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Abstract— The main contribution of this paper is to develop
an experimental platform in order to test some event-based
control strategies. Contrary to the time-triggered fashion which
calculates the control signal at each sampling time, an event-
driven controller updates the control signal only when required.
This theoretically allows to reduce the computational cost. In
this paper, we propose to firstly test an asynchronous cruise
control mechanism. Some first results clearly show a noticeable
reduction of the mean control computation cost, which is really
encouraging for developing such a platform.
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trol, event-based control

INTRODUCTION

The classical so-called discrete time framework of con-

trolled systems consists in sampling the system uniformly in

time with a constant sampling period hnom and in computing

and updating the control law every time instants tk =
k · hnom. This field, denoted the time-triggered case (or the

synchronous case in sense that all the signal measurements

are synchronous), has been widely investigated in [1], even in

the case of sampling jitter or measure loss that can be seen as

some asynchronicity. However, some works addressed more

recently event-based sampling (also called asynchronous)

where the control law is event-driven [2], [3], [4], [5], for

instance when the output crosses a certain level qj = j ·qnom.

Thus in this scheme, the term sampling period denotes a

time interval between two consecutive level crossings of the

measure, that is two successive sampling instants, and the

sampling intervals are hence not equidistant in time anymore.

Many reasons are motivating the event-triggered systems

and in particular because more and more asynchronous sys-

tems or systems with asynchronous needs are encountered.

Actually, the demand of low-power electronic components

in all embedded and miniaturized applications encourages

companies to develop asynchronous versions of the exist-

ing time-triggered components, where a significant power

consumption reduction can be achieved by decreasing the

samplings and consequently the CPU utilization: about four

times less power than its synchronous counterpart for the

80C51 microcontroller of Philips Semiconductors in [6] for

example. An original and simple event-based PID control

architecture was proposed in [7]. The suggested scheme

updates the control signal only when required. Whereas an

event was enforced with a mix of level crossings and a

maximal sampling period (for stability reason) in the initial

approach, this maximal period was then removed in [8]

because, in fact, the Nyquist-Shannon sampling condition

is no more consistent thanks to the level detection. Different

event-based PID algorithms without safety limit condition

were also developed. They clearly showed in simulation

that the CPU cost can be considerably reduced without

performance loss. Nevertheless, a safety limit is uselessly

applied since then in the literature [9], [10], [11], [12] and,

therefore, we propose to clearly highlight the efficiency of

an approach without safety limit condition by implementing

such a controller in a real-time testbed. The ASYNCAR

experimental platform was thus especially developed to test

some asynchronous techniques. It is a radio-controlled vehi-

cle which embeds an event-based cruise control mechanism.

The paper is structured as follows. Firstly, the platform

is presented in section I. The event-based cruise control

principle is then depicted in section II and some experimental

results are provided in section III.

I. THE ASYNCAR PLATFORM

The ASYNCAR platform is depicted in Fig. 1. It is based

on a 1/18-scale Mini Rock Crawler radio-controlled car from

LOSI [13], where some extra components were added to

make possible the cruise control of the vehicle.

Fig. 1. The ASYNCAR platform.

A. The microcontroller

The main added component is a STM3210C-EVAL elec-

tronic card from STMICROELECTRONICS [14]. This eval-

uation board is represented in Fig. 2. The development kit



embeds a ARM microcontroller and several generic tools

which will allow the implementation of a cruise control

mechanism. It aims at providing a speed control signal to the

car from some given setpoint and some measurements. Thus,

different connection ports exist, such as RS232 or Ethernet

ports. A LCD screen is also present and could be useful

for debugging whereas a microSD card is available and will

allow to store some log information.

Fig. 2. The electronic card placed on top of the ASYNCAR platform.

B. The shaft encoder

A speed sensor is also required in the cruise control

scheme. Therefore, a shaft encoder was directly connected

to the drive-shaft of the car’s motor in order to dynamically

measure its current velocity.

C. The extra electronics

Another PCB was designed to make compatible the

STM32 card with the car and the shaft encoder, adapting

the voltage levels of the different components.

D. The testbed

A testbed was developed to fix the ASYNCAR on a hard

platform in order to make easier the different experiments.

This testbed is shown in Fig. 3. It allows to make indoor

experiments (when only small place is available in a room)

and some perturbations can be added on the wheel of the

car. Nevertheless, the ASYNCAR can also run without this

testbed, using a remote control for instance.

