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A Rigorous Runtime Analysis for Quasi-Random

Restarts and Decreasing Stepsize

Marc Schoenauer, Fabien Teytaud and Olivier Teytaud

TAO (Inria), LRI, UMR 8623(CNRS - Univ. Paris-Sud), bat 490 Univ. Paris-Sud
91405 Orsay, France

Abstract. Multi-Modal Optimization (MMO) is ubiquitous in engineer-
ing, machine learning and artificial intelligence applications. Many algo-
rithms have been proposed for multimodal optimization, and many of
them are based on restart strategies. However, only few works address
the issue of initialization in restarts. Furthermore, very few comparisons
have been done, between different MMO algorithms, and against simple
baseline methods. This paper proposes an analysis of restart strategies,
and provides a restart strategy for any local search algorithm for which
theoretical guarantees are derived. This restart strategy is to decrease
some ’step-size’, rather than to increase the population size, and it uses
quasi-random initialization, that leads to a rigorous proof of improve-
ment with respect to random restarts or restarts with constant initial
step-size. Furthermore, when this strategy encapsulates a (1+1)-ES with
1/5th adaptation rule, the resulting algorithm outperforms state of the
art MMO algorithms while being computationally faster.

1 Introduction

The context of this work is continuous black-box Multi-Modal Optimization
(MMO). Given an objective function F , the goal of MMO is to discover all
global optima of F (and not just a few of them). Because of the “black-box”
hypothesis, this paper focuses on gradient-free methods, more particularly Evo-
lution Strategies (ES) [5], addressing both theoretical and experimental issues.

Note that there are to-date very few rigorous analyses of ES for MMO. But
it has been experimentally shown that in the MMO setting, choosing a large
population size λ reduces the risk being trapped in local minima [27, 9, 1]. Un-
fortunately, it has also been shown that some classical ES are not very efficient
for large λ [4], and that self-adaptive ES are quite fast and reliable in that case,
with a good speed-up as a function of λ [4].

Several MMO-specific methods have been proposed in the evolutionary
framework, and their precise description cannot be included here for space con-
siderations. Please refer to the survey proposed in [23] (or to the original papers
of course). A popular family of MMO algorithms is based on niching techniques:
sharing [8]; clearing [22], including the modified clearing approach proposed in
[23]; crowding [6], including deterministic [18] and probabilistic [19] versions;
clustering [30]; species conserving genetic algorithms [16]; and finally, different



restart strategies, to the recent state-of-the-art restart with increasing population
size [1]. Several other works have been devoted to MMO outside the evolutionary
community. For instance, EGO [12], IAGO [29] provide very efficient algorithms
in terms of precision/number of fitness evaluations, but are computationally far
too expensive unless the objective function is itself very costly (requiring hours
or days of computation per point). Moreover, they have no theoretical guarantee
in spite of their elegant derivation. UNLEO [3] proposed an approximation of
optimal optimization algorithm under robustness constraints, with nice theoret-
ical guarantees; however, it is, too, far too expensive, and could hence be tested
with a few tenths of function evaluations.

This paper proposes a very simple restart strategy that can encapsulate any
(local) optimization algorithm, and for which convergence rates can be theoreti-
cally derived. This strategy is based on quasi-random restarts, and a decreasing
schedule for some ’step-size’ parameter. Comparative experiments with the ex-
tensive results published in [23] are used to demonstrate the applicability and
efficiency of the proposed strategy, in the case where the embedded local algo-
rithm is a simple (1+1)-ES with 1/5th adaptation rule. However, the proposed
restart strategy heavily relies on a specific parameter d (see Alg. 1), somehow
analogous to a parameter used in the modified clearing which outperformed by
far all other algorithms [23]. Hence, because this parameter d will be tuned for
the problems used in the experiments, no fair comparison can be done with
other published results for which no such parameter tuning was performed. Our
conclusions will therefore be limited to the design of a generic restart algorithm
based on quasi-random sequences with theoretical guarantees and tight com-
plexity bounds (see Corollary 1), that outperforms uniform restarts, and reaches
state of the art performance provided a good setting of parameter d, which es-
sentially quantifies some prior knowledge about the minimal distance between
two optima.

