroy, Kévin Roussel, Olivier Zendra, Dominique Blouin

» To cite this version:

Jonathan Ponroy, Kévin Roussel, Olivier Zendra, Dominique Blouin. Open-PEOPLE: Ergonomics.
[Technical Report] 2011, pp.37. inria-00624000

HAL 1d: inria-00624000
https://hal.inria.fr /inria-00624000

Submitted on 16 Sep 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00624000
https://hal.archives-ouvertes.fr

Open-PEOPLE D2.8- Ergonomic Page 1/37

R

Open-PEOPLE

Open Power and Energy Optimization Platform and Estimator

Internal Deliverable 2.8

Ergonomics

Document Contributors Checked by

Manager
Name Jonathan PONROY Kévin ROUSSEL Kévin ROUSSEL

" INRIA NGE Dominique BLOUIN
Contact Jonathan.Ponroy@inria.fr Olivier ZENDRA
Date 8-Jul-2011(version 0.5)
Summary This document describes the study and choices made to offer a good ergonomic
for the Open-PEOPLE software platform.

Open-PEOPLE D2.8- Ergonomic Page 2/37

Table of contents

I 5 4 = 7 o] TP 3
R R V=Y =3) £ F TS 3
1.2.Table of references and applicable doCUMENLES...........cceuiiiiiiiiiiiiiiii e, 4
1.3.ACTONYMS ANA GlOSSATY . .uuiiniiiiiiii ettt et e e e et e et e et e et e et e et estneeenesnesnassnaeaneseesnesnesneen 4

2. EXECULIVE SUIMMIMIATY . oiuuiiiiiiiiiiit ittt et e e et et e te et e et e e tasetasetnsetneatnsatnsasnsennsannesnsnsansenees 7

3.Scope Of the dOCUMENTE......couniii et et e e et e et e et e s ae et e eaneeanaanas 7

N a1 =T T PSRN 8
T IR LT ol o) o o) i1 (T PO 8
4.2 .Researcher profile and tasks moOdel............coouiiniiiiiii e 8
4.3.Industrial engineer profile and tasks model..............ccoouiiiiiiiiiiiiiiii e 10
4.4. Technical CONSTIaINTS. .. cuuiiiii it e et e e e e e ae e e e et eaaaneenaenns 11

4.4.1.Eclipse platform COnStraints.......ccccciiiiiiii e 11
4.4.2.Eclipse GMP CONETraintS.......ccuiiiiiiiiiiiie e et e et e e e e e e e ans 13
4.4.3. Meta model CONSTIaiNtS....i.uiiiiiiiiiii et e e e e e ees 16
4.4.4. ModUlar COMETAINTS. ...cuuiieiieeiee e et e e e e e e e ae e e e eaneeaneeaneenaenen 17

5.Style guide recoOmMmMENdatioN.cuuiiiiiiiiii e e e e e e e 18

5.1.Lookup table creation (importation) and edition...........cccoooviiiiiiiiiiii 18
5.1.1.Importing OPHWP measurements into a new LUT...........ccooiiiiiiiiiiiiiiiiniiinnn e, 18
5.1.2.USING the LUT @AItOr....ccuiiiieiieiie e e e e e e e e e e e e e eneaneanas 21

5.2.Quantity kind and unit Creation..........ccooueiiiiiiiiiie e e e e 24
5.2.1.Ergonomic evaluation.........ccuuiiiiiiiiiiiciii e e e e eaaas 28

5.3.Math 1aW CTEATION. .. .ieeiiiiiee et et e et e e e e et e et e et e et e eaeeaenaennen 29

I o 0\ 1D I o] 1= 1 5 [0 s P PP PSP U PTIN 31

5.5.PCAO: weaving MOAEL.......ccoiiiiiiiiii e e e e e e e e e e et e e e a e e eaan e 35

Open-PEOPLE D2.8- Ergonomic Page 3/37

1. Preface

1.1. Versions

Version Date Description & rationale of Sections mainly
modifications modified
0.1 8 November 2010 First version -
0.2 5 April 2011 Added constraints and Ul 4.4and 5
recommendations
0.3 30 June 2011 Added the LUT section 06/01/11
04 6 July 2011 Made some corrections to the text 2,3,4,5,and 6

0.5 8 July 2011 Move use case chapter in D2.1

Open-PEOPLE D2.8- Ergonomic Page 4/37

1.2. Table of references and applicable documents

Reference Title & edition Author Date
Open-PEOPLE Specification for the Sophie ALEXANDRE |18 May 2010
project: deliverable | software platform
D21 definition (V1)

Open-PEOPLE Tools Integration Kévin ROUSSEL 10 September
project: deliverable | Protocol 2010

D2.2

Open-People project: |Basic Components Dominique BLOUIN 15 July 2010
delivrable D41 Model
Homogenizations

Open-People project: | Generic models, Dominique BLOUIN N.D.
delivrable D4.2 interoperability and
interchangeability

1.3. Acronyms and glossary

Term Definition

OoP Open-PEOPLE: the name of the project we're talking about, and by
extension, the name of the platform(s) developed within this project.

OPSWP Open-PEOPLE's software platform: the central piece of code, around
which resolve all of the software developments undertaken within the
Open-PEOPLE project.

Java The Java programming language, and the platform on which it
executes, once compiled into bytecode (Java virtual machine). Both
created by Sun Microsystems (now Oracle), and defined respectively in:
“The Java Programming Language” and “The Java Virtual Machine
Specification” books.

JVM Java Virtual Machine: main component of the Java platform, providing
the latter with its portability and security (among others). The OPSWP is
designed to be executed by the JVM.

Bytecode JVM bytecode: machine code for the JVM, that is: program code directly
executable by the JVM. The OPSWP and its plug-ins will ultimately take
the form of executables coded in this format.

JCP Java Community Process, by which Sun Microsystems/Oracle designs
the evolution of Java (both the language and the platform) in cooperation
with its users.

JSR Java Specification Request: official proposals of evolution for Java
(both the language and the platform), made within the JCP.

Open-PEOPLE D2.8- Ergonomic Page 5/37

Term

Definition

OSGi

Formerly meaning “Open Services Gateway initiative”, it is a
framework designed by the OSGi Alliance, in order to provide dynamic
modularization and service-oriented architecture (SOA) for Java-based
applications.

CRI-NGE

Centre de Recherche INRIA — Nancy Grand-Est: the place where the
development of OPSWP is managed and—for a major part—realized.

PCMD

Power Consumption Models Development: the set of features offered
by the OP platform (hardware & software) which allow to develop and
validate new power consumption models.

PCAO

Power Consumption Analysis and Optimization: the set of features
offered by the OP platform which allow embedded system designers to
estimate and optimize the energy consumption of the systems they
create, using predefined consumption models.

GUI

Graphical User Interface: OPSWP will offer a GUI to allow for easy yet
efficient and productive use.

RCP

Rich Client Platform: a framework (comprising widgets,
desktop/workbench, extensible architecture, update management, and
other paradigms) on which one can build coherent, robust, standardized,
and feature-rich desktop stand-alone and client applications (thus named
“rich client” applications). The OPSWP is to be built on Eclipse project's
RCP.

IDE

Integrated Development Environment: a graphical
application/framework gathering tools in order to help developers and
programmers to perform more easily and efficiently their work; one of the
most advanced, best known and most used IDE for the Java platform is
the Eclipse JDT, built upon the RCP produced by the Eclipse project. A
variant of this JDT is precisely specialized in development of applications
based on Eclipse's RCP.

COP

Component Oriented Programming : Programming method which
consist to use modular approach to make software architecture using pre-
existing components.

JAAS

Java Authentication and Authorization Service : is a Java security
framework for user-centric security to augment the Java code-based
security. Since Java Runtime Environment 1.4 JAAS has been integrated
with the JRE - previously JAAS was supplied as an extension library by
Sun.

