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Abstract—In this paper, we analyze phenomena related to user new mobility model taking into account interaction between
clumps and hot spots occuring in mobile networks at the occasn  different users and show by a mathematical analysis based

of large urban mass gatherings in large cities. Our analysiss 4, pmarkov chain theory that this interaction-mobility mode
based on observations made on mobility traces of GSM users in .

several large cities. Classical mobility models, such asétrandom is sufficient to generate random hot §pots. For th!s, we wil
waypoint, do not allow one to represent the observed dynamgcof  fepresent an urban area as a collection of potential hot spot
clumps in a proper manner. This motivates the introduction and zones. These zones represent potentially attractive aint

the mathematical analysis of a new interaction-based mobty  the city during such mass gatherings.

model, which is the main contribution of the present paper. his The basic assumption in our model is that users influence

model is shown to allow one to describe the dynamics of clumps h . . N
and in particular to predict key phenomena such as the buildng each other. In Section ]I, we first study the "sheep model”,

of hot spots and the scattering between hot spots, which playkey ~Where this mutual influence is particularly strong and where
role in the engineering of wireless networks during such evés. hot spots form at random in time and space, but are stable
We show how to obtain the main parameters of this model from once formed (i.e. there is no disaggregation of hot spots in
simple communication activity measurements and we illus@te ic model yet). We start with the 2-zone case, in which we
this calibration process on real cases. . . ’ .
find closed forms for the mean time for the formation of a
stable hot spot and for the law of its location. We also give
asymptotic estimates for these quantities, and upper tsound
Traces collected by wireless operators in urban enviroon the convergence speed. We then generalize the previous
ments during multi event mass gatherings reveal that usesults to an arbitrary number of zones.
mobility is extremely volatile and leads to the formation of Section[TV introduces the "sheep and maverick” model,
hot spots, exemplified on the snapshot of Fidure 1 which wagich is more realistic, yet tractable, and which featurs a
gathered during one the 2008 Pdfiste de la Musiquewhere key phenomena identified on the traces and alluded to above:
unpredicted gatherings are triggered by a large number thk formation of hot spots at random times and places, that we
spontaneous street concerts taking place throughout the ajill refer to asfilling, their disaggregation that we will refer
Such observations have also been made during other evemisasscattering and the dynamics between them.
like a summer festival in Poland and Euro2008 soccer matchesn a last part, we leverage filling and scattering in the "ghee
in Spain and in Romania. A key phenomenon within thignd maverick” model to calibrate our mobility model and show
context concerns the dynamics of these hot spots, namety thRat it can be made consistent with the traces.
formation and their disaggregation which is random both in
space and time. I[l. THE NEED FOR ANEW MODEL
Accurate and yet tractable user mobility models allowing . . .
. ) First, let us describe more precisely the phenomenon we
one to represent these phenomena would significantly ineprov. -+ 1o model
the robustness and the realism of the simulators and the '
analytical models used by wireless communication opesator
They would hence ameliorate the understanding of the impact
of mass mobility on QoS within this setting. Predicting hot
spots dynamics could also help in the design and the tuning
of adaptive radio resource allocation schemes, where it is
fundamental to have an idea of some time caracteristicseof th
system. This allows a better utilization of the correspagdi
infrastructure and eventually a better QoS and better cesvi o - o T _
to end users. AS exsting models are not completely adapfh L Sommiricaton sty durnfete de s Ui P o June
to the phenomena we observe on traces, such as the rangostelet, Bastille, Saint-Micheks well as at théarc des Princesthe city
dynamic hot spot phenomena alluded to above, we proposgtagium) and.ongchamp(the city park).

I. INTRODUCTION




A first remark is the existence of hot spots, that follow somgsers themselves are allowed to walk here and there around
dynamics. On the snaphots of Hig. 2, the crowd moves in lartiee imposed direction. These models are well adapted for
numbers outside a zone: we shall call thbaspot scattering a group of visitors in a museum for instance, where the
A new or a few new hot spots then build up at other locationsajectory is more or less the same for everyone. However,
we shall call that &ot spot filling such a system does not allow us to make groups scatter.