The remaining of the paper is organized in the following way: Section 2
introduces the notations used throughout the paper, and surveys the state-of-the-
art in quasi-random (QR) sequences. Section 3 introduces the proposed restart
strategy, and rigorously quantifies the improvement provided by QR points in
the initialization of MMO and the requirement that the initial step-size after
a restart goes to zero as the number of restarts increases. Section 4 provides
comparative experimental results with state-of-the-art MMO methods as well as
the simple random restart method with constant step-size.

2 Mathematical Background

Notations: For each E, subset of a topological space, E will denote the topo-
logical closure of E, i.e., the intersection of all closed sets containing E, and
#E denote the number of elements of E. For each sequence S = s1, s2, s3, . . .
of points in a topological space, the accumulation of S is defined as Acc S =
∩n≥1{sn+1, sn+2, . . . }. For each sequence X = x1, x2, . . . of points in [0, 1]D, the
dispersion of X is defined as Disp(X,n) = supx∈[0,1]D infi∈[[1,n]] ||x− xi||.



Quasi-random (QR) points A quasi-random sequence is a (possibly random-
ized) sequence with some uniformity properties that make it, intuitively, “more
uniform” than a pseudo-random sequence. After astonishing results in numeri-
cal integration (convergence in 1/n instead of 1/

√
n for numerical integration,

within logarithmic factors) and successful experiments in random searchs [20],
QR points have been used in several works dealing with evolution strategies,
during initialization [13, 7] or mutation [2, 26, 25]. Furthermore, ”modern” QR
sequences using scrambling [14] have been demonstrated to outperform older QR
sequences [26, 25]. Hence, following [28, 25], this paper will only consider Halton
sequences with random scrambling, and this Section will only briefly introduce
them – please refer to [20, 21] for more details and references.

Let us first define Van Der Corput’s sequence: Given a prime number p, the
nth element vdcn,p of the Van Der Corput sequence in basis p is defined by:

– write n in basis p: n = dkdk−1 . . . d1, i.e. n =
∑k

i=0 dip
i with di ∈ [[0, p− 1]];

– vdcn,p = 0.d1d2 . . . dk in basis p, i.e. vdcn,p =
∑k

i=1 dip
−i ∈ [0, 1].

A classical improvement in terms of discrepancy for moderate values of
n and large values of d, termed scrambling, defines vdcn,p as vdcn,p =
0.π(d1)π(d2) . . . π(dk) where π is some permutation of [[0, p − 1]] such that
π(0) = 0 in order to ensure ∀n, vdcn,p 6= 0.

Halton sequences generalize Van Der Corput sequences to dimension D by
using one different prime number per dimension. Let pi, i ∈ [[1, D]] be D prime
numbers. The nth element hn of a Halton sequence in dimension D is defined by
hn = (vdcn,p1

, vdcn,p2
, . . . , vdcn,pD

) ∈ [0, 1]D. Scrambled-Halton sequences, like
the ones used in this paper, are scrambled using a randomly drawn permutation
for each i ∈ [[1, D]].

The N th Hammersley point set is {hammN,1,hammN,2, . . . ,hammN,N},
where hammN,n = ((n− 1)/N, vdcn,p1

, vdcn,p2
, . . . , vdcn,pD−1

).

3 Theoretical Analysis of a Simple Restart Strategy

Let D be the optimization domain, embedded in a normed vector space (with
norm ||.||). Let F be a family of fitness functions, i.e., of mappings from D to R.
For any fitness function f ∈ F , let X∗(f) be the set of interest1. Let ES be an
optimization algorithm that takes as input x ∈ D and σ > 0 (initial point and
step-size respectively), depends on f , and outputs some x′ = ES(x, σ, f) ∈ D 2.
Think of σ as a radius at which local optima are searched; however, it is not neces-
sary to assume that ES always finds an optimum x′ at distance< σ of x, but only
that for σ sufficiently small and x sufficiently close to x∗, x′ = ES(x, σ, f) = x∗.
Finally, for any given sequence S = (xi, σi)i∈N ∈ (D×]0,∞[)N, denote RS(S)
the restart algorithm that successively starts from (x1, σ1), (x2, σ2), . . .

1 in most cases, X∗(f) will be the set of local optima of f , though the results below
have some generality w.r.t. X∗(f).

2 x′ is the output of a whole run of ES: in general, it will be the best point of the run;
however, here again the results are more general.