EMF

Eclipse Modeling Framework : is a modeling framework and code
generation facility for building tools and other applications based on a
structured data model.

GMF

Graphical Modeling Framework : provides a model-driven approach to
generating graphical editors in Eclipse.

http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Java_Virtual_Machine

Open-PEOPLE D2.8- Ergonomic Page 6/37

Term Definition
GMP Graphical Modeling Project : provides a set of generative components
and runtime infrastructures for developing graphical editors based on
EMF and GEF
OPHWP Open-PEOPLE's hardware platform : the place where hardware

measures are realized to be computed by OPSWP.

http://www.eclipse.org/gef
http://www.eclipse.org/emf

Open-PEOPLE D2.8- Ergonomic Page 7/37

2. Executive summary

Our software platform is composed of several tools implemented as a set of Eclipse
plugins using the Eclipse RCP standard “extension point” mechanism. This is the
lightweight software integration model we decided to use during the conception of the
OPSWP (see deliverable D2.2 for details), whose graphical consistency is guaranteed a
minima thanks to the basic Ul mechanisms (SWT widgets, workspace, etc.) of the Eclipse
RCP.

Each one of the integrated software tools is part of the model-driven workflow used by our
platform to implement its features; however, these tools are not basically conceived to work
together, thus undermining the coherency and usability of the OPSWP. Since the usability
of our future software platform is a major concern for us, we are putting much effort into
the harmonization of the various software elements to offer the best possible user
experience to the system architects who will be our main users.

The purpose of this document is to describe how we intend to provide good ergonomics to
the OPSWP: we will especially explain the choices we made about the GUI conception.
Ergonomics are only a question of usability, which depends on the good organization of
GUI, on good use of visual components, forms, and so on. Ergonomics don't define neither
the graphic charter nor the visual identity of our software: these “artistic” considerations
are part of the project's task 6 (dissemination).

The present study is divided into several consecutive parts: we first begin by analyzing
user profiles and their related tasks, then we review the technical and architectural
constraints that are imposed to us. From all of these, we eventually build a style guide, that
defines the usability requirements that shall be followed as guidelines to implement the
graphical user interfaces (GUIs) of the OPSWP software elements with the expected
consistency.

This document — not planned at the beginning — is part of task 2 of the OP project. This
task is under the responsibility of the INRIA NGE team, and its main goal is the
specification, conception and implementation of the OPSWP.

3. Scope of the document

The goal of this document is to present the background work realized on ergonomics, so
as to make the OPSWP an integrated software toolset, instead of a mere concatenation of
various tools.

It is supposed that the reader of the present document knows what OP is, and what goals
it is supposed to achieve. This document won't talk about these subjects: this information
can be found in the D1.1 to D1.4 deliverables of the project.

Moreover, this document focuses itself exclusively on the software platform (OPSWP). All
data concerning the project's hardware platform is located in other deliverables
(deliverables from task 3; plus D2.3 for the remote control of hardware platform).

Open-PEOPLE D2.8- Ergonomic Page 8/37

4. Analyses

4.1. User profiles

The first step of our analysis work consists in defining the correct profiles for each possible
kind of users our platform will have, each profile corresponding to a set of desired /
employed features. As far as the OPSWP is concerned, we identified the following user
profiles:

+ academic researchers, doing fundamental research on electronic power
consumption;

* industrial systems engineers, building new embedded electronic systems, and
trying to optimize / minimize their power consumption.

These two populations don't have the same goals nor the same methods. Understanding
how they work is the first essential step to best suit the OPSWP to their needs.

A premiere vu, 2 types d'utilisateurs : I'employé d'une entreprise privée et le chercheur
d'un centre de recherche. Les deux non a priori pas les mémes besoin ni les mémes but
ce qui n'implique pas forcément que leurs taches soient fondamentalement différents.

Démarche :

Relecture des précédents délivrable pour essayer de trouver début de réponse a la
question du but, du souhait mais également les tache prévu — on a déja 2 pseudo tache
PCAO et PCMD.

Interview avec un panel représentatif pour compléter ces 2 questions. Pour vérifier et
compléter les taches prévus, voir ce qu'il font avec leur logiciel et non notre plateforme
concaténé (cat pour lorient, un autre logiciel pour inpixal, un autre pour thales) — quel but,
comment et avec quelles informations. Si possible dans leur environnement de travail.

4.2. Researcher profile and tasks model

We've conducted interviews with three different academic researchers and research
engineers. These three interviews allowed us to determine the tasks model (flow)
described in figures 1, 2 and 3 hereafter.

Open-PEOPLE D2.8- Ergonomic Page 9/37

1 Estimate
energy
consumption
PAR.
1.1 1.2

Create Deploy Estimate
consumption consumption architecture

model model consumption

v v
Figure 2 Figure 3

Figure 1: Researcher profile's main task flow diagram
(PAR. == parallelizable, potentially simultaneous steps)

Create
consumption
model
SEQ
1.1.2 |
1.1.1 ‘ ;
Create plugin
Define implementing
consumption laws consumption laws
SEQ. SEQ.
1.1.1.1 1.1.1.2 1.1.1.3 1.1.2.1 1.1.2.2 1.1.2.3 1.1.24
Define Define : Defi
: Defi efine
[El® el influencing Define laws influencing Define laws eune Catego
measures composition gory
parameters using this parameters using this model

parameters parameters

Figure 2: Consumption models creation task flow
(SEQ. == sequential actions that need to be accomplished one after another)

Open-PEOPLE D2.8- Ergonomic Page 10/37

Estimate
architecture
consumption
SEQ.
1.2.1 1.2.2
Create an Estimate
architecture consumption
1.2.2.1 1.2.2.2 1.2.2.3
Choose consumption : Launch
Give value to]
model . consumption
consumption model estimation

Figure 3: Consumption estimation task flow
(SEQ. == sequential actions, that need to be accomplished one after another)

4.3. Industrial engineer profile and tasks model

We've had interviews with two industrial engineers. These interviews learned us that
industrial engineers don't create consumption models: they only want to use them.

Currently, they have no tool allowing them to predict the power consumption of electronic
devices a priori, : system components are chosen according to their intuition and
experience (“board sizing”), then the final system consumption and performance are
estimated from hardware models built from evaluation boards and devices. When this first
step is complete, they write “data sheets” that they can then use to refine the final versions
of their systems.

Thus, the tasks flow for industrial users is quite simple, and can be summarized by figure 4
hereafter:

1 ‘ Size a board ‘
1.1 1.2
Create Use data
data sheet sheet
1.1.1 1.1.2 1.2.1
‘ Buy several ‘ Implement ‘ ‘ Take maximum
card benchmarks data rating

Figure 4: Industrial engineer profile's task flow

Open-PEOPLE D2.8— Ergonomic Page 11/37

4.4. Technical constraints

The architectural and technical decisions we made during the OPSWP conception impose
several constraints to us.

* The very first of these constraints is the use of the Eclipse rich-client platform (RCP) as
the basis for our software developments. Consequently, we have to use the standard
mechanisms of this RCP to build our software, that will be implemented under the form
of Eclipse plugins (see D2.2 for more details).

* The second constraint is the use of model-driven development, which compells us to
employ the GMP toolset (that includes the well-known EMF and GEF frameworks).

* The third constraint comes from the definition of the metamodel we use. This metamodel
provides some necessary features and tasks that complete the researcher and industrial
engineer profiles' task flows.

* The fourth and last constraint is the modularity of the OPSWP: the platform is composed
of various tools. Some of these tools are developed by us and our partners — and can
thus be developed and modified according to our needs and wishes — while on the
contrary, we don't have such flexibility for other third-party tools.