Let us now review some ideas about modelling users’
interactions. Since we need a strong dependence among users
a natural attempt could be to work with permanental processe
([11]) that are known to exhibit frequent clumping. However
permanental processes are nothing but particular Cox pro-
cesses (see [11], Remark 3.6.3.). This means that we would
(a) at 07:47 pm (b) at 09:06 pm have to choose an underlying intensity measure which varies

: / S over time to cope with the dynamics of clumping zones, which
is as difficult as building directly a convenient model.

Another class of mobility models that could be considered
is the class of spatial birth and death processes (see [4])
first studied by Preston in 1975 (see [12]). Such a process
can simulate characteristic point patterns if one chootes i
stationary distribution in a proper manner. Furthermore, i
contrast to the random waypoint model, it provides a real
Fig. 2. Communication activity in Paris on June*2 2008, between 07:47 time dynamics. However, this model is known to lead to

pm and 11:17 pm. One can observe scattering fromRae des Princes Gibbs point processes which are usually not analytically
(south) toLongchamp(north). tractable

We now survey existing mobility models and discuss how
they could be adapted to cope with these phenomena. This state of the art leads us to the conclusion that there is
The most popular mobility model used in communicatiog need for a tractable model allowing one to exhibit the type
networks is probably the Random Waypoint Model (s€e [8]df hot spot dynamics observed in communication traces.
This model is easy to simulate and is analytically tractable
in many situations depending of the mobility rules of the Il. THE SHEEPMODEL
individuals on the domain (wrap around, edge reflectian...) The aim of this section is to model user clumping in some
However, it applies to a single mobile user, or to a collectiopredefined zones. The basic idea is that users tend to move
of users moving independently. towards places where there are already more people, aeatin
Using this model, in order to take clumping into account, wea self-enhanced clumping.
would have to choose a trip selection rule which gives more
mass to potentially attractive zones. As a consequence, fhe
law of the location of a single user would clearly favour #thes Let us divide the city intoX zones, that are exchanging
zones. However, such a situation prevents any macroscopicbiles one with another. In each zone, a mobile waits during
time dynamics. Indeed, with a large number of independemt exponential time with parameterbefore deciding whether
users, all following the same law, each snapshot would bemao change its zone or not.

(c) at 10:17 pm (d) at 12:17 pm

General Overview

or less the same, very close to the theoretical locationTéig In a first step, let us suppose that the mobiles are totally
follows directly from Sanov’s theorem (see for instancg [3]nfluenced by their environment: they behave as sheep. They
Theorem 6.2.10). decide to move towards one zone or another with a probability

Thus, all clumps would happen at predefined locations apecoportional to the current repartition of the populaticed
the sudden hot spot scattering as well as the sudden new FRigt [3) of the zone. In other words, if we denote by the
spot aggregation observed in our traces would happen wittal number of mobiles, by, the number of mobiles in the
extremely small probability. first zone, byny the number of mobiles in the second zone,

More generally, any multi user model built from the supetc., a mobile from thé-th zone decides to move to tfé-th
position of many independent single user motions will eithibzone with probabilityn, /N. Conversely, he decides to stay
the same "lack of hot spot dynamics”, while a key poinin the k-th zone with probability:
observed within traces is a strong dependence between users o Nger
since there is clearly a joint motion from a hotspot to anothe N 1- Z N
leading toreinforced clumpingn the corresponding zone. k#k

Nomadic Community Mobility Model or Reference Point Obviously, there ard< absorbing states, which correspond
Group Mobility Model (seelll]) consist in making smallto the situation where all mobiles are in the same zone (these
groups of users move in a mean given direction, while thee theK stable hot spots mentioned in the introduction).
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v 2) Asymptotic EstimateTypically, N corresponds to the
. number of users in a city district, thus it is quite large. tder
. . to speed up computations, it can be useful to use an asymptoti
estimate ofh,. Letz = ny /N, for1 <n; < N —1. We want
Fig. 3. The sheep model. Her®, = 7 and K’ = 4. The mobile in the upper- @n estimate that can be used for large valuesvofand for
left corner has 4 choices. The four decision probabilities @roportional to  all values ofz. This means that the quality of this estimate
the numbers of mobiles. should only depend oiV. SinceN is large, we consider as a