Definitions:
(i) ES has the convergence property if

(∀f ∈ F) (∀(x, σ) ∈ D×]0,∞[) (ES(x, σ, f) ∈ X∗(f)) (1)

(ii) ES has the locality property w.r.t. F if

(∀x∗ ∈ X∗(f)) (∃ǫ > 0) (∃σ0 > 0) s.t.
(||x− x∗|| < ǫ) and (0 < σ < σ0) ⇒ (ES(x, σ, f) = x∗).

(2)

Note that this does not imply that ES(x, σ, f∗) is necessarily within
distance σ of x, which would be an unrealistic assumption.

(iii) ES has the strong locality property w.r.t. F if

(∃ǫ > 0) (∃σ0 > 0) s.t. (∀f ∈ F) (∀x∗ ∈ X∗(f))
(||x− x∗|| < ǫ) and (0 < σ < σ0) ⇒ ES(x, σ, f) = x∗.

(3)

(iv) For any sequence S ∈ (D×]0,∞[)N, the restart algorithm RS(S) is said to
be consistent w.r.t. F if

(∀f ∈ F) {ES(xi, σi, f); i ∈ N} = X∗(f).

We can now state the following consistency theorem.

Theorem 1 (Consistency of the restart algorithm). Assume that ES has
the convergence property (Eq. 1) and the locality property (Eq. 2). Then:

1. If (X∗(f)× {0} ⊂ Acc S) for all f ∈ F , then RS(S) is consistent w.r.t. F ;
2. If D × {0} ⊂ Acc S, then RS(S) is consistent w.r.t. all F ⊂ R

D.

Proof: (2) is an immediate consequence of (1) so let us prove (1).
Let f ∈ F . Eq. 1 immediately implies that {ES(xi, σi, f); i ≥ 1} ⊂ X∗(f).
Let x∗ ∈ X∗(f); then (x∗, 0) is in Acc S by assumption. Using Eq.
2, it follows that x∗ = ES(xi, σi, f) for some i ≥ 1; this proves that
X∗(f) ⊂ {ES(xi, σi, f); i ≥ 1}; hence the expected result.

Remark 1 The assumption X∗(f) × {0} ⊂ Acc S is necessary. It holds in
particular with random restarts points and random initial step-sizes with non-
zero density close to 0; or random restart points and step-sizes decreasing to 0;
in both cases, quasi-random restarts can be used instead of random restarts.

Next result now considers the number of restarts required for finding all
points in X∗(f). Sequences of starting points are now considered stochastic,
hence the expectation operator:

Proposition 1 (QR restarts are faster). Assume that ES has the conver-
gence property (Eq. 1) and the strong locality property (Eq. 3) for some ǫ, σ0.
Assume that σi = σ0 for all i ≥ 1. Define
#RS(F) = supf∈F E[inf{n ∈ N;X∗(f) = {ES(x1, σ1, f), . . . , ES(xn, σn, f)}}].
Then, #RS(F) ≤ E[inf{n ∈ N;Disp((xi)i∈N, n) ≤ ǫ}].



Proof: By Eq. 1, X∗(f) ⊂ {ES(x1, σ1, f), . . . , ES(xn, σn, f)} for all n ∈ N.
On the other hand, if Disp((xi)i∈N, n) < ǫ, then Eq. 3 implies

#RS(F) ≤ sup
f∈F

E[inf{n ∈ N;X∗(f) ⊂ B(x1, ǫ) ∪B(x2, ǫ) ∪ · · · ∪B(xn, ǫ)}]

and this is at most n; hence the expected result.
The bound is tight for some simple cases, e.g., optima distributed on a grid

with sphere-like functions on Voronoi-cells built on the optima, and ES converg-
ing locally:

X∗(f) = {(k1ǫ, k2ǫ, . . . , kDǫ); (k1, . . . , kD) ∈ [[0, ⌊1ǫ⌋]]D}. (4)

The dispersion Disp can therefore be used for quantifying the quality of a
sequence of restart points. The optimal dispersion is reached by some grid-based
sampling (e.g. Sukharev grids [17]) reaching Disp(x, n) = O(n1/D). The
dispersion complexity, i.e., the number n of points required for reaching
dispersion ǫ is then3:

O
(

(1/ǫ)D log(1/ǫ)
)

for all low-discrepancy sequences; th. 6.6 p152, (C1)
O
(

(1/ǫ)D
)

for Halton or Hammersley (Section 2); th. 6.12+6.13 p157, (C2)
Ω
(

(1/ǫ)D
)

for all sequences or point sets; th. 6.8 p154, (C3)
Ω
(

(1/ǫ)D log(1/ǫ)
)

for random sequences (expected value; see Theorem 2)(C4)

The results above are based on the notion of discrepancy. In particular,
low-discrepancy (also termed quasi-random) sequences have extreme discrepancy
O(log(n)D/n). However, only complexity result (C1) will be necessary here.

To the best of our knowledge, complexity (C4) for random sequences has
not yet been published. It can nonetheless easily be derived by reduction to the
classical Coupon collector theorem (proof omitted for space reasons):

Theorem 2 (Dispersion of random points). Consider x1, . . . , xn, . . . ran-
domly independently uniformly distributed in [0, 1]D and ǫ > 0. Then
E[inf{n ∈ N;Disp(x, n) < ǫ] = θ

(

1/ǫD log(1/ǫ)
)

.

From Proposition 1, and the complexity of dispersions above, it comes

Corollary 1 (Complexity in terms of number of restarts). Let (F (k))k∈N
be a family of sets of fitness functions defined on [0, 1]D for some D. Suppose

that for each k ∈ N, F (k) has strong local property (Eq. 3) with values ǫ(k), σ
(k)
0 .

Then, for some C > 0, a quasi-random restart with Halton sequence4 and σi < σ0

ensures that

(∀k ∈ N), (∀f ∈ F (k)), (X∗(f) ⊂ {ES(xi, σi, f); i ∈ [[1, C/ǫD]]}). (5)

This is not true for random restart, and C/ǫD cannot be replaced by o(1/ǫD).

3 all references are to be found in [20]. See references therein for more details.
4 or any sequence with dispersion complexity (C1)



Algorithm 1 This generic algorithm includes Random restart with Decreasing Step-
size (RDS) as well as Quasi-Random restart with Decreasing Step-size (QRDS) algo-
rithm. Constant, linearly or quadratically decreasing versions can be implemented on
line 5. The case with murder is the case d > 0 (line 14).

Require: (x1, x2, . . .) sequence of starting points, (d, σ∗) precision thresholds
1: n = 0, optimaFound = ∅
2: while Maximum number of evaluations not reached, and all optima not found do
3: n← n + 1
4: y = xn // nth point the sequence of starting points
5: σ = nextSigma(n, σ0) // constant or decreasing σ
6: State← alive
7: while State = alive do
8: y′ = y + σN (0, Id) // N (0, Id) is an isotropic Gaussian random variable
9: if y′ better than y then
10: y = y′ ; σ = 2σ
11: else
12: y = y′ ; σ = 2−1/4σ
13: for all (opt ∈ optimaFound) do
14: if (||y − opt|| < d) or (σ < σ∗) then
15: State←dead
16: optimaFound = optimaFound ∪ {y}

Proof: Eq. 5 is a consequence of (C1) and Proposition 1.
The fact that this is not true for random restart is the application of com-

plexity (C4) to the particular case shown above (Eq. 4).
Finally, Ω(1/ǫD) restarts are needed in order to find the Ω(1/ǫD) optima in

Eq. 4: it is hence not possible in the general case to replace C/ǫD by o(1/ǫD).

4 Experimental results

This section presents comparative experimental results for some particular in-
stances of restart algorithms to which the theoretical results of above Section
3 can be applied. The main ingredient of a restart algorithm is its embedded
’local’ optimizer. The choice made here is that of an Evolution Strategy, for the
robustness of this class of algorithm. However, only local convergence properties
are required, far from any sophisticated variant designed for multimodal fitness
functions for instance [27, 9, 1]. Furthermore, the testbed we want to compare to
[23] does not require large values of λ, nor covariance matrix adaptation. Hence

the simple (1+1)-ES with 1
5

th
-rule was chosen, as it gives very good results in

very short time according to some preliminary runs. Finally, a (1+1)-ES satisfies
the hypotheses of Theorem 1, and hence all results of Section 3 apply depending
only on the properties of the sequence of starting points and initial step-sizes.