4.4.1. Eclipse platform constraints

The Eclipse RCP framework defines some paradigms that every plugin has to follow in
order to contribute Ul elements to the RCP “workbench”. Consequently, one has to know
and abide by these rules to provide GUI-based add-ons for the OPSWP. A large section of
deliverable D2.2 (“Tools Integration Protocol”) is devoted to the Eclipse GUI elements,
where one can find much details on this subject. Thus, we will only briefly summarize here
the most important user interface elements that will be used in the OPSWP.

The editors and views are the two main kind of parts that compose the vast majority of the
Eclipse workbench window, as we can see on figure 5 below. They are the main ways to
interact with the “objects” that will be used in the OPSWP. While views are usually simple
Ul elements (i.e. containing only one list, one table or one text area), focused on a precise
domain (e.g., they are the containers of choice to hold a file list, or a properties' table), the
editors are quite complex elements, allowing for the complete edition of a given element
(usually a file, but they can also be built to edit anything). Editors can be subdivided into
many sub-editors contained in tabs (see for example the Eclipse plugin.xml editor). Both
of these Ul elements are arranged by Eclipse-specific layouts called perspectives that
allow to describe what parts (views and editors) are open and how they are arranged on
the workbench window.

Open-PEOPLE D2.8- Ergonomic Page 12/37

File Edit Mavigate Search Project OSATE Analy

m muskKa JJSE?JF Ji TOOI ba I

=08 AADL_Project.aadl i3

o [FRB1

o= Outline &2 =]

w9 v — roperty set AADL_Proje:
¢ @|B% — AADL Standard AADL V1.0 property =
-- Appendix A (normative)
-- Predeclared Property Sets
-- 03Nov04

-- Revised 14May06

7 mh Plugin_Resources
AADL_Project.aad|
AADL._Properties.aadl
Behavior_Properties.aad|
Behavior.aadl
CAT_Bus_ASIC_Properties.
CAT_Bus_Properties.aadl
CAT_Linux_Properties.aad

i CAT_Memory_Properties.a

= property set AADL_Project is
Default_Active_Thread_Handling_Protocol: constant Supported_Active_Th

Max_Queue_Size: constant aadlinteger == 512;
Max_Thread_Limit: constant aadlinteger == 32;

Max_Time: constant aadlinteger Time_Units=> 1000 Hr;
Max_Urgency: constant aadlinteger == 12;

Max_Word_Count: constant aadlinteger => 2#1#e32;
Max_Word_Space: constant aadlinteger == 64;

-- one of the choices of Supported_Active_Thread_Handling_Protocols.

CAT_Processor_XUP_Prope
CAT_Properties.aad| Supported_Active_Thread_Handling_Protocols: type enumeration (abort, ¥

CAT_Thread_Properties.aa < > B._______________O

cat-buses.aadl [l Problems 2 . & PmpertiesWEAADL Property Valuesw % ¥ =0
cat-buses-asic.aadl

cat-memories.aad|

0 errors, 16 warnings, 0 infos

Description Resource | Path | Location -
cat-memories-flash.aadl v % Wamnings (16 items)
cat-os.aad| & Processor implementat| ixl Unknown
cat-os-linux.aadl <l Unknown

& Processor implementati

= | Read-Only | Insert l1:1 J

Figure 5: The differents parts of the Eclipse workbench Ul.

Wizards are also important Ul elements which will be used in the OSPWP. They form an
advanced kind of dialog boxes, helping the user to accomplish complex tasks step-by-step.
Thus, these dialogs comprise several pages, that are shown one after another during the
progression of the procedure to accomplish.

Both of these paradigms (Editors/views and wizards) are specific to Eclipse, and impose a
visual organization that the OPSWP will have to respect. There are also some well-defined
procedures that are to be followed in order to create these. But others, more classical Ul
elements — like menus, dialogs, and so on — are also available to build the OPSWP
graphical interfaces.

Open-PEOPLE D2.8- Ergonomic Page 13/37

® New Project e

Project

Create a new project resource, f ;

Project name: |

sl Use default location

Working sets

Add project to working sets

@:I | <Back | Cancel |

Figure 6: A wizard Ul in the Eclipse platform.

4.4.2. Eclipse GMP contraints

Comment fonctionne emf; les différents modeéle, les éditeurs automatiques, etc

GMP (Graphical Modeling Project) is a project whose goal is to provide a set of automatic
generation tools and runtime infrastructures for graphical editors development, based on
the EMF and GEF frameworks as well as meta-models. In practicals terms, GMP allows,
starting from a meta-model definition, to automatically generate interactive editors or code
to programmatically edit models (that is: instances of the meta-model). Figure 7 hereafter
explains how GMP works:

Open-PEOPLE

D2.8— Ergonomic

Page 14/37

Source editing| | T
Obj o1 = createObj(); :
o1.add(02);

ree editor

& mathml
+ B AbsType
+ E AndType

Diagram editor

"a"

N

GMF

Graphical
Def Model

Ecore| Mapping
‘Gen Model ‘dmodel\ Def Model
A
Tooling Def
Model
EMF
GEF
v
o D
Xml schema
UML model

Annoted Java

Figure 7: Functional blocks of GMP.

As one can see, interactive editors (i.e. Tree editor and Diagram editor) are generated

automatically from the meta-model. They can be adapted and customized thanks to

parameters or intermediate configuration models. So we can, for example, define an icon
for an object of a meta-model, modify the default representation of an object in a diagram
editor, and so on. But even if we can customize some properties, the global representation

in the tree editor will remain a tree, as well as the global representation in the diagram
editor will remain a diagram constituted of “boxes” linked with relations.

Open-PEOPLE

D2.8- Ergonomic Page 15/37

w
@ *Mly webpage ©3

ﬁ"_‘, Resource Set

= @ platform: fresourceftestingfwebsite /My webpage
EI*{-‘* My Web
4+ ‘Webpage EMF Article

[
] #y webpage £

_\D Resource et

Selection | Parent | Lisk | Tree | Table | Tree with Calurmns
= @ platform: resource testing/website My, webpage Q | | | |

4 T Properties &3
Property Yalue
Descripkion U= EMF Article about modeling
keywords E EMF, Modeling
Marne U= EMF Article
Tikle U= Lalal
Figure 8: Global representation of a tree editor.
ene Resource - test.taipan_diagram - Eclipse SDK
] 3+ [[[| i Bl 0 Gv Do
| (Lucida Grande Mo MB 1|Ar & sv— | |BiroBr Bev |27 | X B |[100% -
haflTe
. Navigator 22 = E (% test taipan_diagram o1 =0
|3 % T+ =Palette —
v = taipan 7| I Select
'R test.taipan *, Zoom
'S test.talpan_diagram = Note X
L Port [E—
'E- Ship 5t Lucia
@ Small Items
@ Large Item
. EH’ID‘!‘.‘ mx 5. V. Mandalay|
Q Reliab]e ROUIE - passenaer [201
“% Unreliable @ ro —
Route 0 Martinigue
A Ship
Destination
= Properties &3 5 E T mly

Appearance

]

| Advanced Property

v EMF

Name
v View

p Destination

»_Lavout Constraint

Value

¥ Port Martinigue
1= 5. V. Mandalay

&

(D

]

Figure 9: Global representation of a diagram editor.

Open-PEOPLE D2.8- Ergonomic Page 16/37

That's why we have three kinds of available Ul to edit a model :
» a standard diagram editor with linked boxes;
e astandard tree editor;

* a customized editor, that we have to build from scratch using Eclipse common user
interface elements (Editors, views, wizards, and so on).