If we denote a state by = (ny, ..., nx), then an absorbing continuous variable taking its values]in 1[. The computation
state is given by: in appendiX’A gives:
N
Neg = (0,...,N,...,0), 1<k<K. hn ~ ——((1 —2)log(1 — z) + zlog()) (3)
—_— —m— 17

k—th iti . .
poston andr, < 2/u, wherer, is the absolute error of the approxi-

We first study the 2-zone case for the sake of progressiygyte. Fig[b exemplifies the approximation curve.
exposition. »

B. The 2-zone Problem

In this section we takeK = 2. Let us denote by
n(t) = (m(t), N —m(t)) the state of the system at time
Each mobile stays in his zone during a random exponential
time with parametey, before deciding whether to move or
not. All waiting times are supposed to be independent. leroth
words, the system features a superpositiomVoexponential o o -
clocks (n clocks in the left zone andV —m in the right '1:'Ir?e ii'rcl:SS)r/g:)Fr)é%tgﬁeS“;?jtih?gowt}an(l)r:J]'s %e:rggr:ggn/tlsjhé gggma'te
zone). The rate of events in the left zonenig:, and that in w '
the right zone(N — m)u. An event in the left zone leads to
a transition with probabilityN—;,m whereas an event in the
right zone eads to a transition with probabil#y. The whole
process is Markov, with transitions described in Fiy. 4.

3) Absorption Probability: So far we have obtained a
closed form for the mean absorption time, as well as an asymp-
totic estimate. Now we would like to determine the probaypili
to reach stat€0, N) rather than stat¢V,0), starting from
n = (m,N —m). We shall denote this probability by,,.
A Using @), we obtain the transitions for the imbedded Markov
B chain of the process (see Fid. 6).

N
— i I e i
~m (m, N-n) mtl, N-m-l)\ 12

D TS B e

e TR T el

tm(N-m}) : -
_——— L T .-

N 12
Fig. 4. Diagram of the markovian transitions. Fig. 6. Imbedded Markov chain of the process.

Let us denote by) = (g../) the infinitesimal generator. Cond_itioning with respect td7, the first transition time,
1) Mean Absorption Time:We are interested in charac-2Nd using Markov property, we get, = 3 Pot(-11) +
terizing mobility between different zones. For instance wz Pnt(1.-1)- USing the fact thap,x) = 1 andp(y.0) = 0,
would like to give an estimate of, the first time to reach an W€ conclude immediately that:
absorbing state, starting from the current state of the owtw Pn = na/N. (4)
n: 7 = inf{¢t/n(t) = (0,N) or (N,0)}. The average value .
of 7 is given byh, = E[r[n(0) = n]. We know (see[[10], C- More Clumping Zones
Theorem 3.3.3. about hitting times) that the vedors the We now consider the same problem with zones.

minimum solution of the equation: 1) Description of the systemNow a state is ai-uplet
n = (ny,ne,...,ng), With >>ni = N. Hence the space of
ho,ny = hno =0 1 possible states is @{ — 1)-dimensional variety. A transition
Ym ¢ {0, N}, D gcicn Gmihin—iy = —1. from the k-th zone to thek’-th zone is given by:

We prove in appendik]A that: n—n' =n+eyp — ey.



