
HAL Id: inria-00587319
https://hal.inria.fr/inria-00587319v2

Submitted on 22 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Throughput Optimization by Software Pipelining of
Conditional Reservation tables
Thomas Carle, Dumitru Potop-Butucaru

To cite this version:
Thomas Carle, Dumitru Potop-Butucaru. Throughput Optimization by Software Pipelining of Con-
ditional Reservation tables. [Research Report] RR-7606, INRIA. 2011. �inria-00587319v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49960054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00587319v2
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
76

06
--

F
R

+
E

N
G

Embedded and Real Time Systems

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Throughput Optimization by Software Pipelining of
Conditional Reservation Tables

Thomas Carle — Dumitru Potop-Butucaru

N° 7606 — version 2

initial version April 2011 — revised version September 2011

Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Throughput Optimization by Software Pipelining

of Conditional Reservation Tables

Thomas Carle ∗ , Dumitru Potop-Butucaru ∗

Theme : Embedded and Real Time Systems
Équipe-Projet AOSTE

Rapport de recherche n° 7606 — version 2† — initial version April 2011 —
revised version September 2011 — 20 pages

Abstract: Reservation tables are used at various levels in embedded systems
design to represent the allocation of resources in cyclic computations. They
model system-level static realtime task schedules in fields like automotive or
avionics, but also model the cycle-accurate ordering of instructions at microar-
chitectural level, as used in software pipelining. To optimize system through-
put, successive execution cycles can be pipelined, subject to resource constraints
and intercycle data dependencies. In this paper we take inspiration from soft-
ware pipelining and predicate-aware scheduling to define system-level pipelining
techniques for task schedules given under the form of reservation tables. Our
algorithms start from predicated reservation tables output by state-of-the- art
latency-optimizing embedded design tools. They significantly optimize system
throughput while maintaining the required strictly periodic execution model and
the end-to-end latency guarantees of the input reservation table. We demon-
strate the approach on real-life scheduling problems.

Key-words: embedded systems, real-time, distributed applications, schedul-
ing,computation cycles, code generation, software pipelining

∗ Partially financed through the FUI 8 PARSEC research grant
† The authors added some improvements to the algorithms, as well as a more detailed

explanation of their work

Optimisation du débit de sortie par pipelinage

logiciel de tables de réservation conditionnelles

Résumé : Les tables de réservation sont utilisées à différents niveaux dans le
design des systèmes embarqués, afin de représenter l’allocation des ressources
dans le cas de calculs cycliques. Elles modélisent l’ordonnancement statique de
taches temps-réel au niveau du système dans des champs d’application tels que
l’automobile ou l’avionique, mais aussi l’ordre d’execution des instructions d’un
cycle de calcul au niveau microarchitectural, comme dans le cas du pipelinage
logiciel. Pour optimiser le débit de sortie du système, des cycles d’exécution
successifs peuvent être pipelinés, en prenant garde aux contraintes dues aux
ressources et aux dépendances de données inter-cycles. Dans cet article, nous
nous inspirons du pipelinage logiciel pour définir des techniques de pipelinage au
niveau du système pour les ordonnancements statiques de taches donnés sous la
forme de tables de réservation/d’ordonancement. Nous autorisons l’utilisation
de tables conditionnelles où l’exécution des opérations peut être soumise à la
valeur d’un prédicat. Nos algorithmes optimisent le débit de sortie du système,
tout en maintenant les garanties sur le temps de réponse définies dans la table
d’ordonnancement initiale. Nous illustrons notre approche par des exemples
tirés de problèmes réels d’ordonnancement de taches.

Mots-clés : systèmes embarqués, temps réel, applications distribuées, ordon-
nancement, cycles de calcul, génération de code, pipelinage logiciel

Throughput Optimization by Software Pipelining of Conditional Reservation Tables3

1 Introduction

Embedded systems design brings together research and engineering communi-
ties that used to be only loosely connected. This new interaction helps bring
forth common problems that are central to more than one community. This
cross-fertilization ideally results in the development of common formalisms and
general modeling, analysis, and code generation techniques.

Our paper follows this paradigm for a specific problem: The efficient exe-
cution of cyclic computations over synchronous architectures comprising several
computing and communication resources. Instances of this problem are present
at several levels of the embedded design cycle. At low level, compilers are
expected to improve code speed by taking advantage of micro-architectural in-
struction level parallelism[11]. To minimize synchronization overhead, pipelining
compilers usually rely on reservation tables to represent an efficient (possibly
optimal) static allocation of the computing resources (execution units and/or
registers) with a timing precision equal to that of the hardware clock. Exe-
cutable code is then generated that enforces this allocation, possibly with some
timing flexibility. But on VLIW architectures, where each instruction word may
start several operations, this flexibility is very limited, and generated code is
virtually identical to the reservation table. The scheduling burden is mostly
supported here by the compilers, which include software pipelining techniques
[3] designed to increase the throughput of loops by allowing one loop cycle to
start before the completion of the previous one.

A very similar picture can be seen in the system level design of safety-critical
real-time embedded control systems with distributed (parallel, multi-core) hard-
ware platforms. The timing precision is here coarser, both for starting dates,
which are typically given by timers, and for durations, which are character-
ized with worst-case execution times (WCET). However, safety and efficiency
arguments[9] lead to the increasing use of tightly synchronized time-triggered
architectures and execution mechanisms, defined in well-established standards
such as TTA, FlexRay[17], ARINC653[1], or AUTOSAR[2]. Systems based on
these platforms typically have hard real-time constraints, and their correct func-
tioning must be guaranteed by a schedulability analysis. In this paper, we are
interested in statically scheduled systems where resource allocation can be de-
scribed under the form of a reservation/scheduling table which constitutes, by
itself, a proof of schedulability. Such systems include:

• Periodic time-triggered systems[5, 21, 12, 8, 14] that are naturally mapped
over ARINC653, AUTOSAR, TTA, or FlexRay.

• Systems where the scheduling table describes the reaction to some sporadic
input event (meaning that the table must fit inside the period of the
sporadic event). Such systems can be specified in AUTOSAR, allowing, for
instance, the modeling of computations synchronized with engine rotation
events [4].