4.4.3. Meta model constraints

Expliquer en quelques paragraphes les différents modéles.
Parler de la contrainte technique liée au MathML

To support the features of OPSWP — which can be grouped into consumption model
creation features (PCMD) and consumption evaluation features (PCAQO) — we decided to
use a multi-DSL based architecture (see deliverable D4.1 “Basic Components Model
Homogenization” for all the details). The global view of the multi-DSL architecture is
presented in the following diagram:

£ «package»
power analysis languages Q ubv |

[quantity / dimensions

P quantity

EQML QCML

[estimated physical quantities [physical quantity composition
" estimated quantities < quantity composition MATHML
7 mathematical laws
EML
- Q " estimation laws
[system architecture 1 physical quantity estimation
x{‘::: " estimation tables
composite b
LUTML
" system architecture lookup tables
" system architecture ~" quantity estimation b
1 bindin
1 analysis constraints 4

To create a consumption model, we then need to use these DSLs:

* MathML (Mathematical Modeling Language) : this model allows to define all kinds of
math formula. Contrarily to the other DSLs used in OP (that we specifically created
and tailored to our purposes), it is an international, widely-used, W3C-backed norm.

Open-PEOPLE D2.8— Ergonomic Page 17/37

* QUDV (Quantities Units Dimensions Values): this model (Domain Specific
Language: DSL) allows to define quantities (e.g.: length and mass) and units (e.g.
respectilvely metre and kilogram).

+ EQML (Estimated Quantity Modeling Language): this model allows to define
uncertainties for a quantity (e.g.: £ 10%, as well as more complex functions).

* QCML (Quantity Composition Modeling Language): this model allows to define
compound quantities.

* LUTML (LookUp Table Modelling Language): this model allows to define a lookup
table, i.e.: an associative array of one or more ordered variable(s) and values.

* QEML (Quantity Estimation Model Concepts): this model allows to define a
consumption model; it is built by composing all of the previously cited DSLs
(models).

All these meta-models — “models” being a misuse of language — have a goal: they allow to
represent something. To build ergonomical software, we must understand during its
building how the user thinks when using it. The more the user interface respects the user's
mental representation, the better the user interface will be accepted by this user. But the
building scheme of users will often not match directly the building scheme used to create
data models (or meta-models in our case). So to match them, we must create adapters
between both these building schemes. If such adapters are not enough — as it is often the
case —we must either adapt the data models or adapt the user interfaces. In our case, we
can only modify user interfaces. That's why it is important to understand how to create
instances of meta-models in order to correctly define adapters and, only if necessary,
modify adequately user interfaces.

Concerning diagram editors or tree editors, both these kind of editors already include
general-purpose adapters. We can modify a part of these adapters as well as user
interfaces. But if user interface goes too far from the user's mental representation of the
related task, then it won't be acceptable to choose one of these kind of editors.

For example, if a meta-model representing a file system is pretty well represented by a tree
editor, a meta-model representing a math formula is not to be represented a tree editor:
nobody naturally writes a math formula in the form of tree!

Moreover, meta-models are developed to provide functionalities to the OPSWP. These
functionalities are resumed below.

PEUT ETRE METTRE QUE LES META MODEL COMPLETE LE MODELE DE TACHES

4.4.4. Modular contraints

As mentionned in 4.4., the OPSWP is modular, since it is composed by several tools.
Amongst these tools, some of them are developed by partners of the OP project, and as
such, their development and evolution can be adapted to our needs. For the other, third
party tools, such flexibility is not possible: we can (partially) modify their user interface in
the software platform, but we have no way to change their inner architecture and
behaviour.

Open-PEOPLE D2.8- Ergonomic Page 18/37

5. Style guide recommendation

Ce chapitre évoque des maquettes dont certaines seront encore soumises a modifications
liées a des contraintes non prévisibles.

5.1. Lookup table creation (importation) and edition

As stated in the first part of this document, the Power Consumption Models Development
(PCMD) features of the OP SoftWare Platform (OPSWP) use as their base, raw material
the measurements provided by the OP HardWare Platform (OPHWP). The latter provides
its results in the form of OPTR archives.

To be usable, these power consumption measurements have to be imported into a directly
usable data structure: the LookUp Table (LUT). Our software platform offers an integrated,
convenient mechanism to import the OPTR-embedded data into LUTs.

Once imported, the LUTs can be explored and edited via a dedicated (Eclipse-based)
editor. That editor shall also soon offer advanced statistical analysis features, allowing
thorough studies of the LUT's data, and determination of any underlying mathematical
function(s) — if such functions exist. These LUTs as well as their derived mathematical laws
will then be available to build new consumption models.

5.1.1. Importing OPHWP measurements into a new LUT

The OPTR importation feature is provided to the user via a dedicated import wizard. Since
this importation function needs many parameters, and especially a quite complex
configuration matching source data with destination columns in the new LUT, this wizard is
divided into several steps, represented by as many wizard pages.

The first wizard page is dedicated to the selection of the source file containing the data
that will be imported. Its interface is represented by the following diagram:

LS

OPTR File Selection
Select the OPTR archive, and the result's file to import
Source OPTR file: iﬂ:‘rh/‘tes‘rshesﬂ,opfr l | Browse... l

Select the data to impart from the source archive:

archive:/resources/1285484878492_xilinx-detection. log
archive:/resources/1285484878492_xilinx-impact.log
archive:/resources/1285484878492_power.csv
archive:/resources/1285484878492_rs232.log
archive:/resources/execution.log

| < Back [| Next » l | Cancel [_' Fini _J

Open-PEOPLE

D2.8— Ergonomic

Page 19/37

This page is vertically divided into two zones, to be filled sequentially during the import

procedure:

» The first text field (on the top) is where the name of the source OPTR archive is to be
typed in, the neighbouring “Browse” button allowing to choose graphically the OPTR file
(via the system's standard file dialog box).

* Once the source OPTR is designated, the user still has to designate the raw data file.
Since an OPTR file is actually a ZIP archive containing all of the output produced by a
test executed on the OPHWP, the bottom field lists the files embedded into the archive,
so that the user can choose the file where the power measurements data are gathered;

it is normally a CSV file.

When a data file is selected in the list, the “Next” button activates, allowing the user to
proceed to the second wizard page.

This second wizard page is dedicated to the selection of the data to be imported into the
LUT. Its interface is represented by the following diagram:

®

OPTR Data Selection

Select the data to be loaded in order to build a new

o

— Selected source data (view):

c1 c2 c3 c4
1| Sample Curr Avg 1 Curr Min 1 Curr Max 1
211 0.749118 0.745464 0.753207

— Choose the columns to enter into the new LUT:

Source data file
From column C1 (from line 2 only)
From column €2 (from line 2 only)

New LUT matching
to Variable #1
to Result set

'_

»

Column matching

for an imported set of data

Define the detination into the new LUT M

Add. ..
Edit...

— Source data set

Import the data from column: g

M ...only from line: l:%

O ...only up to line: g

— Store the imported data set...
@® in a variable ("key") of the new LUT,

O in the result set of the new LUT

variable number: g

|<Backl |Next>l

| Cancel l

Delete

Clear

Because the CSV files generated by the OPHWP can be huge, and often comprise a lot of
data that may not all be worth importing into a single LUT, that page allows the user to
perform fine-grained selection amongst the data, allowing only some columns and lines to

be imported from the source CSV file into the new LUT.

To that aim, the page (on the left in the previous figure) is vertically divided into two tables:

» The top table presents the raw data contained in the source file selected in the previous
page; this table is read-only (no modification can be made to its contents): its role is to
show the user how the source data is organized, so that (s)he can adequately choose
what data to import into the LUT, and how';

1 Note: it also gives the user the opportunity to realize that (s)he selected the wrong source file: (s)he can
then click on the “Back” button to return to the first wizard page and correct his/her selection.

Open-PEOPLE D2.8- Ergonomic Page 20/37

* The bottom table is the “active part” of the page, where the user will express its choices
about the data importation; the importation process (as the LUTs themselves) are
“column-centric”, that is: all the data they contain are organized into homogenous sets,
each of these datasets correspond to one column; thus, defining the data importation
actually means choosing which column of the source CSV file will be imported into which
LUT column. We choosed to call each of these import relations a “column matching”.
Thus, each line in the bottom table corresponds to a column matching that will constitute
the import process. The sum of these column matchings represents the integrality of the
current OPTR-to-LUT import process.