E. The data acquisition

The data acquisition is performed in a real-time framework

and all data are stored in the microSD card. A network

connection then allows to get these information in order to

next analyze them off line.

II. EVENT-BASED CRUISE CONTROL

In fact, the motion of a vehicle can be controlled with

a proportional-integral-derivative (PID) strategy. The cruise

control principle is firstly introduced in subsection II-A.

Then, whereas the classical time-triggered control scheme is

called back in subsection II-B, some event-based approaches

are introduced in subsections II-C and II-D.

Fig. 3. The tesbed used to fix the ASYNCAR platform.

A. Cruise control principle

As explained in introduction, event-based control is a

computational cost-aware solution especially for all systems

which do not need to be constantly controlled. For this

reason, we decided to highlight such a scheme with the cruise

control mechanism depicted in [15]. Indeed, the desired

speed of the car is constant most of time and, in fact, a new

control signal is only required when the setpoint changes or

when the load (i.e. the slope of the road) varies. The equation

of motion of the car is

mν̇ = F − Fd (1)

where ν is the velocity and m the mass of the vehicle. The

driving force F is generated by the engine, whose torque is

proportional to a control signal 0 ≤ u ≤ 1 that controls the

throttle position and depends on engine velocity too.

F = αnuTm

[

1 − β

(

αnν

ωm

− 1

)2
]

(2)

where the maximal torque Tm is obtained for a given engine

speed ωm and β. A physical interpretation of αn, which

depends on the gear ratio n, is the inverse of the effective

wheel radius. On the other hand, the disturbance force Fd

has three major components due to the gravity Fg , the rolling

friction Fr and the aerodynamic drag Fa, which yields

Fd = Fg + Fr + Fa (3)

with

∣

∣

∣

∣

∣

∣

Fg = mgsin(θ)
Fr = mgCrsgn(ν)
Fa = 1

2
ρCdAν2

where g is the gravitational constant, Cr and Cd are the

rolling friction and the shape-dependent aerodynamic drag

coefficients respectively, ρ is the density of air, A is the

frontal area of the vehicle and θ is the slope of the road, that

is the disturbance. Such a system can then be approximated

by a first-order system and so is quite simple a PID control.

B. Time-based control

The textbook PID controller in frequency domain is [16]

U(s) = K

[

E(s) +
1

Tis
E(s) + TdsE(s)

]

(4)



where U(·) is the control signal and E(·) the error between

the measured output of the controlled system and a given

setpoint. K, Ti and Td are some tunable parameters. A

discrete time controller is finally obtained, that is

up(tk) = Ke(tk)

ui(tk) = ui(tk−1) + Kihnome(tk)

ud(tk) =
Td

Td + Nhnom

ud(tk−1)

+
KTdN

Td + Nhnom

[

e(tk) − e(tk−1)
]

(5)

where Ki = 1/Ti
. The proportional part up(·) was straightfor-

ward while the backward difference approximation was used

for integral and derivative parts ui(·) and ud(·) respectively.

A low-pass filter was also added in the derivative term to

avoid problems with high frequency measurement noise,

where N denotes the low-pass filter gain. Finally, tk and

tk−1 are the current and last sampling time respectively.

C. Årzén’s event-based control

As explained in introduction, Karl-Erik Årzén initially

proposed an original event-based PID controller in [7] in

1999. The basic setup consists in two parts: i) a time-

triggered event detector used for the level-crossing detection

and ii) an event-triggered controller which calculates the

control signal. The first part runs with the constant sampling

period hnom – that is the same as for the corresponding

conventional time-triggered controller – whereas the second

part is driven by some requests sent by the event detector.

These requests are provided when a new control signal has

to be calculated and, therefore, the length of the varying

sampling intervals h(·) for the control part is the time

between two successive requests. Let τa denote the beginning

time of the current control sample, that is the last time a

request was sent by the event detector because the input

signal crossed a level. Respectively, let τa+1 denote the next

time where a control signal will be calculated and so on. Note

that the event-based sampling instant τa occurs at a discrete

instant time tk by construction. Furthermore, let h(τa) denote

the sampling interval used to calculate the current control

signal, i.e. h(τa) = τa − τa−1. The initial Årzén’s setup

updates the control signal either i) when the absolute error

crosses a certain level, that is when the current error crosses

a certain limit, i.e. abs
(

e(τa)
)

> qnom, or ii) if the maximal

sampling period is achieved, i.e. h(τa) ≥ hmax. This second

condition was added to guarantee the stability by fulfilling

the Nyquist-Shannon sampling condition.