• Some systems with a mixed event-driven/time-driven execution model,
such as those synthesized by SynDEx[10].

Synthesis of such systems starts from specifications written in domain-specific
formalisms such as Simulink or SCADE[5]. These formalisms allow the descrip-

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables4

tion of concurrent data computations and communications that are condition-
ally activated at each cycle of the embedded control algorithm depending on the
current input and state of the system.

The optimal implementation of such specifications onto platforms with mul-
tiple execution and communication resources (distributed, parallel, multi-core)
is undecidable. Existing implementation techniques and tools[5, 21, 10, 14, 8]
heuristically solve the simpler problem of synthesizing a scheduling table of
minimal length which implements one generic cycle of the embedded control
algorithm. As the successive executions of the scheduling table are exclusive at
runtime, this means that the cycles of the embedded control algorithm cannot
overlap, which negatively affects the throughput of the system.

To work around this limitation, we looked for solutions in the software
pipelining community. We encountered two main problems. The first one con-
cerns predication. For an efficient mapping of our conditional specifications, it
is important to allow an independent, predicated (conditional) control of the
various computing resources. However, most existing techniques for software
pipelining[3, 19, 20, 6] significantly constrain or simply prohibit predicated re-
source control. One common problem is that two different operations cannot
be scheduled at the same date on a given resource (functional unit), even if
they have exclusive predicates (like the branches of a test). The only exception
we know to this rule is predicate-aware scheduling (PAS)1 [18]. The drawback
of PAS is that sharing the same resource at the same date is only possible
for operations of the same cycle, due to limitations in the dependency analysis
phase.

The second problem is that most software pipelining techniques are tailored
for optimizing processing speed (throughput) of loops while preserving the com-
puting function [20]. In addition to function, we also seek to preserve existing
real-time end-to-end latency guarantees, and a periodic execution model.

To work around these limitations, we developed a novel software pipelining
approach adapted to our framework. We start from the output of existing tools,
given as a reservation table defining the non-pipelined time-triggered implemen-
tation of the embedded control specification. We allow the use of predicated
scheduling tables where each operation can be guarded by an activation condi-
tion, allowing a natural modeling of control applications having several (nominal
or degraded) execution modes.

We define algorithms that synthesize pipelined implementations where a new
computation cycle can begin before the previous one has completed, subject to
resource and inter-cycle data dependency constraints. The algorithms optimize
the throughput of the system, but each computation cycle is executed exactly as
specified by the input reservation table, so that all latency guarantees are pre-
served, along with functionality and periodicity. The pipelined implementation
is represented using a pipelined reservation table. The result is a scheduling
flow that optimizes both latency and throughput, with priority to
latency.

Pipelining is based on a dependency analysis determining the exclusiveness
of predicates of operations from successive cycles. Knowledge of the pipelining
technique is used to bound the complexity of the dependency analysis. By com-

1It is interesting to note that our execution platforms satisfy the PAS architecture require-
ments.

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables5

parison, existing pipelining and predicate-aware scheduling techniques either as-
sume that the dependency graph is fully generated before starting the pipelining
algorithm [16], or use the predicates for the analysis of a single cycle[19].

Our algorithms give the best results on specifications without temporal parti-
tioning, like the previously-mentioned AUTOSAR or SynDEx applications and,
to a certain extent, applications using the FlexRay dynamic segment. For par-
titioned applications like those mapped over ARINC 653, TTA, or FlexRay
(the static segment), our algorithms currently cannot exploit conditional con-
trol information, but allow pipelining and synthesize a new partitioning of the
computation and communication cycles.

Related work. In addition to the software pipelining techniques mentioned
in the introduction, we are aware of two other approaches aiming at relaxing
the frontiers between execution cycles of an embedded control system. Un-
like our approach, which works at a time-triggered implementation level and
assumes no knowledge of the process generating this implementation, these ap-
proaches intervene at a synchronous dataflow specification level. This spec-
ification is re-organized to allow the generation of better real-time schedules
using existing synthesis tools. In one approach, specification re-organization is
semi-automatic[5]. The drawback is that expert human intervention and actual
changes in the specification itself are needed. In the second approach, reor-
ganization is based on an automatable retiming technique [13], but retiming
techniques work in a pure dataflow context (not predicated).

Outline. The remainder of the paper is structured as follows. Section 2 defines
our model of time-triggered system implementation. Section 3 extends this
model to allow the representation of pipelined implementations and gives an
overview of our technique. It also provides a complex example. Section 4
deals with data dependency analysis. Section 5 gives experimental results, and
Section 6 concludes.

2 Implementation model

We define here the formalism we use to model non-pipelined implementations.
Inspired from [14, 10], our formalism remains at a significantly lower abstraction
level. The models of [14, 10] are fully synchronous: Each variable has at most
one value at each execution cycle, and moving one value from a cycle to the next
can only be done through explicit delay constructs. In our model, each variable
(called a memory cell) can be assigned several times during a cycle, and values
are by default passed from one execution cycle to the next.

This lower abstraction level allows the simple modeling of existing imple-
mentations, but complexifies the pipelining algorithms, as we shall see in the
following sections.

2.1 Architecture model

We model execution architectures using a very simple language defining sequen-
tial execution resources, memory blocks, and their interconnections. Formally,
an architecture model is a bipartite undirected graph A =< P ,M, C >, with

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables6

v1

P1 M1 P2 M2 P3

v2

Figure 1: Simple architecture

C ⊆ P × M. The elements of P are called processors, but they model all
the computation and communication devices capable of independent execution
(CPU cores, accelerators, DMA and bus controllers, etc.). We assume that each
processor can execute only one operation at a time. We also assume that each
processor has its own sequential or time-triggered program. This last assump-
tion is natural on actual CPU cores. On devices such as DMAs and accelerators,
it models the assumption that the cost of control by some other processor is neg-
ligible.

The elements of M are RAM blocks. We assume each RAM block is struc-
tured as a set of disjoint cells. We denote with Cells the set of all memory
cells in the system, and with CellsM the set of cells on RAM block M . Our
model does not specify memory size limits. Instead, we provide in Section 3.3 a
mechanism that uses architecture model manipulations to prohibit memory cell
replication during pipelining.