Lines of the bottom table can be manipulated (added, deleted...) thanks to the table's
popup menu (right-click on the table). Editing a line of the bottom table — by calling the
“Edit...” command of the popup menu, or by double-clicking on the line — calls forth a
dialog box specifically made for editing column matchings. We will study this dialog box
below.

The wizard pages ensure that there are at least enough valid columns matchings to
populate a variable and the result set of the new LUT. Once these requirements are met,
the “Next” button activates, and the user can proceed to the third and last wizard page.

The column-matching detail dialog is shown on the right of the previous diagram.lts role is
to allow the user to put into relation a column of the source CSV file, with a column of the
new LUT that the import process will create. Thus, it is logically divided into two zones: the
top zone is dedicated to the definition of the source data set, while the bottom zone
indicates where in the destination LUT the imported dataset will be stored.

* The top, source-dedicated zone serves mainly to decide what column of the source file
will constitute the source dataset: it is the purpose of the first (top) “number spinner” to
select that source column's number.

Moreover, that zone also offers the opportunity to restrict the imported dataset to a
specific range of lines from the chosen column — since the latter may contain unwanted
elements that are not to be imported. Thus, there are two checkboxes (coupled with two
“number spinners”) that allow to define respectively a first and a last line, restricting to
the adequate range the importation of the data from the source column.

* The bottom, destination-dedicated zone serves to indicate what place the imported
dataset will occupy into the destination LUT. A given dataset can be used to fill either a
“key” (variable) of the LUT, or its result set; the two radio buttons of the bottom zone
allow the user to choose between these two kinds of role.

If the destination is a variable, the “number spinner” coupled with the first radio button
will indicate the index number of that variable into the new LUT — since our LUTs can
hold many variables?.

2 As areminder, an OPSWP LUT has one or more variable(s), but always has one and only one result set;
thus, the simplest form of LUTs corresponds to two-columns tables — a variable plus a result set.
Currently, we allow LUTs to have up to 9 variables (i.e.: LUTs can have up to 10 columns).

It is important to note that the order of the columns matter, that is: the compound function that the LUT
implements is not commutative! Multivaried LUTs are actually tree structures.

Open-PEOPLE D2.8— Ergonomic Page 21/37

The third wizard page is dedicated to the selection of the file where the destination LUT's
file will be stored. lts interface is represented by the following diagram:

n
OPTR File Selection
Select the OPTR archive, and the result's file to import
Destination LUT file:
i,’pa‘l’hr"tesfs,"l’es‘tl.luf I' | Browse. .. [
| < Back I [Nex _] | Cancel [| Finish l

This is the last and simplest stage of the importation procedure: the user just has to set the
file where the resulting new LUT will be saved.

There is thus only one zone on the top of the page. It comprises a text field where the path
and name of the destination LUT file is to be typed in, the neighbouring “Browse” button
allowing to provide these information graphically (via the system's standard file dialog box).

5.1.2. Using the LUT editor

Since LUTs can be quite huge and complex — especially if they comprise more than one
variable — the dedicated LUT editor we built is divided into several pages:

» The first page is dedicated to the management of the LUT's “metadata’, that is: the
definition of its columns — variable(s) and result set;

* The second page is dedicated to the browsing and the edition of the LUT's data: to that
aim, we specifically choosed to take advantage from relatively little-used technique that
can be applied to tree structures;

* The third page is dedicated to statistical analysis of the LUTs data: it is still a work-in-
progress. We eventually want to integrate into this page sophisticated tools that will allow
the users to find easily, efficiently and reliably any mathematical function/law that could
underlies any LUT's data.

Open-PEOPLE D2.8— Ergonomic Page 22/37

The first page's U.l. can be described by the following diagram:

— Dimension
Number of variables (keys): 2

— Variables Properties

Var. #a| Variable Name Unit Interpolation Possible?] Under Domain Possible?| Over Domain Possible?
1| Frequency MHz ¥} ¥} O
2| Voltage v & & (m]
Add. .. Cirl+Ins
Insert before. .. Ins
The grid's popup menu Edit... F2
Move up Cirl+Up
Move down Cirl+Down
Delete Del
Clear
I

— Result set

Result column name: |Power consumption I Unit: [Set precision to: decimal digits
I Variable 54 Values/

This first page has quite a classical user interface. Its greatest part — the central zone
named “Variables properties” — is occupied by a table showing the properties of the LUT's
variables. The contextual (“popup”) menu of this table allows the user to manipulate (add,
delete, reorder...) these variables. Editing a line of this table — by calling the “Edit...”
command of the popup menu, pressing the F2 key, or by double-clicking on the line — calls
forth a dialog box specifically made for editing a LUT variable properties. We will study this
dialog box below.

The bottom part of this editor's first page is dedicated to the characteristics of the LUT's
result set, those characteristics being directly editable thanks to the controls of the “Result
Set” zone.

The LUT variable dialog box can be represented by the follwing diagram:

Open-PEOPLE D2.8- Ergonomic Page 23/37

LUT Variable
Define the characteristics of the given LUT variable.

Variable #1
— General

MName: IFr‘equency l
Unit: [MHz |v]

— Unknown Values Determination Policies
] Accept and interpalate unknown values in the definition domain
] Accept and compute unknown values under definition domain

] Accept and compute unknown values over definition domain

Cancell | OK l

The user interface of this dialog is easy to understand: its top part is dedicated to the
edition of the main characteristics of the variable — its name and its unit — whereas the
bottom zone allows to control whether values non-explicitely defined in the variable's
domain of definition will be accepted and computed on-the-fly or not.

The second page's U.l. can be summarized by the following diagram:

Frequency (MHz) , Voltage (V) J Power consumption (W)]
100 IZ] 1.0 0.10 Iil
200 ll| s 0.15
300 2.0 0.20

T
12

=

I V:Ir'iub[es,dl Values/

Open-PEOPLE D2.8— Ergonomic Page 24/37

Since the values comprised in a LUT are organized into a tree structure, we decided to
use a relatively little-known, but clear, and efficient technique of representation of tree
structures, in order to let the user browse and edit the LUTs datas.

This technique is known as the Miller Columns. These columns have — from the
ergonomic point of view — two decisive advantages:

+ they allow multiple levels of the hierarchy to be open at once, and

* they provide a clear visual representation of the currently browsed location (“path”) into
the tree structure.

Even if they are not used as widely as one could expect into mainstream software, we can
however note that the Miller Columns appeared early in development environments
(especially the Smalltalk browser); their first use into a general-purpose software was in
the file viewer included in the infamous and very influential NeXTstep operating system.
Today, such a presentation is still available in the Finder of MacOS X (NeXTstep's heir and
“son-in-law”), as well as other Apple software (like iTunes for example)...

The Miller Columns thus occupy the totality of the LUT editor's second page. There, the
LUTs values can be browsed and directly edited in-place. Further manipulation of the data
(adding, deleting) is provided by the popup menus attached to each of these columns.

We will describe the third page's U.l. in a future version of this document, once the
conception and development of that editor page has reached a sufficient maturity level.

5.2. Quantity kind and unit creation

The purpose of the QUDV DSL is to define units and quantities. For example, it is used to
define a 'length' quantity kind whose associated unit is 'metre'. The diagram in figure 10
hereafter shows how the Sl seven base units defined as a QUDV model. A more complex
instance of a QUDV meta-model can be found in deliverable D4.1 appendice. The
quantities and units so defined are to be used in mathematical laws and architecture
models definition.