Actually, the relative measurement was used instead of the

absolute one in the initial proposal. Also, a small discretiza-

tion improvement was also proposed (one could refer to [8]

for further details).

D. Event-based control without safety limit condition

We proposed in [8] to remove the safety limit condition

h(τa) ≥ hmax – in order to improve and simplify the event-

based setup (and because the Nyquist-Shannon sampling

condition is no more consistent in asynchronous systems

thanks to the level detection) – which results in only com-

puting the control signal when required from a performance

point of view. However, this modification requires to change

the integral part in the control law, i.e. ui(τa) = ui(τa−1) +
Kihe(τa), where he(τa) = h(τa)e(τa) afterwards denotes

the integral gain. Indeed, the product h(·)e(·) can become

huge in absence of event or when the setpoint varies, causing

some important overshoots. Actually, a steady-state interval

can be divided into i) a first part where the sampling interval

increases a lot but the error remains small and ii) a second

part where the error becomes very large but only during a

few instant. Therefore, the product he(·) does not cause any

problem anymore since h(·) and e(·) compensate themselves

each other. Finally, a bound of the integral gain is

he(τa) ≤
[

h(τa) − hnom

]

qnom + hnome(τa) (6)

This observation is taken into account in the proposed

algorithms in [8], whose best ones are summarized before

testing them on the experimental platform in section III.

Saturation of the integral gain

This algorithm consists in bounding the product he(·)
after a long steady-state interval in order to reduce the

overshoots. Thus, the product is saturated such that

he(τa) =
[

h(τa) − hnom

]

qnom + hnome(τa) (7)

Exponential forgetting factor of the sampling interval

Another method consists in adding a forgetting factor

of the sampling period so that, after a long steady-

state interval, the value of h(·) is reduced enough to

not impact the control signal too much. An exponential

function is chosen to decrease its impact as the elapsed

steady-state time increases, that is

hexp(τa) =
[

h(τa) − hnom

]

exp
(

hnom − h(τa)
)

(8)

The new sampling interval hexp(·) is thus used in the

integral part, such that

he(τa) = hexp(τa)e(τa) (9)

At the end, this function leads to have a nominal

sampling period during the transients, i.e. when h(τa) =
hnom, and an exponential decreasing sampling period

during the steady-state intervals.

Hybrid algorithm

This algorithm is a mix between the two previous ones.

Thus, we propose to use the exponential forgetting

factor into the algorithm with saturation, which leads

he(τa) =
[

hexp(τa) − hnom

]

qnom + hnome(τa) (10)

III. EXPERIMENTAL RESULTS

In this section, we propose to test the different event-based

PID strategies on the ASYNCAR platform.
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AsynCar cruise control −− Identification of the open−loop system

Fig. 4. Identification of the system response when applying a step in input of the ASYNCAR’s motor.

A. System model and controller’s parameters

The model of the velocity of a vehicle was introduced

in subsection II-A but, in fact, an open-loop identification

easily gives a first-order transfer-function between the mea-

sured speed and the control signal. The system response is

represented in Fig. 4, which leads to

H(s) =
G

1 + Ts
(11)

where G = 0.45 is the steady-state gain. In fact, the system

velocity varies from 0 to about 3000 tr.min−1 (measured by

the encoding shaft when the input is 100 %) but, afterwards,

we prefer to work with a percentage of the maximum speed.

Note that a negative value is also possible to inverse the

direction of the vehicle. A conversion is finally applied

to achieve a pulse width modulation (PWM) signal whose

duty cycle is 1.5 ms ± 0.5 ms with a period equal to 5 ms.

On the other hand, T = 180ms is the time constant of

the car. Note that a short time delay induced by the car’s

technology is neglected. Furthermore, the measured signal is

quite noisy (due to the mechanics) and, for this reason, we

next propose to add a digital filter using a weighted average

of the measured velocity ν. This yields

ν̃(tk) = (1 − κ)ν̃(tk−1) + κν(tk) (12)

where ν̃ is the estimated velocity (then used in the control

algorithms) and κ = 0.1 is the weighted value. Also, in

order to be as reactive as possible, we suggest to not apply

this filtering during the transients or when a perturbation

occurs. A solution consists in avoiding the estimation when

the variation of the measured velocity becomes important.

That is when ν(tk) − ν(tk−1) > ∆ν, where ∆ν = 6 % is a

parameter fixed by the designer.