Processor P has direct access to memory block M whenever (P, M) ∈ C.
All processors directly connected to a memory block M can access M at the
same time. Therefore, care must be taken to prohibit concurrent read-write or
write-write access by two or more processors to a single memory cell, in order
to preserve functional determinism (we will assume this is ensured by the input
system model, and will be preserved by the pipelined one).

The simple architecture of Fig. 1 has 3 processors (P1, P2, and P3) and 2
memory blocks (M1 and M2). Each of the Mi blocks has only one memory cell
vi.

2.2 Implementation model

On such architectures, we execute time-triggered implementations of embedded
control applications with a periodic non-preemptive execution model. We rep-
resent such an application with a scheduling/reservation table, which is a finite
time-triggered activation pattern. This pattern defines the computation of one
period (also called an execution cycle). The infinite execution of the embedded
system is the infinite succession of periodically-triggered execution cycles.

Formally, a reservation/scheduling table is a triple S =< p,O, Init >, where
p is the activation period of execution cycles, O is the set of scheduled operations,
and Init is the initial state of the memory.

The activation period gives the (fixed) duration of the execution cycles. All
the operations of one execution cycle must be completed before the following
execution cycle starts. The activation period thus sets the length of the schedul-
ing/reservation table, and is denoted by len(S).

The set O defines the operations of the scheduling table. Each scheduled
operation o ∈ O is a tuple defining:

• In(o) ⊆ Cells is the set of memory cells read by o.

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables7

time

0

P2P1 P3

1

2

A@true

B@true

C@true

Processor

Figure 2: Simple (non-pipelined) scheduling table

• Out(o) ⊆ Cells is the set of cells written by o.

• Guard(o) is the execution condition of o, defined as a predicate over the
values of memory cells. We denote with GuardIn(o) the set of memory
cells used in the computation of Guard(o).

• Res(o) ⊆ P is the set of processors used during the execution of o.

• t(o) is the start date of o.

• d(o) is the duration of o. The duration is viewed here as a time budget
the operation must not exceed. This can be statically ensured through a
worst-case execution time analysis.

All the resources of Res(o) are exclusively used by o after t(o) and for a duration
of d(o) in cycles where Guard(o) is true. The sets In(o) and Out(o) are not
necessarily disjoint, to model variables that are both read and updated by an
operation. For lifetime analysis purposes, we assume that input and output
cells are used for all the duration of the operation. The cells of GuardIn(o) are
all read at the beginning of the operation, but we assume the duration of the
computation of the guard is negligible (zero time).2

To cover cases where a memory cell is used by one operation before being
updated by another, each memory cell can have an initial value. For a memory
cell m, Init(m) is either nil, or some constant.

The simple scheduling table pictured in Fig. 2 uses the architecture of Fig. 1.
It has a length of 3 and contains 3 operations (A, B, and C). Operation A reads
no memory cell, but writes v1, so that In(A) = ∅ and Out(A) = {v1}. Similarly,
In(B) = {v1}, Out(B) = In(C) = {v2}, and Out(C) = ∅. All 3 operations are
executed at every cycle, so their guard is true (guards are graphically represented
with “@true”). The 3 operations are each allocated on one processor: Res(A) =
{P1}, Res(B) = {P2}, Res(C) = {P3}. Finally, t(A) = 0, t(B) = 1, t(C) = 2,
and d(A) = d(B) = d(C) = 1. No initialization of the memory cells is needed
(the initial states are all nil).

2.3 Well-formed properties

The formalism above provides the syntax of our implementation models, and
allows the definition of operational semantics. However, not all syntactically

2The memory access model where an operation reads its inputs at start time, writes its
outputs upon completion, and where guard computations take time can be represented on top
of our model.

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables8

P1 P2 P3

A@true
iteration 10

A@true
iteration 2

A@true
iteration 3

A@true
iteration 4

B@true
iteration 1

B@true
iteration 2

B@true
iteration 3

C@true
iteration 1

C@true
iteration 2

1

2

3

Prologue

Steady
state

.

time

Figure 3: Pipelined execution trace

correct specifications model correct implementations. Some of them are non-
deterministic due to data races or due to operations exceeding their time bud-
gets. Others are simply un-implementable, for instance because an operation
is scheduled on processor P , but accesses memory cells on a RAM block not
connected to P . A set of correctness properties is therefore necessary to define
the well-formed implementation models.

However, some of these properties are not important in this paper, because
we assume that the input of our pipelining technique is already correct. Our
pipelining techniques will preserve most correctness properties because they
preserve all allocation and scheduling choices inside each execution cycle. We
only formalize here two correctness properties that will need attention in the
following sections.

We say that two operations o1 and o2 are non-concurrent, denoted o1⊥o2, if
either their executions do not overlap in time (t(o1) + d(o1) ≥ t(o2) or t(o2) +
d(o2) ≥ t(o1)), or if they have exclusive guards (Guard(o1)∧Guard(o2) = false).
With this notation, the following correctness properties are assumed respected
by input (non-pipelined) implementation models, and must be respected by the
output (pipelined) model:

Sequential processors. No two operations can use a processor at the same
time. Formally, for all o1, o2 ∈ O, if Res(o1) ∩ Res(o2) 6= ∅ then o1⊥o2.

No data races. If some memory cell m is written by o1 (m ∈ Out(o1)) and is
used by o2 (m ∈ In(o2) ∪ Out(o2)), then o1⊥o2.

3 Pipelining technique overview

In this section, we define our model of pipelined implementation, which builds
over the non-pipelined one, enriching it with temporal information. We also ex-
plain how a pipelined implementation is constructed once the pipelining analysis
(described later in the paper) has been performed.

For the example in Fig. 2, an execution where successive cycles do not overlap
in time is clearly sub-optimal. Our objective is to allow the pipelined execution
of Fig. 3, which ensures a maximal use of the computing resources. In the
pipelined execution, a new instance of operation A starts as soon as the previous
one has completed, and the same is true for B and C. The first two time
units of the execution are the prologue which fills the pipeline. In the steady
state the pipeline is full and has a throughput of one computation cycle (of
the non-pipelined system) per time unit. If the system is allowed to terminate,

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables9

time P1 P2 P3

0
A@true B@true C@true

fst(A) = 0 fst(B) = 1 fst(C) = 2

Figure 4: Pipelined scheduling table

then completion is realized by the epilogue, not pictured in our example, which
empties the pipeline.