In the most general case, there af&(K — 1) possible IV. M AVERICKS AND HOT SPOTSDYNAMICS
transitions (corresponding to existing couplgs k’)). The
transition rate corresponding to the mobility— &’ is given

by:

So far, we have modeled the phenomenon of clumping
in one given zone, which is only an aspect of what can be
_pmgn observed in dense urban networks during exceptional events
Qoo = TR The sheep model has a major drawback, which prevents it to

2) Absorption Time:Generalizing equatioi}2) leads to: fit reality: as soon as it has reached an absorbing statee#t do
not evolve any more. This does not account for scattering,
where a hot spot suddenly disaggregates before reforming in

1 n
fin = w(K —1) Z Z T () other zones.
IsIsHmSi=N This section aims at modeling scattering. We introduce some

(for a proof, see appendix B). users, the mavericks, who are not influenced by the others. In
Here is for example a 2-dimensional surface representittge model, mavericks coexist with sheep. During a transitio
the mean absorption time fdt = 3 (see Fig[T). mavericks choose uniformly their target zone, includingirth

current zone, independently from other mobiles (which is a
simple instance of independent random waypoint motion). In
this new model, states of the foriVe;, are not absorbing
anymore.

We introduce maverickness as foll@vst each transition,
an individual decides to behave as a maverick with proligbili
« («a is the maverickness rate), and as a sheep with probability
1— «. The new rate of thék — k') transition is hence given

by:

Fig. 7. Mean absorption time [in min] fotv = 50, K = 3 and T

1 = 1 min~!. The z-axis represents the time, whereas the initial state i Gon’ = [TE (O‘ 'K +(1—-a) N > .
represented on the horizontal plane, in barycentric coatds with respect
to each of the three absorbing states.

Then, definingz;, = n/N, it is immediate to generalize

A. Mean Reaching Time

equation[(B) to firld We call reaching time the time to reach any extremal state,
namely a state of the fornVe, from somek. On Fig.[8,
h(x) ~ _KL Zxk log(z) (6) Wwe have plotted the evolution of the mean reaching time with
p(K —1) < respect ton.

As a grows, one can observe several phenomena:

« The mean reaching time grows exponentially withOn
Fig.[8, we have plotted the maximal mean reaching time
with respect tax (this corresponds to the case where all
zones initially contain each approximatély/ K individ-

and|r(x)| < %

3) Absorption Probability:In the same way as in section
[-B3] we can compute the probability to reach an absorbing
state rather than another one, for example day. We use
recursive formulas between a state and its neighbours. For

example, in the most general case, we have: uals)._ . :
P g « On Fig.[8, asx increases (in other words, as the system
Z@k/) NENk Pnte,s —ey, becomes saturated by mavericks), the surface becomes

n —

very quickly plateau-shaped (this is already the case for

# /
2 (k) TR a = 0.08). Apart from the regions close to extremal

Using then the fact thatk # K, pne, = 0, we obtain states, all reaching times are more or less the same, which
all the p,’s recursively. In fact, it is quite easy to generalize  means that reaching times become insensitive to initial
equation[() to obtaip, (K) = nk/N = zk. state. Even if the system starts from a state close to an

extremal point, it takes a large excursion and a long time

1it is worth noting that this asymptotic estimate is exacthg tformula to reach one of the extreme states. It is interesting to

of entropy. In fact, using the axiomatic definition of entyogiven in [2],

Problem 2.46 p.53, we can understand intuitively whereftiis comes from. observe that such a small proportion of mavericks can
Basically, if a family of continuous symmetric functiod$x (z1,...,zk) induce such a perturbation (for further details, see sectio
(K = 2) verifies the following "grouping” equation: IV-B). This is not yet a proof but just an indication that
Hy(z1,...,2Kx) = Hx-1(z1 + 22,23, ..., TK) there is scattering (we propose a systematic study of
+(a +w2)H2( B ) scattering in sectiof TVAC).
r1+x2 21+ T2

then we haveHy = — >z log(xy) up to a normalization. And in our  2There are several possible coexistence models. A first nvenigld consist
case, considering the union zones 1 and 2 as one big zone, tai@ abnew in choosing a fixed population of sheep and mavericks at thggnbimg
system of K — 1 zones, obeying the same rules as before since they afthe simulation; the main objection against this modelthett it is quite
additive (for instance, a sheep from one of the two first zalezides to stay constrained: suppose there are ogly individuals; if we want to reach a
in this union with probabilityz; + z2, etc...). "maverickness” rate 06.01% for example, this is impossible.