The precise instances of restart algorithm under scrutiny here are defined
in Algorithm 1: this includes random and quasi-random sequences of starting
points in the domain given as input (line 4), as well as different strategies for
the step-size change from one run to the other, depending on line 5: function
nextSigma can return a constant value σ0, a linearly decreasing value (σ0/(n+1))
or a quadratically decreasing value (σ0/(n+ 1)2).

One run of the local algorithm can be killed when either the step-size goes
beyond a given thresholds σ∗ (defaulted to 10−6 unless otherwise stated), or



when the current solution gets too close to a previously discovered local optimum,
up to a tolerance d (line 14). In the latter case, the algorithm is said with murder.
But the choice of the threshold distance d is not trivial: a too small d wastes time,
and too large values give imprecise results. Parameter d is a clear and strong
drawback of the proposed algorithms, as the results are very sensitive to the
value of d. Note however that the same remark holds for the modified clearing
approach which outperformed by far all other methods in [23]. Nevertheless,
because of this parameter, the generality of the results shown below is limited.
In particular, we will limit our claims to the comparison with the results in [23],
obtaining results that are comparable with the very good results of the modified
clearing, with a similar parameter d, but with a simple restart algorithm.

Let us define K as the number of optima for the murder operator (the murder
operator is not required for those complexity bounds). Let us first compare the
complexity of the proposed restart algorithm with those provided in [23] (Table
1 (left)). The complexity for RDS/QRDS is immediate. In the case of murder
operator, the complexity bound holds provided that K and d are such that the
proportion of the domain which is forbidden by the murder operator is never
larger than a fixed proportion of the whole domain. λ is the population size, 1 in
our case (but the complexity results hold for any value of λ). RTS [10, 11] and
SCGA [15] stand for Restricted Tournament Selection and Species Conserving
Genetic Algorithm respectively. w is window size of RTS. Nc is the number of
clusters.

Algorithm Complexity
RDS/QRDS, Clearing Θ(λ)

Deterministic or
probabilistic crowding Θ(λ)

RTS λw
QRDS/RDS with murder O(λK)

SCGA Ω(λ) and O(λ2)
Sharing,

modified clearing Θ(λ2)
Clustering Θ(λNc)

Number Number Computational
of of overhead

evaluations restarts for RDS vs QRDS

Constant initial step-size σ0 = 0.1
RDS 1652 13.7 1%
QRDS 1628 13.41

Constant initial step-size σ0 = 0.01
RDS 740 ± 15.81 6.07 ± 0.23 64%
QRDS 452 ± 8.95 2.3 ± 0.11

Constant initial step-size σ0 = 0.001
RDS 808 ± 18.37 6.44 ± 0.25 79%
QRDS 451 ± 8.54 2.21 ± 0.10

Quadratically decreasing step-size, σ0 = 1.
RDS 726 ± 18.34 6.73 ± 0.28 46%
QRDS 498 ± 10.15 3.72 ± 0.15

Quadratically decreasing step-size, σ0 = 0.1
RDS 755 ± 17.40 6.65 ± 0.25 64%
QRDS 461 ± 8.74 2.79 ± 0.11

Table 1. Left: Complexity of various algorithms. Most results are from [23] (see text).
Right: Results on the sine function in dimension 1, for RDS and WRDS, and different
strategies for σ. The last column is the percentage of additional evaluations when using
random instead of quasi-random.

Let us then test the different approaches on the test functions provided in
[23]. The first function is a n-dimensional sine, with 5n peaks, defined on [0, 1]
asf(x) = 1 − 1

n

∑n
i=1(1 − sin6(5πxi)). In all experiments with this function, a



point x∗ will be considered an optimum if f(x∗) > 0.997.
Another important test function is the hump function defined in [23] as:
f(x) = hmax (1− (infk ||x− xk||/r)αk , 0)where αk = 1, r = 1.45, h = 1; se-
quence x1, . . . , xk is randomly drawn in domain [0, 1]D; the problem is used in
dimension 25 with k = 50, the most difficult case according to [23].