We represent this pipelined implementation using the pipelined scheduling
table pictured in Fig. 4. Its length is 1, corresponding to the throughput of
the pipelined system. The operation set contains the same operations A, B,
and C, but there are significant changes. The start dates of B and C are now
0, as the 3 operations are started at the same time in each pipelined cycle. To
avoid confusion, we reserve the name computation cycle for full computations, as
specified by the initial scheduling table. A computation cycle spans over several
pipelined cycles, but each pipelined cycle starts exactly one computation cycle.

To account for the prologue phase, where operations progressively start to
execute, each operation is assigned a start index fst(o). If an operation o has
fst(o) = n it will first be executed in the pipelined cycle of index n (indices start
at 0). Due to pipelining, the instance of o executed in the pipelined cycle m
belongs to the computation cycle of index m − fst(o). For instance, operation
C with fst(C) = 2 is first executed in the 3rd repetition of the table (of index
2), but belongs to the first computation cycle.

Note that the prologues of our pipelined implementations are obtained by
incremental activation of the steady state operations. This property, which
allows periodic implementation, is not present in classical software pipelining
approaches. Periodicity, plus the requirement that the pipelined implementa-
tion executes each computation cycle as specified by the non-pipelined table,
means that the pipelined scheduling table can be fully built using Procedure 1
starting from the non-pipelined table and from the period of the pipelined sys-
tem. The procedure first determines the start index and new start date of each
operation by folding the non-pipelined table onto the new period. Procedure
AssembleSchedule then determines which memory cells need to be replicated
due to pipelining, using the technique provided in Section 3.2.

Algorithm 1 BuildSchedule

Input: S : non-pipelined scheduling table
p̂ : new period of the system

Output: Ŝ : pipelined schedule table
for all o in O do

fst(o) := [t(o)
bp

]

t̂(o) := t(o) − fst(o) ∗ p̂

Ŝ := AssembleSchedule(S, p̂, fst, t̂)

When comparing with existing software pipelining techniques, the most ob-
vious difference is that our approach allows optimization along a single degree of
freedom (the period). Resource allocation and scheduling inside a computation
cycle are fixed. This approach limits the throughput optimization space. How-

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables10

ever, throughput optimization is not our only objective. As explained in the
introduction, we apply our transformations as part of a larger implementation
flow. In this flow, the pipelining phase must preserve the end-to-end latency
guarantees of each computation cycle (ensured by other tools), and the periodic
implementation model. Our approach satisfies these requirements. A simpler
pipelining technique also has the advantage of speed, and of allowing us to fo-
cus on the predication-related issues, where the real complexity and gain of our
approach stands. The approach also gives good results on real-life scheduling
problems.

3.1 Dependency graph and maximal throughput

In our approach, the period of the pipelined system is determined by the data
dependencies between successive execution cycles. We represent these depen-
dencies as a Data Dependency Graph (DDG) – a formalism that is classical in
software pipelining based on modulo scheduling techniques[3]. In this section
we define DDGs and we explain how the new period is computed from them.
The computation of DDGs is detailed in Section 4.

Given an implementation model S =< p,O, Init >, the DDG associated to S
is a directed graph DG =< O,V > where V ⊆ O×O×N. Ideally, the elements
of V are all the triples (o1, o2, n) such that there exists an execution of the
implementation and a computation cycle k such that operation o1 is executed
in cycle k, operation o2 is executed in cycle k+n, and o1 must be executed before
o2, for instance because some value produced by o1 is used by o2. In practice,
any V including all the arcs defined above (any over-approximation) will be
acceptable, leading to correct (but possibly sub-optimal) implementations.

The DDG represents all possible dependencies between operations, both
inside a cycle (when n = 0) and between successive cycles at distance n ≥
1. Given the statically scheduled implementation model, with fixed dates for
each operation, the pipelined schedule must respect unconditionally all these
dependencies.

For each operation o ∈ O, we denote with tn(o) the date where operation
o is executed in cycle n, if its guard is true. By construction, we have tn(o) =
t(o) + n ∗ p. In the pipelined implementation of period p̂, this date is changed
to t̂n(o) = t(o) + n ∗ p̂. Then, for all (o1, o2, n) ∈ V and k ≥ 0, the pipelined
implementation must satisfy t̂k+n(o2) ≥ t̂k(o1) + d(o1), which implies:

p̂ ≥ max(o1,o2,n)∈V,n6=0⌈
t(o1)+d(o1)−t(o2)

n
⌉

Our objective is to build pipelined schedules satisfying this lower bound con-
straint and which are well-formed in the sense of Section 2.3.

3.2 Memory management issues

Assuming that Ŝ is the pipelined version of S, we denote with max_par =

⌈len(S)/len(Ŝ)⌉ the maximal number of simultaneously-active computation cy-
cles of the pipelined implementation. Note that max_par = 1 + maxo∈O fst(o).

Consider now our example. In its non-pipelined version, both A and B use
memory cell v1 at each cycle. In the pipelined table A and B work in parallel, so
they must use two different copies of v1. We say that the replication factor of v1

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables11

is rep(v1) = 2. Each memory cell v is assigned its own replication factor, which
must allow concurrent computation cycles using different copies of v to work
without interference. Obviously, we can bound rep(v) by max_par. We use a
tighter margin, based on the observation that most variables (memory cells) have
a limited lifetime inside a computation cycle. We set rep(v) = 1+ lst(v)− fst(v),
where:

fst(v) = min
v∈In(o)∪Out(o) fst(o)

lst(v) = max
v∈In(o)∪Out(o) fst(o)

Through replication, each memory cell v of the non-pipelined scheduling
table is replaced by rep(v) memory cells, allocated on the same memory block as
v, and organized in an array v, whose elements are v[0], . . . , v[rep(v)−1]. These
new memory cells are allocated cyclically, in a static fashion, to the successive
computation cycles. More precisely, the computation cycle of index n is assigned
the replicas v[n mod rep(v)] for all v. The computation of rep(v) ensures that
if n1 and n2 are equal modulo rep(v), but n1 6= n2, then computation cycles n1

and n2 cannot access v at the same time.
For systems like our simple example, where no information is passed from

one computation cycle to the next, this static allocation allows for a simple code
generation, which consists in replacing v with v[(cid − fst(o)) mod rep(v)] in the
input and output parameter lists of every operation o that uses v. Here, cid is
the index of the current pipelined cycle. It is represented in the generated code
by an integer. When execution starts, cid is initialized with 0. At the start of
each subsequent pipelined cycle, it is updated to (cid + 1) mod R, where R is
the least common multiple of all the values rep(v).