(@) a = 0.01 (b) o = 0.03 (€) o =0.038

@a=0 (b) a = 0.02

(d) a = 0.04 € o= 0.05 ) o= 02

ce Fig. 10. Invariant measure faV = 50, K = 2 andp = 1 min—'. When
(d) o = 0.06 « exceedds).038, the shape of the curve reverses.

impose N3 — 1 = 0 to obtain a uniform distribution. This
corresponds to the critical value:

K
Qe = N n K
T T « fora < a., the influence of the sheep remains noticeable.
(e) @ = 0.08 fH a=0.1 This is the most interesting case, because the system still
Fa g M hing time fin min fo — 50. K — 3 anda — 1 min-1 exhibits clumping. _
Tlr?é rﬁaveﬁgl?n:ee;scr;rt]eggIrr(?vss[lfr:onr:g]to 0.1?Not’e tha_t thgnscgle_ of trplg]ams » fora = o, all states are equwal&]t -
varies. « for a > a., the sheep loose very fast their influence.

As traces reveal the existence of clumping, we shall assume
until the end of the paper that < «..

C. Macro-states and Hot Spot Dynamics

The system is fully characterized by four parameters, which
] are N, K, u anda. The three first parameters can be directly
measured, butv cannot. And yet, it is of major importance.

In a sense, it represents the propensity of users to clump.
Fig. 9. Maximal mean reaching time [in min] with respectdo N' = 50, HOW can we make it best fit reality ? We would like to find
K=3andp=1min"1. a typical characteristic of the system, easy to measure and
B. Phase Transition strongly related tax. This is what this subsection aims at.

To characterize the phase transition observed in[Big. 8, we-€t us study further the case < a.. If we simulate
calculate the invariant measureof the "sheep and maverick” SUCh @ system, we observe clumping as expected, but we
Markov process, and observe if there is a value 66r which also observe scattering. We would like to evaluate how often

all configurations are equiprobabteis given by the equation 2 scattering happens. However, extremal states of the form

1000

mQ =0. Let 3 = K(loia)’ we have: Ney are extremely rare, so_that it would _be d”ifficult to ’base
our analysis on them. We will rather consider "macro-states
Koo el which are the union of several states close to one of the
m(m)=A]] . 1T vs+1), (7) extremal states.
k=1 =0 For example, let us denote byl; the macro-state in

where A is a normalizing constant. This result is proved ifvhich the k-th zone contains a significant proportion of the
appendiX_C, along with an asymptotic estimate. On Eig. 1pppulation:A; = {n : ny > Nyup}, where Ny, is an upper
we plot the invariant measure with respectdofor K = 2 bound for a zone to be considered as dense. Conversely, we
and N = 50. As already indicated by Fidl 8, it appears thadefine By, = {n : n; < Niyt}, where Ny, is a lower bound.
when « grows, the influence of mavericks is more and mor€hen a scattering is simply a transition frafy to B;.. More
noticeable. For higher values of, the probability is more precisely, fork fixed, we define the corresponding scattering
concentrated on uniformly-spread states. time S, as the duration between the first instant when we reach

There is a critical valuer. where the curve’s shape reversesdy and the first instant when we reaéh, after that. Another
What does the transition look like? Is it possible to obtain a, _ _ . ,

As N — oo, this assumption can be interpreted as follows: since

completely flat curve (Or Surfalce. in the _generql Case) 9 ac ~ K/N, it means that, asymptotically, there are as many maveisks
Expression[{[7) shows that it is possible. It is sufficient teones.



option would have consisted in using the last time we leave V. CALIBRATION WITH TRACES
Ay, before reachingBy, in place. But this is not a stopping  The aim of this section is to see whether the crowd

time, which would make such a choice more difficult to handigyoyements observed in the traces can be described by our
using Markov chain theory. Hence the former definition. Bysheep and maverick” mobility model.

symmetry, we can suppose that= 1 for example, and omit e propose to us&[S] or E[F] for our calibration. These

subscriptt in the following. At the first instant when we reaChquantities can be measured. Let us now see tHBigf and N