4.1 Constant initial step-size is dangerous

First introduced in [24], the idea of decreasing σ at each restart is somewhat nat-
ural, when considering the convergence proof (see Remark 1). From the results
on the sine function in dimension 1 (Table 1-right), it is clear that a too large
fixed σ leads to poor results, while a too small σ also hinders the performances.
Indeed, when looking for all optima, a large initial step-size might be helpful in
order to avoid poor local optima. However it is a bad idea for finding optima
close to the frontier of the domain when there are big basins of attractions.
Furthermore, the proved version, with quasi-random restarts and decreasing σ,
performs well without any tuning, though less efficiently than the version with
a posteriori chosen fixed σ. Yet, its good performances independently of any
parameter tuning is a strong argument for the proved method.

4.2 Validating quasi-random sequences

Let us now focus on the comparison between the use of quasi-random vs random
restarts, i.e., RDS vs QRDS. From results on the multi-dimensional sine function
(Tables 1-right and 2), it is clear that quasi-random becomes more and more
efficient as the number of optima increases.

Dimension RDS QRDS Additional cost
D for RDS over QRDS
3 143986 (803) 109128 (609) 32%
2 11673 (98) 8512 (71) 37%
1 777 (13) 447 (8) 74%

Table 2. RDS vs QRDS on the multidimensional sine function: number of evaluations
(number of restarts), averaged over 30 runs, for finding the 5D optima in dimension D.
Here the step-size is quadratically decreasing with initial step-size σ0 = 0.1.

Let us now revisit the sine function in dimension 1, and increase the number
of optima by increasing its parameter K from 5 to 50, 500, and 1000. Other
parameters of the algorithms are here σinit = 10−1/K, σ∗ = 5.10−4/K, and
d = 0.5/K for the murder threshold. The performances reported in Table 3-left
witness the computational effort until all optima are found, i.e. there is a point of
fitness > 0.997 at distance lower than half the distance between optima (please
remember than 0.997 is the chosen threshold in this benchmark). Those results
show that QRDS becomes more and more efficient when compared to RDS as
the number of optima increases. Furthermore, the murder operator is clearly
highly efficient.



Nb of Nb of Ratio
evaluations restarts

5 optima
RDS 1484 ± 33.59 5.79 ± 0.24 25 %/
QRDS 1187 ± 30.27 4.17 ± 0.20 152%

QRDS+M 588 ± 3.24 1.31 ± 0.04
50 optima

RDS 30588 ± 156.28 171.45 ± 1.12 46% /
QRDS 20939 ± 100.04 102.24 ± 0.71 364%

QRDS+M 6583 ± 2.39 17.39 ± 0.05
500 optima

RDS 470080 ± 548.60 2900.75± 3.96 67% /
QRDS 281877± 279.15 1540.5± 2.01 603%

QRDS+M 66789 ± 3.07 161.92 ± 0.07
1000 optima

RDS 1009144 ± 747.05 6298.16 ± 5.40 61 % /
QRDS 627696 ± 409.41 3545.61 ± 2.96 655%

QRDS+M 133587 ± 3.11 320.8 ± 0.07

Algorithm Nb of optima found
Sharing ≃ 0

D./P. Crowding ≃ 0 / 0
RTS ≃ 0
SCGA ≃ 0

Clustering ≃ 0
Clearing ≃ 43

Modified Clearing ≃ 50
RDS 49.92 (over 100 runs)
QRDS 49.95 (over 100 runs)

Table 3. Left: Performance of RDS, QRDS, and QRDS with Murder when the number
of optima on the 1-D sine function increases. The last column shows the percentage of
additional evaluations for RDS over the given algorithm. Right: Comparative results
on the 25-dimensional hump problem. All results but RDS/QRDS are taken from [23],
where the modified clearing is reported to have found all 50 optima in all of the 30
runs. RDS and QRDS being much faster (see Table 1), 100 experiments have been run
easily, and almost all 50 optima have been consistently found. See text for details.

4.3 Comparison with Modified Clearing

In this section, we compare the restart as previously defined (quasi-random
restarts, decreasing σ and murder) to the best techniques in the survey [23]. In-
terestingly, some algorithms tested in [23] (Probabilistic Crowding and SCGA)
could not even find all optima of the simple sine function in dimension 1. Note
that QRDS finds all optima within a few hundred evaluations, whereas accord-
ing to [23] nearly 100 generations of population size 50 are necessary for finding
the 5 optima for all methods. However, because [23] does not provide quantita-
tive results, precise comparisons are not possible here. Therefore, the following
comparative results use the hump function, for which [23] provides extensive
experiments with detailed results. This function is particularly challenging, be-
cause [23] points out that no algorithm except their modified clearing can solve
the problem. The modified clearing, however, finds all optima in each of the 30
runs, whereas all methods (as reported in Table 1), except clearing, do not even
find a single optimum. Table 3-right reports the results of RDS and QRDS for
the hardest instance, in dimension 25 where the number of optima is 50. Aver-
aged over 100 runs, both methods find almost all 50 optima (on average more
than 49.9).