When a computation cycle uses values produced by previously-started com-
putation cycles,3 code generation is more complicated, because a computation
cycle may access memory cells different than its own. The code generation
problem is complicated by the fact that it is impossible, in the general case, to
statically determine which cell must be read (because the cell was written at an
arbitrary distance in time). Thus, we need a dynamic mechanism to identify
which cell to read. If more static pipelined implementations are needed, different
pipelining techniques should be designed, either limiting the class of accepted
non-pipelined systems, or allowing the copying of one memory cell onto another,
which we do not allow because it may introduce timing penalties.

Our memory access mechanism is supported by a new data structure which
associates to each memory cell v of the non-pipelined scheduling table an array
src(v) of length rep(v), and allocated on the same memory block as v. In this
context, code is generated as follows:

At execution start, all the values of src are initialized with 0 (pointing to
the initial values of the memory cells).

At the start of each pipelined cycle, for each cell v of the initial scheduling
table, assign to
src(v)[(cid − fst(v)) mod rep(v)] the value of
src(v)[(cid − fst(v) − 1) mod rep(v)]. This assignment indicates that the value
of v initially used during computation cycle cid is that used (but not neces-
sarily produced) during computation cycle cid − 1 and stored in memory cell
v[src(v)[(cid − fst(v) − 1) mod rep(v)]].

3This is necessary to represent systems having an internal state.

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables12

∆∆

Acquisition
Correction
Detection
Filtering

samples

acquisition window
position

Figure 5: Knock control functional specification

When an operation o of the non-pipelined scheduling table reads v, its coun-
terpart in the pipelined table will read v[src(v)[(cid − fst(o)) mod rep(v)]]. The
same is true for cells used by the computation of execution conditions.

When o writes v in the non-pipelined table, there are 2 cases: If o also reads
v, then the counterpart of o in the pipelined table will write the same memory
cell it reads (as defined above). If o does not read v, then o writes the memory
cell normally assigned to this computation cycle by the replication process (v[x],
where
x = (cid − fst(o)) mod rep(v)). An operation is added after o and on the same
execution condition to set src(v)[x] to x.

The last aspect of memory management is initialization. In our case, v1

requires no initialization, so that none of its replicas do. In the general case, if
Init(v) 6= nil, we need to initialize v[0] with Init(v), but not the other replicas.

3.3 The knock control example

We complete this section with a larger example that illustrates several key points
of our approach, including the use of conditional scheduling tables and the
pipelining of sporadic systems. Knock control is one of the functions of the
engine control unit (ECU) of gasoline spark-ignition engines. At each rota-
tion of the engine, it chooses for each cylinder an ignition time that maximizes
power output while keeping engine-destructive knocks (autoignition events) at
an acceptable level.

We provide in Fig. 5 a simplified high-level description of the knock control
functionality. The model is based on an industrial case study and on the de-
scription of [4]. The behavior is as follows: One computation cycle is triggered
at each rotation of the engine crankshaft. The cycle starts with the acquisition
of knock noise data. Acquisition is performed over a knock acquisition window
where autoignition can occur. It is performed using a vibration sensor sampled
at 100kHz, and the samples are stored in a buffer. The samples are used by
the filtering, detection, and correction (FDC) function to adjust the ignition
time (not figured here) and the position and size of the acquisition window.
The configuration data produced by the computation cycle of index n controls
the acquisition of cycle n + 2. This delayed feedback is realized using two unit
delays (labeled ∆). Acquisition is performed by a specialized device (labeled
AD in Fig. 6) of the ECU, whereas the FDC function is computed by the ECU
microcontroller (µC).

For reasons related to the physics of engines and to computing resource
limitations in the ECU, the successive computation cycles must sometimes be
pipelined, by allowing the acquisition and FDC operations of successive cycles
to be executed in parallel. Such a pipelining can be directly constructed using

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables13

buf2
config0
config1
config2

c

device

µC

RAM

BUF2_mem

Acquisition

(AD)

BUF2

BUF1_mem

buf1

BUF1

Figure 6: Engine control unit (ECU) architecture

Acq1
@c

Acq2
@¬c @c

@c
F DC1

book@true

@¬c
F DC2F DC1

@c
F DC2

@¬c

Acq2
@¬c

Acq1

3

2

1

0

4

5

µCBUF2BUF1
rotation

units AD

Figure 7: Non-pipelined scheduling table for the knock control

our approach, using the code generation scheme of the previous section. How-
ever, our code generation may conflict with memory constraints or pre-existent
implementation choices. We will assume here that the system designers have
already fixed the maximal number of buffers to 2, placed them at fixed places
in memory, and written the protocol that alternates the use of the buffers in
both acquisition and FDC. The remaining difficulties are the computation of
the pipelined period and the management of all memory cells that are not con-
strained.

Representing the memory replication constraints is best done as in Fig. 6,
with two memory cells (buf1 and buf2) on separate memory blocks (BUF1_mem,
resp. BUF2_mem). Each memory block has its own memory controller (BUF1,
resp. BUF2) that ensures exclusive access and makes memory cell replication
impossible during pipelining.

In this implementation model, the scheduling table of one computation cycle
is represented in Fig. 7. Memory cell c is a Boolean used in guards to determine
which buffer to use in the current computation cycle to pass data from the
acquisition function to FDC. In the beginning of each computation cycle, the
bookkeeping operation book flips the value of c by executing “c:=¬c”. In cycles
where the new value is true, buffer buf1 is used. Otherwise, buf2 is used. If we
denote with cn the value of c used in guards throughout computation cycle n, we
have cn = ¬cn−1 for all n positive. The bookkeeping operation also implements
the function of the unit delays.