Open-PEOPLE D2.8- Ergonomic Page 25/37

bdd [package] SIDefinitions [Base Unit and Quantity Kinds of the Sl and ISQ respectively])
SI: SystemOfUnit systemOfQuantities | ISQ: SystemOfQ if
E— i
it ntityKind ki
un metre: SimpleUnit quantiyK lengthQK: SimpleQuantityKind quantityKind
| name = "metre” name = "length”
baseUnit | sympbol = "m" symbal = "L" baseQuantitykind
unit N - quantityKind N - quantityKind
gran: SimpleUnit massQK: SimpleQuantityKind
baseUnit | name = "gram” name = "mass” o
symbol = "g" symbol = "M" baseQuantityKind
unit N N quantityKind N - — quantityKind
second: SimpleUnit 1imeQK: SimpleQuantityKind
name = "second” name = "time" baseQuantityKind
baseUnit | symbol = "s" symbol =T aseCuantityKin
unit . SimpleUnit quantityKind . . Si . quantityKind
name = "ampere” name = "glectricCumant” a L
baseUnit | symbol = A" symbol = "A" baseCQuantityKind
unit in: Si " quantityKind N . Si - quantityKind
name = "kelvin" name = “themnodynamicTemperature” baseQuantityKind
baseUnit | symbol = K"
unit quantityKind quantityKind
mole: SimpleUnit amountOfSubstanceQK: SimpleQuantityKind
name = “molg" name = "amountOfSubstance QK" baseQuantitykind
baselnit symbol = "mol”
unit e
jela: SimpleUnit quantityKind lumi] ityQK: SimpleQ ityKind quantityKind
baseUnit | name = "candela” name = "luminousintensityQK" baseQuantityKind
symbol = "cd”

Figure 10: Base unit and QantityKinds of the S/

The pictures shown in the next figures are good examples of what kind of representation
we want to display to the user, instead of bothering him with a cluttered diagram
representation of model objects — in the latter case, users would have the unpleasant
obligation to create unclear diagrams made of linked boxes. Still, we will have to build a
rather more complex Ul to take into account multiples- and fractions-related prefixes (kilo,
milli, etc.), as well as derived units as defined in deliverable D4.1. However, using tree
editors to define such quantities and units would be far more complex and mind-twisting,
and as such would result in Ul highly likely to be rejected by the users. That's why, we
chose to use the common Ul elements described in the earlier chapters of the present
document to create and edit QUDV-based models.

Open-PEOPLE D2.8- Ergonomic Page 26/37

Quantity creation
Create a quantity, create an associated unit or choose an available unit

= Quantity

Name : |length

Symbol : |L

Desﬁripfiﬂﬂ tla Ierghf

— Unit quantity choice

Select a unit : [Mﬂre (m) || or create and select a new one ...

MName : metre
Symbol : m

@ r 3¢ lr l Fnis H Cancel |

Figure 11: Mockup of quantity kind creation user interface.

In the mockup shown in figure 11 above, the user will have to give some details about the
quantity kind he wants to create. Then he will be able to choose whether to base his/her
new quantity kind on a predefined unit, or else to create a new specific unit. In the latter
case, the unit creation wizard will be automatically started for him (her).

In the unit creation wizard (see Figure 12 below), the user can choose between creating a
base unit — note, however, that all of the seven Sl base units will be already predefined and
delivered along the OPSWP — or creating a derived (i.e. compound) unit. In the next step
of this wizard (see figure 13 below), the user will define the general information about the
unit and above all define the unit-compounding formula that will actually define the new
unit. Once this mathematical expression is given, the unit creation process is complete.

Of course, it will be possible to directly create units — there is no need to create a related
quantity before creating an unit.

Open-PEOPLE

D2.8— Ergonomic

Page 27/37

Unit ereation

Kind of unit

Choose the kind of unit you want to create

What kind of unit do you want to create ?

O base unit

® derived unit composed by units

Available units : Iﬂpe a unit here }1’
Namea | Symb | Quantity Expression (other Expression (SI base]
metre |m length N.D.(base unit) N.D.(base unit) ﬁl
gram |g mass MN.D.(base unit) N.D.(base unit) I
second|s time N.D.(base unit) N.D.(base unit)
amper | A electric current MN.D.(base unit) N.D.(base unit)
kelvin |K thermodynamic N.D.(base unit) N.D.(base unit)
o
® (< Back I MNext » Finish Cancel
Figure 12: Choice of kind of unit in the unit creation wizard.
Select Units -0%
P Iﬂpe a unit here ” Search I
Unit creation N o] N T =
Fill unit information and expression mt = :Ym ﬁ m::: % :ym axpo
gram g Add kilogramme kg
second s
— Unit creation §IRSEE A ‘
Name : | wait I kehan & i
mole mol
b :IL I candela cd
Description : | power, radiant flux I I - 7l
display all
types of | Ok I | Cancel I
unifs
— Expression
I ~2 xl (x]
Watt = I i ¥ = L:I l
Ils“-s@, y III l

| < Back Ir Next > J

| Finish ll Cancel l

Figure 13: Unit information and derived unit expression in the unit creation wizard.

Open-PEOPLE D2.8- Ergonomic Page 28/37

5.2.1. Ergonomic evaluation

To perform the ergonomic evaluation of our Uls, we build use case scenarios. The purpose
of these scenarios is to give a concrete task to a test user, then see which difficulties (s)he
encounters when realizing that task with our mockups.

In the case of QUDV UI, the task was: create a quantity 'Power' ('P') based on the unit
'Watt' (W) whose composition formula is: kg.m?.s™.

We made this test with three different users, which is few but enough to detect heavy
ergonomic problems.

During these tests, we noticed some difficulties which impelled us to modify mockup at
several places: we moved the creation of a base unit in a preference page, thus the first
page of the unit creation wizard became obsolete and was deleted; in the second page of
the same wizard, we deleted the fraction bar and allowed the user to enter all terms of
expression in a single step.

After these modifications, the Ul for the unit creation wizard is now as shown on figure 14
hereafter:

Select Units -0%
P mpe a unit here ” Search l
Unit creation
bol N bol t
Fill unit information and expression - 8 l — s GXPHGH
metre m ﬁ mefre L
gram P adq | |Kilogramme kg
second s
A Remove
— Unit creation it
Name : [watt l kelvin K
mole mol
Symbol : [W || = =
Description :|pmmzr_ radiant flux l — ¥

display all
types of | Ok l | Cancel l

units

— Expression

Wnﬂ="m“2w _.. L:I I

® | < Back l‘ X J | Finish l | Cancel l

Figure 14: Derived unit information and expression in the unit creation wizard.

The quantity creation wizard stays unmodified from what is shown in figure 12.

Open-PEOPLE D2.8- Ergonomic Page 29/37

5.3. Math law creation

Our models use mathematical laws to estimate their final values, e.g.: power consumption
or activation time. Deliverable D4.1 details the different kinds of laws that can be used.

\
| 31.42%S " F =100.0AT ,=UDPAS ,<1500
0.6791%S " F =100.0AT ,=UDPAS ,=1500
54.909% S " F =100.0AT ,=TCPAS <1500

k cee }
Figure 15: The first 3 equations and their domain of validity for the XUPV2P MAC
Ethernet controller time model.

To store it, we use the MathML language, which is a W3C norm. In MathML, a formula can
be written by two ways: content formulation or representation formulation. The difference
between these two formulations is illustrated by the table hereafter:

Content formulation Representation formulation

One divided by two Yo of 122 or 1
- 2

Two times a 2.aor2*aor2xa

As one can see, several representations are possible for a single content. That's why the
MathML DSL is devided in two parts. For Open-PEOPLE, we naturally prefer the content
representation since it is invariable for every single mathematical content — contrary to
representation formulation. On the MathML website can be found a vast list of MathML
building software; unfortunately, most of them use the representation formulation, since
these tools are editors that don't actually need to use and compute the expressions they
manipulate. That's why we didn't choose to use one of them.

On the other hand, we will try to “take a leaf out” of the GUI of these softwares to create
our own MathML editor.