5 Conclusion

This paper has introduced some generic framework for restart algorithms em-
bedding a (local) optimization algorithm. With limited hypotheses about the



local properties of the embedded algorithm, in particular with respect to some
initial parameter σ describing the size of its basins of attraction, we have proved
some convergence properties with speed depending on the dispersion of the se-
quence of starting points, independently of any other parameter of the embedded
algorithm.

Actual instances of the generic algorithm have then been proposed, em-

bedding a (1+1)-Evolution Strategy with 1
5

th
rule, for which the initial step-

size plays the role of parameter σ above. Random and quasi-random sequences
of starting points can be used. The proposed algorithms have mathematically
proved convergence properties. Thanks to the decreasing of the initial step-size to
0, the convergence is proved independently of initialization parameters. Further-
more, experimental validation of the proposed algorithm have been conducted,
comparing random and quasi-random sequences of starting points, and judging
performance with respect to other previously published algorithms [23].

A first conclusion is the not surprising superiority of quasi-random restarts
over random restarts. The improvement due to QR points is moderate (a loga-
rithmic factor), but regular and increasing when considering more complicated
cases (more optima to be found). We have no experimental evidence in this
paper or in the literature for the superiority of any algorithm (whatever compli-
cated and computationally expensive) over the simple restart algorithm with de-
creasing σ and quasi-random initializations that has been proposed here. QRDS
performed equally or better than modified clearing [23], whilst keeping a linear
computational cost. All methods with non quadratic cost benchmarked in [23]
are much less efficient than QRDS, RDS or modified clearing, while RDS and
QRDS are much cheaper than modified clearing.

The murder operator, that kills runs that get close to previously found op-
tima, was found highly beneficial (up to more than 700 % speed-up for 500
optima). However, QRDS with murder operator has the same weakness than
modified clearing: it introduces a crucial parameter taking into account the dis-
tance between different optima, somewhat similar to σclear parameter of modified
clearing (that has additionally two arbitrary constants 1.5 and 3 for solving the
difficult hump function).

Let us now discuss the limitations of our analysis, and some general elements.
An important element in this work is the choice of benchmark functions. The
hump function is in fact a distribution of fitness functions, and not only a fitness
function, or random translations of a fitness function. We agree with the authors
of [23] that solving the hump function is by no means an easy task. However,
this benchmark has its limitations: as the function is locally very simple, and as
a very loose precision is required, the best choice for the embedded ES is the
1+1-ES with a very loose halting condition: this is perhaps not the less realistic
scenario, but this certainly does not covers all cases. A strong advantage of
the hump function is that it cannot easily be overfitted. However, all successful
methods on the hump function have a parameter which is intuitively related to
the distance between optima: This suggests that, in spite of the random part
in the hump function, some overfitting nevertheless happens when tuning an



algorithm on the hump function. Also, we feel these experiments are definitely
convincing regarding the importance of mathematical analysis in MMO: it is
otherwise very easy to conclude positively about an algorithm, without seeing
its precise limitations. Thanks to theoretical analysis, we could clearly see that
decreasing the step-size provides a real advantage (a decreasing step-size provides
consistency) and that quasi-randomizing the restarts provides an improvement -
and to the best of our knowledge, as QRDS has the best experimental results and
the best proved results, this paper provides a clear and simple baseline for future
research in MMO. A case in which clearing approaches might perform better than
the proposed approach is the parallel case. The murder operator might be less
efficient if several populations evolve simultaneously. The proposed approach has
been designed for the case of MMO in which the goal is to locate all optima,
opposed to the case where the goal is to locate the global optimum, but there
exist many local optima. However, these two forms of MMO are probably not
so different - if the local optima have fitness value close to the one of the global
optimum x∗, we have to check all local optima.
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