The scheduling table represents both activation scenarios, corresponding to
different initial values of c. In order not to introduce special memory access
operations, we split the acquisition and FDC operations in two. Both Acq1

and Acq2 perform acquisition. But the first writes its samples in buf1 and is
executed on condition c, while the second writes them in buf2 and is guarded

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables14

3

2

1

0

4

5

Acq2

1
Acq2

2

book2@true

8

7

6

.

Acq0
1

Acq0
2

F DC0

1

book0@true

book1@true

Acq1
1

F DC1
1

Acq1
2

Acq0
1

Acq1
1

Acq0
2

Acq1
2

F DC0

2
F DC0

1
F DC0

2

@c0 @¬c0 @c0

@c0

@c1 @c1 @¬c1@¬c1

@¬c0

@c0@¬c0 @¬c0

@c1

@c2@¬c2@c2
Acq2

1

F DC1
2

Acq2

2

F DC1
2

F DC1
1

@¬c1 @c1

@¬c2
@¬c1

BUF1 BUF2 µCunits
rotation

AD

Figure 8: Pipelined execution of the knock control

AD BUF1 µCBUF2

2

1

0 book@true

Acq2

@¬cn
Acq1 Acq1 Acq2

@cn @¬cn@cn
fst = 1fst = 1fst = 1 fst = 1

F DC1 F DC2 F DC1 F DC2

@ @ @@

cn−1
¬cn−1 cn−1

¬cn−1

units
rotation

Figure 9: Pipelined scheduling table for the knock control

by ¬c. Each of the Acqi and FDCi operations use two resources: One of AD
and µC and one of the memory controllers BUF1 and BUF2.

The operation durations must be interpreted here as upper WCET bounds
in an engine rotation referential. More precisely, each duration gives the max-
imal rotation (in degrees) of the engine crankshaft during the execution of the
operation. For the acquisition operation, this is the maximal acquisition window
size. The FDC function runs on a microcontroller, and its duration is charac-
terized with a classical WCET (in real time). Conversion to the engine rotation
referential is performed by assuming the maximal engine rotation speed.

The algorithms of the next section determine that successive computation
cycles can be at best pipelined as pictured in Fig. 8. To do so, they determine
that cn = ¬cn−1 for all n, thus allowing the acquisition and FDC operations of
successive computation cycles to be executed in parallel. Note that a resource
can be allocated to two operations at the same date if their guards are exclusive.
Like in Fig. 7, we represent here both activation scenarios, corresponding to
different initial values of c.

The corresponding pipelined scheduling table is provided in Fig. 9. The sys-
tem is schedulable if the length of this table is smaller than the engine rotation
interval between successive triggers of computation cycles. In turn, this is given
by the number of cylinders and structure of the engine. If the system is schedu-
lable, the code generation technique of Section 3.2 can be used to automatically
generate the book keeping memory cells and code. Thus, we automate the
analysis of [4] and also allow automatic code generation.

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables15

time

0

P2P1 P3

1

2

A@true

B@true

C@true

D@true3

Figure 10: Dependency analysis example, non-pipelined

time P1 P2 P3

0
A@true C@true

fst(A) = 0

B@true
fst(D) = 1

D@true
fst(B) = 0

fst(C) = 1

1

Figure 11: Dependency analysis example, pipelined

4 Dependency analysis and main routine

In this section, we provide algorithms that determine if and when a new com-
putation cycle can be started while another one is still active. The core of this
computation is a dependency analysis which builds the DDG of Section 3.1.
Dependency analysis is performed by the lines 1-10 of Algorithm 3, which act
as a driver for Algorithm 2. The remainder of Algorithm 3 uses DDG-derived
information to drive the pipelining routine (Algorithm 1).

Both the data dependency analysis and pipelining driver take as input a
flag that chooses between two pipelining modes with different complexities and
capabilities. To understand the difference, consider the non-pipelined scheduling
table of Fig. 10. Resource P1 has an idle period between operations A and B
where a new instance of A can be started. However, to preserve a periodic
execution model, A should not be restarted just after its first instance (at date
1). Indeed, this would imply a pipelined throughput of 1, but the fourth instance
of A cannot be started at date 3 (only at date 6). The correct pipelining starts
A at date 2, and results in the pipelined scheduling table of Fig. 11. Note that
the pipelined system is strictly periodic, of period 2, because every instance of
D is bound to its slot of size 1 between two instances of A (and vice-versa).

Determining if the reuse of idle spaces between operations is possible requires
a complex analysis which looks for the smallest integer n greater than the lower
bound of Section 3.1, smaller than the length of the initial table, an such that
a well-formed pipelined table of length n can be constructed. This computation
is performed by lines 14-17 of Algorithm 3. We do not provide here the code of
function WellFormed, which checks the respect of the well-formed properties of
Section 2.3.

This complex computation can be avoided when idle spaces between two
operations are excluded from use at pipelining time. This can be done by
creating a dependency between any two operations of successive cycles that use
a same resource and have non-exclusive execution conditions. In this case, the
pipelined system period is exactly the lower bound of Section 3.1, and the output
scheduling table is produced with a single call to Algorithm 1 (BuildSchedule)

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables16

in line 12 of Algorithm 3. Of course, Algorithm 2 needs to consider (in lines
9-12) the extra dependencies.

Excluding the idle spaces from pipelining also has the advantage of support-
ing a sporadic execution model. In sporadic systems the successive computation
cycles can be executed with the maximal throughput specified by the pipelined
table, but can also be triggered arbitrarily less often, for instance to tolerate tim-
ing variations, or to minimize power consumption in systems where the demand
for computing power varies.

Algorithm 2 DependencyAnalysisStep

Inputs: S : non-pipelined scheduling table
l : the list of events of S
n : integer (cycle index)
fast_pipelining_flag : boolean

InputOutputs: S : annotated scheduling table
curr : current variable assignments
DDG : Data Dependency Graph

1: S := Concat(S,Annotate(S, n))
2: while l not empty do
3: e := head(l) ; l := tail(l)
4: if e = start(o) then
5: Replace Guard(on) by:

∨

wi@Ci∈curr(vi),i=1,k

(C1 ∧ . . . ∧ Ck) ∧ go(w1, . . . , wk)

where Guard(o) = go(v1, . . . , vk).