There are two ways to build mathematical user interfaces:

* one can use a pseudo programming language to describe the formula (see for example
figure 16 — the OpenOffice/LibreOffice equation editor), or

» use a graphical “box pattern” system (e.g.: the Formulator MathML editor Ul, shown in
figure 17 below).

Open-PEOPLE D2.8- Ergonomic Page 30/37

u L] L]
' 314228, F =100.0 AT ,= UDPAS, <1500
0.6791=8 " F =100.0AT,=UDP AS,=1500|

549095 " F_=100.0AT,=TCP A §,<1500

— 1] "

P

§ r
[

1l

0.6791*{S_{p}}~{0.8765}, F {p}=160.8 and T_{P}=UDP and S_{p}>=1580 #
4.909%{S {p}}~{8.3189}, F {p}=106.0 and T {P}=TCP and S {p}<l5G0 # ...} right rbrace

Figure 16: Software with pseudo programming language (Open Office).

a= left lbrace stack{31.42*{S {p}}{0.1348}, F {p}=108.0 and T_{P}=UDP and S {p}<1500
5

Formulator - [documentl.mmil]

File Edit View Insert Format Window Help

DB &4 -2 B o AQ

#lv [ablv [*fv [KJv [€)v [A)v [l [BJv Q) [iiv [E)w [

Cijy |[fv [{fw [+l |l2lv (Vv %)y [Sjv (Vv [EHw (2 [t
ﬂ B B
l; =

Figure 17: Software with box patterns edition (Formulator).

The pseudo programming language of Figure 16 mainly uses keyboard entry to define a
mathematical formula, whereas “box patterns” Uls equally uses both mouse and keyboard.
So, in the first case, it is possible to write a math formula with the sole keyboard — which is
better for long formulas — whereas “box patterns” Uls force the user to constantly switch
between the keyboard and mouse. Research literature on Uls confirm that direct
manipulation with such “mixed” procedures need to be extra precise, and are finally less
productive than keyboard-only edition. Moreover, the keyboard edition is more adapted for
repetitive entries that “expert” users are likely to use.

That's why we choose for the OPSWP to implement a pseudo-programming editor like the
one shown in Figure 16 for mathematical objects, as it is clearly the best option in our
opinion.

Open-PEOPLE

D2.8— Ergonomic

Page 31/37

5.4. PCMD creation

The purpose of this task is the creation of an energy consumption model composed by

several mathematical laws. Use cases and activity diagrams describe this task more

precisely (see deliverable D2.1). From these data, several static and dynamic mockups
were realized and several ergonomics interviews allowed to validate the mockups

described herafter.

Open-PEOPLE

File Edit Refactor Mavigate

Search Run Project Window Help

|| &3 Project Explorer'\

v BV B E [Ry 357 D
-9 Isimulaﬂon_,jnnvier. IMmulaﬁun _janvier. ecm \

ER kS

| Estimation Law

'D XUP_Virtex_II_power_model
g wr
E,a simulation_janvier, lut
E;h simulation_fevrier._lut
fj math law
[} xupvII_Sacket TimeModel .mml
[} xupvIL_timeModel. mml

[model

@ simulation_janvier,ecm

E_h simulation_fevrier.ecm

| Ptot [Powcr

[v] [miliwatt Tv] =

| ™ 0.35*Fproc+2100

Xl

Law :|0.35*Fproc+2100

|+ o8] »

Domain : IDefine a domain for Fproc or let empty ohterwise

Fproc : [frequency

[[measrertz 7]

T \=

enable if a domain is defined

| Expression

Ptot=0.35*Fproc+2100

o ml

The mockup shown in Figure 18 above is divided into two parts.

Figure 18: Mockup of the estimation law editor.

* On the left, we can see the project explorer view, showing a newly created Open-
PEOPLE project. An Open-PEOPLE project is divided in three sub folders: LUTs
(Lookup Tables); math law containing all the available (entered) mathematical laws; and

models containing the energy consumption models that regroup an arbitrary set of

mathematical laws and LUTs selected from the two preceding subfolders, as shown in

Figure 19.

* On the right stands a mathematical (estimation or composition) law editor, containing
among others an area displaying the complete, well-formed current math. expression.

Open-PEOPLE

D2.8- Ergonomic Page 32/37

Eclipse SDK

File Edit Refactor Navigate

Search Run Project Window Help

(Fv E}v,@,vlﬁv |&v *v v

]"._'I Project Explumr\

4DV

Ilsilnulnﬁuﬂ_,']nnvier. IuT\Ixupvl'I _phy_eth_Pdyn. mml_\

Laws definition

(] XUP_Virtex_II power model
£ wr
> E_a simulation_janvier. lut

E_a simulation_fevrier_lut
- m math law
Different icons

i E,a xupvII_SocketTimeModel mml

between lut, mml
— [xupvIT_timeModel.mml

and ecm file.

[E8 xupvII_EnergyMadel.mml
madel
[simulation_janvier. ecm

E,a simulation_fevrier.ecm

| Laws
Specify laws or lookup table use by this model

E_hxupvﬂf&ockﬂTin\eMadel.mml

Add...

E_a xupvII_PowerModel mml
[E}) xupvIL_EnergyModel mml

| Expression

31.42x5p" % Fp=1000 A Tp= UDP A Sp<1500
0.6791 x 5p ¥ Fp = 1000 A Tp= UDP A Sp= 1500
Tr= 4 54.909 % 5p"31% Fpy = 1000 A Tp= TCP A Sp<1500
0.7988 % 5p %% Fp = 1000 A Tp= TCP A Sp = 1500
81.129 % 5p" 144 Fp = 2000 A Tp = UDP A Sp< 13500

Figure 19: Mockup

of the energy consumption model editor

! MNew Law

0%

Select type of law

Select this
different k

O Aggregation |
Select this

® Estimation law :

(eg : Energy = Power * times)

quantities with the same kind
(eg : TotalTime = sum of sub time)

if you want create a law composed by
inds of quantities

aw :

if you want create a law to aggregate

' « E.:'.-;'H_" Mext >J | Finish I | Cancel I

Figure 20: Mockup of the "New law" wizard's first page.

Open-PEOPLE D2.8— Ergonomic

Page 33/37

MNew Law

Defﬁnufpu'r feature information of the law

MName of output feature :

Some text

Quantity of output feature :

Choose quantity

Unit of output feature :

Choose unit

® L<_-Bnck lfi* .~J

Finish

| Cancel I

Figure 21: Mockup of the “New law" wizard's second page,
when creating an estimation law.

MNew Law

D%

Defﬁnufpu'r feature information of the law

Name of component set : | Tds

Output feature for component set : | Td(ms)

v

Type of aggregation : ® Sum

O Average

Name of output feature : | Td_tot

® L<_-Bnck lfi* .~J

Finish

| Cancel I

Figure 22: Mockup of the “New law" wizard's second page,
when creating an aggregation law.

Open-PEOPLE D2.8- Ergonomic Page 34/37

The mathematical law creation wizard can be invoked through the project view's popup
menu. The first page of this wizard (shown in Figure 20) allows the user to choose
between an estimation law and an composition law. As the next and last step, the wizard
second page asks the user to provide the general characteristics of the new law; this
second page differs according to the nature of this new law. Figure 21 shows the page
displayed for an estimation law, Figure 22 for an aggregation law.

Figure 18 — previously seen — shows the editor dedicated to estimation laws.
Figure 23 displays the (somewhat simpler) aggregation law editor.