Finally, the parameter’s values of the different controllers

are obtained by pole placement of the closed-loop system

with the time-triggered controller. They yield K = 1,

Ti = 250, Td = 1.1 and N = 20. The nominal sampling

interval is hnom = 10 ms. The event-based controllers

are then designed with these same values and they will

finally try to be as closed as possible of the time-triggered

closed-loop shaping. Also, the maximum sampling interval

needed in the Årzén’s controller is hmax = 100 ms and

the detection level used in all event-driven strategies is

qnom = 4 %. Additionally, an anti-windup mechanism is

added since the control signal can only vary from 0 % to

+100 % of the maximum speed in order to prevent windup

when the actuator is saturated. At the end, the extra term is

uw(τa) = Kah(τa)
[

u(τa−1) − usat(τa−1)
]

(13)

where usat(·) is the saturated value of the control signal

and Ka = 0.2 is another tunable parameter. The control law

finally becomes

u(τa) = up(τa) + ui(τa) + ud(τa) + uw(τa) (14)

where proportional, integral and derivative terms were de-

fined in (5).

B. Comparison of the algorithms

The first experiment runs the conventional approach. The

results are represented in Fig. 5(a), where the top plot shows

the setpoint and the measured velocity. The bottom plot

shows the sampling intervals which are, of course, all equal

to hnom in this time-triggered case. The number of samples

needed to perform the testbench is also indicated in the right-

top corner of the figure. The system is then tested with the

Årzén’s controller. The experimental results are shown in

Fig. 5(b), where the bottom plot now refers to the sampling

instants: an event is drawn each time the control signal is

updated. This representation will be preferred in the next

figures. The control law is now event-driven when the mea-

sured signal crosses a given level, that is why a lot of samples

occur during the transients. Moreover, a maximal sampling

interval was also introduced enforcing an event even if the

measurement remains unchanged. The resulting behavior can

be seen during the steady-state intervals where some samples

hit every 0.1 s. This principle allows to considerably reduce

the number of samples anyway (about 88 % less than in the

conventional case) with similar final performance.

Our proposal finally consists in removing the safety limit

condition in order to decrease again the number of sam-

ples. In this paper we only test both algorithms i) with

an exponential forgetting factor of the sampling interval
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(a) Classical time-triggered PID control.
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(b) Årzén’s event-based PID control.
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(c) Event-based PID control without safety limit condition: algorithm with an exponential forgetting factor of the sampling interval.
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(d) Event-based PID control without safety limit condition: hybrid algorithm.

Fig. 5. Control of the velocity of the ASYNCAR: comparison of the existing techniques and the event-based proposals without safety limit condition.
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Fig. 6. Analysis of the hybrid algorithm when applying some perturbations on the wheel of the ASYNCAR.

and ii) with hybrid strategy. The experimental results are

provided in Fig. 5(c) and (d) respectively. These algorithms

without safety limit condition allow to considerably reduce

the number of samples (about 97 % and 80 % of samples less

than in the conventional and Årzén’s cases respectively). The

vehicle still tracks the given setpoint with a system response

as fast as previously, but one could remark a steady-state

error due to the level detection. Actually, its value is im-

portant because of the noise (even after numerical filtering).

Consequently, the event-based proposed approaches have to

make a tradeoff between performance and computational

cost. At the end, these results for a simple first-order system

are very encouraging and advantages of the asynchronous

scheme are clearly demonstrated.

C. Perturbations and robustness

The ASYNCAR is then submitted to some perturbations –

slowing down the wheels – in order to see if the proposed

scheme still works when the system does not perform as

well as expected. The experimental results for the hybrid

algorithm are depicted in Fig. 6. The system reacts as soon

as a perturbation occurs at about 3, 9 and 20 s (because the

measurement crosses the detection level). The asynchronous

PID control without safety limit condition hence allows the

velocity to track the reference even in case of perturbations.

The robustness is hence demonstrated in practice.

CONCLUSIONS AND FUTURE WORKS

An experimental platform was introduced, called the

ASYNCAR platform, which aims at testing some event-

based control schemes. In this paper, an asynchronous cruise

control mechanism was presented in order to drive the

radio-controlled vehicle with a given speed setpoint. The

practical implementation clearly gives good performance

with a minimum of samples: more than 97 % of samples

less than with the classical PID controller. The advantage of

an asynchronous scheme is hence highly highlighted and the

encouraging results strongly motivate to continue developing

event-based control strategies. Next step is to develop a full

asynchronous scheme where the communication with the

remote control will be based on an event-based scheme too.
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