6: for all p operation in S, u ∈ Out(p), v ∈ In(o) do
7: if u0

p@C ∈ curr(v) and C ∧ Guard(on) 6= false then
8: DDG := DDG ∪ {(p0, on, n)}
9: if fast_pipelining_flag then

10: if Res(o) ∩ Res(p) 6= ∅ then
11: if Guard(on) ∧ Guard(p0) 6= false then
12: DDG := DDG ∪ {(p0, on, n)}
13: else
14: /* e = end(o) */
15: for all v ∈ Out(o) do
16: new_curr := {vn

o @Guard(on)}
17: for all vk

p@C ∈ curr(v) do
18: C′ := C ∧ ¬Guard(on)
19: if C′ 6= false then
20: new_curr := new_curr ∪ {vk

p@C′}
21: curr(v) := new_curr

The remainder of this section details the dependency analysis phase. The
output of this analysis is the lower bound defined in Section 3.1, computed as
period_minorant. The analysis is organized around the repeat loop which
incrementally computes, for cycle ≥ 1, the DDG dependencies of the type
(o1, o2, cycle). The computation of the DDG is not complete: We bound it using
a loop termination condition derived from our knowledge of the pipelining algo-

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables17

rithm. This condition is based on the observation that if period_minorant ∗k ≥
len(S) then execution cycles n and n + k cannot overlap in time (for all n).

The DDG computation works by incrementally unrolling the non-pipelined
scheduling table. At each unrolling step, the result is put in the SSA-like data
structure S that allows the computation of (an over-approximation of) the de-
pendency set. Unrolling is done by annotating each instance of an operation o
with the cycle n in which it has been instantiated. The notation is on. Putting
in SSA-like form is based on splitting each memory cell v into one version per
operation instance producing it (vn

o , if v ∈ Out(o)), and one version for the ini-
tial value (vinit). Annotation and variable splitting is done on a per-cycle basis
by the Annotate routine (not provided here) which changes for each operation o
its name to on, and replaces Out(o) with {vn

o | v ∈ Out(o)} (n is here the cycle
index parameter). Instances of S produced by Annotate are then assembled
into S by the Concat function which simply adds to the date of every operation
in the second argument the length of its first argument.

Recall that we are only interested in dependencies between operations in dif-
ferent cycles. Then, in each call to Algorithm 2 we determine the dependencies
between operations of cycle 0 and operations of cycle n, where n is the current
cycle. To determine them, we rely on a symbolic execution of the newly-added
part of S, i.e. the operations ok with k = n. Symbolic execution is done through
a traversal of list l, which contains all operation start and end events of S, and
therefore S, ordered by increasing date. For each operation o of S, l contains
two elements labeled start(o) and end(o). The list is ordered by increasing
event date using the convention that the date of start(o) is t(o), and the date
of end(o) is t(o) + d(o). Moreover, if start(o) and end(o′) have the same date,
the start(o) event comes first in the list.

At each point of the symbolic execution, the data structure curr identifies
the possible producers of each memory cell. For each cell v of the initial table,
curr(v) is a set of pairs w@C, where w is a version of v of the form vk

o or vinit,
and C is a predicate over memory cell versions. In the pair w@C, C gives the
condition on which the value of v is the one corresponding to its version w at the
condidered point in the symbolic simulation. Intuitively, if vk

o@C ∈ curr(v), and
we symbolically execute cycle n, then C gives the condition under which in any
real execution of the system v holds the value produced by o, n−k cycles before.
The predicates of the elements in curr(v) provide a partition of true. Initially,
curr(v) is set to {vinit@true} for all v. This is changed by Algorithm 2 (lines
15-21), and by the call to InitCurr in Algorithm 3. We do not provide this last
function, which performs the symbolic execution of the nodes of S annotated
with 0. Its code is virtually identical to that of Algorithm 2, lines 1 and 6-12
being excluded.

At each operation start step of the symbolic execution, curr allows us to
complete the SSA transformation by recomputing the guard of the current op-
eration over the split variables (line 5 of Algorithm 2). In turn, this allows the
computation of the dependencies (lines 6-12). Predicate comparisons are han-
dled by a SAT solver that also considers a Boolean abstraction of the operations
of the algorithm. In our knock control example, the Boolean abstraction of the
book operation provides the information that cn = ¬cn−1.

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables18

Algorithm 3 PipeliningDriver

Input: S : non-pipelined schedule table
fast_pipelining_flag : boolean

Output: Ŝ : pipelined schedule table
1: l := BuildEventList(S)
2: period_minorant := 0
3: cycle := 0
4: S := Annotate(S, cycle)
5: curr := InitCurr(S)
6: repeat
7: cycle:=cycle + 1
8: (S, curr,DDG) := DependencyAnalysisStep(S, l,

cycle,fast_pipelining_flag,S, curr,DDG)
9: period_minorant := max(period_minorant,

max(o1,o2,cycle)∈DDG⌈
t(o1)+d(o1)−t(o2)

cycle
⌉)

10: until period_minorant ∗ cycle ≥ len(S)
11: if fast_pipelining_flag then

12: Ŝ := BuildSchedule(S, period_minorant)
13: else
14: for new_period := period_minorant to len(S) do

15: Ŝ := BuildSchedule(S,new_period)

16: if WellFormed(Ŝ) then
17: goto 18
18: return

5 Experimental results

We have applied our pipelining algorithms on 3 significant, real-life examples
of real-time implementation problems (there are no standardized benchmarks).
The results are synthesized in Table 12.

The largest example we use is the embedded control application of the CyCab
electric car [15]. The control application we use allows the CyCab to be driven
manually or in an autonomous “platooning” mode where it follows the vehicle
in front of it, letting it make the speed and direction change decisions. The
embedded software runs on a platform composed of 3 micro processors connected
through a CAN bus. Our pipelining technique allows a significant reduction of
27% in cycle time. This reduction means that the application can be significantly
complexified while maintaining I/O latency.