Eclipse SDK
File Edit Refacter Mavigate Search Run Project Window Help
-
v Hiv 2|y &v &:v [>v
_I 3 Project E"P'““’-"\ ad Isimulaﬁun_jnmier.hlj_ﬁnuluﬁun _janvier.ecm \ -9
B4 v - -
I| Aggregation law ol =
D XUP_Virtex_II_power_model s
Td_tot(ms)| = 5 Td(ms) where Td is computed for |Tds component set
£ wr REEL) R el - -T P & a
© Average
[simulation_janvier. lut
E,h simulation_fevrier.lut
7 math law
[} xupvII_SocketTimeModel mml
tj model
E,h simulation_janvier ecm
E,h simulation_fevrier ecm
J Expression f
Td tot= Y, Td
Tde Tds

Figure 23: Mockup of the composition law editor.

Open-PEOPLE D2.8- Ergonomic Page 35/37
Eclipse SDK
File Edit Refactor Mavigate Search Run Project Window Help
A BNV [RS v D
I O3 Project E"P"’"""\ hd]simulnfiun_jm’wir.r. I_mulnﬁon_jnnvier.ecm \ -9 |
B+ v | Estimation Law o L
m XUP_Virtex_II_power_model " s
m LUt ITd [‘hme Ivl [s lvl H a
) simulation_janvier.ut | ¥ 31.42%5p(c)"0.1348 = 3%, Fp(Hz)=100.0 &4 Tp=UDP &4 Sp(o)<1500 X1 ﬁl
[simulation_fevrier.lut Law : [31.42%5p70.1348 B %
fj math law
[y r— Donain { [Fp=100 ORETy=UBPALSp:1500 | Craiia)
IT timeModelmml sp Output feature
m%d"'l‘l"’ ._timeMedel.mm) [Tin [Tog |[1og” [AnD][OR J[NOT | |foad externdl feature .. |
e P:

a simulation_janvier. ecm

a simulation_fevrier.ecm

XNOR

/> 0.67

Td

[P 545

cos {| sin §| tan
EEm [

Td_tot
Ptot

|» 0.7988%5p(c)"0.8933 + 3%, Fp(Hz)=100.0 && Tp=TCP && Sp(o)>=1500 X |

| 81.129%5p(c)"0.1434 + 3%, Fp(Hz)=200.0 && Tp=UDP &4 Sp(o)<1500 X |

[

31.42 % 8p" M L — 1000 A Tp = UDP A Sp=<1500
0.6791 X 5p*™ Fp=100.0 A Tp= UDF A Sp = 1500

Ia=

54,900 % 5p"3"% Fr=1000 A Tp= TCP A Sp=1500

0.7988 x Sp"*%3 Fp=100.0 A Tp = TCP A Sp = 1500
81.129 x.5p" 1% Fp=200.0 A Tp= UDF A Sp< 1500

Figure 24: Mockup of math field popup.

Finally, Figure 24 displays how the specialized mathematical fields in our Ul offer a popup

panel that includes several buttons, thus allowing easy addition of operators
(e.g.: exponent or square root) to the currently edited mathematical expression.

5.5. PCAO: weaving model

The weaving model's purpose is to link each hardware or software component of an
architecture with the appropriate energy consumption model. As explained in deliverable

D4.1, two tools already exist to create a weaving model : Atlas Model Weaver and Epsilon.

Both tools provide a three-part editor (see figures 25 and 26 hereafter) to create weaving

models.

Both of these tools have a Ul centered on weaving models: the related business task

“choose a model for each component” is only implied.

Open-PEOPLE D2.8- Ergonomic Page 36/37

n Epsilon ‘Weaver menu Window Help

oo . Ty [@aCvsReposito... %5Debug | {amz -
& outschema,km3 r AMWEDATL_merge. atl @ mmw_sql_km3 ecore r ATLCopier. atl r Sac_examples, atl nw_refined_match, amw X
IeFtM 53 + % Weaving midel d + <k rightM d + %
= 4 Metamodel 9:1-27:2 = o platform: fresourcef AW _TMatch_SFimodelsfmw_refined & | (= <+ Metamodel 9:1-21:2
= 4+ Package Book, = <4 Match Model pairiwise b = < Package Publication
+- 4 Class Book —|- g =ownedElement > Element Equal sim: 1.0 —|-- 4 Class Publication
=|- < Class Chapter - ¥ = Attribute Equal sim: 0 =S il e e
<4+ Attribute title 43 <source Element title Mew child 4
<4+ Attribute nbPages 43 <target > Element title HNew sibling 4
<4 Attribute author —|- g «child> Attribute Equal sim: 0467779539 AU fis ,
<4 Reference book 4% <source> Element author
= 4+ Package PrimitiveTypes 4% <target > Element author Debug As '
< Data Type Integer —|- g «child> Attribute Equal sim: 0467779539 Team 4
< Data Type String 4% <source> Element nbPages Compare ‘With 4
< Data Type Boolean 4% <target = Element nbPages Replace Wwith 4
—|- g «child> Reference Equal sim: 030745295
€3 <source Element book
4% <target = Element nbPages f\»1'>
4% <source> Element Chapter
€3 <target> Element Publication Cut
—|- g =ownedElement > Element Equal sim: 0,9394E =
= & <chid> Attribute Equal sim: 0.569449505 = —P¥
€3 <source Element title e}
4% <target = Element title
- g <child= Reference Equal sim: 0,39134195 3§ Delete
< |
mars marme ko ceankainar

Figure 25: The three parts editor of AWM.

& Epsilon - PersonsHouses/Persons.model - Eclipse SOK:

File Edit MNawigate Search Project Run Exeed ‘Window Help

i S~V AL NE SR O ST el E>|Epsilnn|”

£%] *PersansHouses. modelink £7 =0
=
e = E] platfarm: fresource/PersonsHouses(Pers|| = .L__‘;] platFarm: jresourcePersonsHouses Pers| | = E] platfarm: fresourcePersonsHousesHou: o=
B [=l- 4 Person Group [=) < Person House Relationship Group =< House Group =
<= Person John <= John Owns 12 Heslington Road < House 12 Heslington Road
<= Person Mick Sl F'er=on House Relationship O <+ Housd 34 Heslington Road
< Person Alice <+ House 16 Fullford Road
[l I | [l I [||l I I [#]
Persons.model *PersonsHouses, model Houses.model
I console 2 (2 Protlems | 747 Profiing | = Properties G BE o - =08

Epsilon

Metamodel % PersonsHousesh Houses.ecore registered successfully
Hetamodel % PersonsHouses'\ Persons.ecore registered successfully
Meramnde 1l Y PerrannsHin=sesh Perrannalnuses . prntre remiatered summesstul o

Figure 26: The three parts editor of Epsilon.

Choosing this kind of Ul would be incoherent with the previously shown Ul: the user would
be disturbed by the different, lower-level paradigm. That's why we concluded that it was
much preferable to develop an higher-level Ul, centered on the “choose a model for each
component” business task: such an Ul will show more coherence with the rest of our
software platform, and shall prove to be more user-friendly.

Open-PEOPLE D2.8- Ergonomic Page 37/37

Special acknowledgment

We thank following persons who was interviewed to realize this document : Dominique
Blouin, Mickael Lanoe, Eric Senn, Damien Bodenes, Cecile Belleudy, Christian Samoyeau
and Victor Tissier.

	1. Preface
	1.1. Versions
	1.2. Table of references and applicable documents
	1.3. Acronyms and glossary

	2. Executive summary
	3. Scope of the document
	4. Analyses
	4.1. User profiles
	4.2. Researcher profile and tasks model
	4.3. Industrial engineer profile and tasks model
	4.4. Technical constraints
	4.4.1. Eclipse platform constraints
	4.4.2. Eclipse GMP contraints
	4.4.3. Meta model constraints
	4.4.4. Modular contraints

	5. Style guide recommendation
	5.1. Lookup table creation (importation) and edition
	5.1.1. Importing OPHWP measurements into a new LUT
	5.1.2. Using the LUT editor

	5.2. Quantity kind and unit creation
	5.2.1. Ergonomic evaluation

	5.3. Math law creation
	5.4. PCMD creation
	5.5. PCAO: weaving model