Scheduling table length
example initial pipelined gain
cycab 1482 1083 27%
ega 84 79 6%

knock 6 3 50%
simple 3 1 66%

Figure 12: Experimental results

RR n° 7606

Throughput Optimization by Software Pipelining of Conditional Reservation Tables19

The second example is an adaptive equalizer. This filter is normally part
of a larger control application, but we considered it here in isolation. The
particularity of this example is that it has already been carefully designed to
exploit the parallelism of the execution platform (it can be seen as “manually
pipelined”). The cycle length reduction after application of our technique is not
very large, but it is still significant in spite of the very optimized starting point.

The third example is the knock controller of Section 3.3. We also add a line
for our toy example. The comparison is interesting, because this example allows
for an ideal pipelining with a resource usage of 100%.

6 Conclusion

We have defined a latency-preserving software pipelining approach allowing the
optimization of the throughput of periodic and sporadic real time systems de-
fined through predicated scheduling tables. We apply it on the output of well-
established latency-optimizing scheduling tools, resulting in a scheduling flow
that optimizes latency and throughput, with priority to latency. We applied
our technique, with good results, on several real-life systems.

Many open problems remain. One of them is the exploitation of execution
guards over partitioned architectures. Using the n-synchronous formalism[7]
should allow us to express and exploit regular repetition patterns in the pipelin-
ing process. Another important goal is to integrate pipelining in the initial
scheduling process, so that different trade-offs between latency, throughput,
and resource usage can be obtained.
Acknowledgement. The authors wish to thank Albert Cohen for having in-
troduced them to the field of software pipelining.

References

[1] ARINC 653: Avionics application software standard interface. www.arinc.org, 2005.

[2] Autosar (automotive open system architecture), release 4. http://www.autosar.org/ ,
2009.

[3] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan. Software pipelining. ACM Com-

puting Surveys, 27(3), 1995.

[4] C. André, F. Mallet, and M.-A. Peraldi-Frati. A multiform time approach to real-time
system modeling; application to an automotive system. In Proceedings SIES, Lisbon,
Portugal, July 2007.

[5] P. Caspi, A. Curic, A. Magnan, C. Sofronis, S. Tripakis, and P. Niebert. From Simulink
to SCADE/Lustre to TTA: a layered approach for distributed embedded applications.
In Proceedings LCTES, San Diego, CA, USA, June 2003.

[6] Yi-Sheng Chiu, Chi-Sheng Shih, and Shih-Hao Hung. Pipeline schedule synthesis for
real-time streaming tasks with inter/intra-instance precedence constraints. In DATE,
Grenoble, France, 2011.

[7] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet. N-
synchronous kahn networks: a relaxed model of synchrony for real-time systems. In
Proceedings POPL’06. ACM Press, 2006.

[8] P. Eles, A. Doboli, P. Pop, and Z. Peng. Scheduling with bus access optimization for
distributed embedded systems. IEEE Transactions on VLSI Systems, 8(5), Oct 2000.

[9] G. Fohler, A. Neundorf, K.-E. Årzén, C. Lucarz, M. Mattavelli, V. Noel, C. von
Platen, G. Butazzo, E. Bini, and C. Scordino. EU FP7 ACTORS project. Deliver-
able D7a: State of the art assessment. Ch. 5: Resource reservation in real-time systems.
http://www3.control.lth.se/user/karlerik/Actors/d7a-rev.pdf , 2008.

RR n° 7606

www.arinc.org
http://www.autosar.org/
http://www3.control.lth.se/user/karlerik/Actors/d7a-rev.pdf

Throughput Optimization by Software Pipelining of Conditional Reservation Tables20

[10] T. Grandpierre and Y. Sorel. From algorithm and architecture specification to automatic
generation of distributed real-time executives. In Proceedings MEMOCODE, Mont St
Michel, France, 2003.

[11] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, 4th edition, 2007.

[12] A. Monot, N. Navet, F. Simonot, and B. Bavoux. Multicore scheduling in automotive
ECUs. In Proceedings ERTSS, Toulouse, France, 2010.

[13] L. Morel. Exploitation des structures régulières et des spécifications locales pour le de-

veloppement correct de systèmes réactifs de grande taille. PhD thesis, Institut National
Polytechnique de Grenoble, 2005.

[14] D. Potop-Butucaru, A. Azim, and S. Fischmeister. Semantics-preserving implementa-
tion of synchronous specifications over dynamic TDMA distributed architectures. In
Proceedings EMSOFT, Scottsdale, Arizona, USA, 2010.

[15] C. Pradalier, J. Hermosillo, C. Koike, C. Braillon, P. Bessière, and C. Laugier. The
CyCab: a car-like robot navigating autonomously and safely among pedestrians. Robotics

and Autonomous Systems, 50(1), 2005.

[16] B.R. Rau and C.D. Glaeser. Some scheduling techniques and an easily schedulable hori-
zontal architecture for high performance scientific computing. In Proceedings of the 14th

annual workshop on Microprogramming, IEEE, 1981.

[17] J. Rushby. Bus architectures for safety-critical embedded systems. In Proceedings EM-

SOFT’01, volume 2211 of LNCS, Tahoe City, CA, USA, 2001.

[18] M. Smelyanskyi, S. Mahlke, E. Davidson, and H.-H. Lee. Predicate-aware scheduling:
A technique for reducing resource constraints. In Proceedings CGO, San Francisco, CA,
USA, March 2003.

[19] N.J. Warter, D. M. Lavery, and W.W. Hwu. The benefit of predicated execution for
software pipelining. In HICSS-26 Conference Proceedings, Houston, Texas, USA, 1993.

[20] H.-S. Yun, J. Kim, and S.-M. Moon. Time optimal software pipelining of loops with
control flows. International Journal of Parallel Programming, 31(5):339–391, October
2003.

[21] W. Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-Vincentelli. Extensible
and scalable time-triggered scheduling. In Proceedings ACSD, St. Malo, France, June
2005.

RR n° 7606

Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Implementation model
	Architecture model
	Implementation model
	Well-formed properties

	Pipelining technique overview
	Dependency graph and maximal throughput
	Memory management issues
	The knock control example

	Dependency analysis and main routine
	Experimental results
	Conclusion