A, we are necessarily iIM = {n/n; = Nyup +1}. From the 5re known for instance, we can then deduacby solving an
strong Markov property, the prediction of the future of thg,erse problem. If the functiofl[S] = f(«) is injective, at

chain is condionally independent of the past given the sifite|gast fora < a, this inverse problem can be solved without
the system at this stopping time. o o ambiguity. We know thatf(«) is decreasing of0, auin|, SO
It is shown in appendik D thak[S|n'® = n] is given the hat 5 necessary and sufficient conditionais < cmin. ON
following analytic expression: Fig.[Id, this is always the case, but this is not true in genera
N Nswp+1 N ... 6() a counter-example i& = 2, N = 100, Ngup/N = 0.99%. In
— Z Z , A =~ (8) practice,amin seems to be hard to compute analytically, so
p(l—a) — J(N(K =1)B+ N — )

=Nin¢ j=l that we could not find a simple sufficient condition.
with Our experiences show that such counter-examples appear
(i) = (N—)(Nf+i) to be extremely rare, especially whéfi > 2. It seems that
i(N(K-1)B+ N —1) most choices ofV;,; and Ny, satisfy the injectivity off(«)

n1 = Naup + 1, but not on the exact value of itself. Hence, CN00SeNinr and Ny, properly, we advise to complement the
the strong Markov property actually implies tHatsS] = (). Mmeasure ofi[S] with a measure oE[F] for instance.

Fig. 11 depicts the evolution dE[S] in function of o for [N contrast, when measuring jus{F’, one has to be more
several values ofV. cautious, since the injectivity af(a) = E[F] on]0, a.[ Seems

Let aumin be the value ofy such thatE[S] is minimum. For less common. . _
certain values ofN, E[S] is strictly decreasing ovejo, 1], Let us consider _for instance the transfer _that happens
so thatami, = 1, but for some other values oV (like betweenParc des Princesand Longchamp(see Fig[R). Ob-
N =1000), E[S] starts increasing aftet,,i,. serving carefully our data, we conclude that there are three

attracting zones:

9001 =100 « Longchamytself

« the Parc des Princesnorthern part
« the Parc des Princessouthern part

so that we takeX = 3. On Fig.[12, one can see the numbers
of users in each zone.

3500

3000

2500
2 2000
5
3

Fig. 11. Mean scattering time [in min] with respectdo Nsup/N = 80%, 8 1500
Ning/N = 20%, K = 3 andy = 1 min—!. For each curve, the vertical solid 1000
line corresponds to the critical value., while the dotted line corresponds to
amin (Whenever it is less than the right bound of the axis).

500

0
20:00:00 20:30:00 21:00:00 21:30:00 22:00:00
time

In the same way, we can compute the mean "filling tinke”

of a zone, which is the dual of the scattering time, and whic} r'agt?ﬁg ZTéﬁZ‘ZS collected during tiete de la Musiquéetween the three

we propose to define as the time for the population in a given

zone to grow fromNj,¢ to Ng,,. We have: The total number of traces remains more or less constant, so
N—Nigt+l N I (9) that we choose an average valué\ot= 4830. This givesa, =
E[F] = N Z Z _lisicy el _. (9 6:2x107* Choosing to calibrate first onongchamilling,
w1 —a) P oy JINB+ N —j) we take Ny, /N = 55% and Nins/N = 45%. After verifying
with thatg(a) is injective on]0, a.[, we finda = 0.6 x 10~4, that
_ _ is, & < a.. This was to expect, since scattering is very clear
e(i) = 1 _ (v _.Z)(N(K — 1),ﬁ + Z). in our case.
6(N —1) i(NB+ N —1) In order to verify this value, we also measure fParc des

Note that it is easy to find some recursive formulas fdPrinces Souttscattering, which yields = 0.5 x 1074,
the computation off[S] and E[F], allowing to decrease its Now, if our model is consistent, it has to predict other
complexity down to a Big-O ofV. clumps or scattering over Paris. Let us consider the traangl



Chatelet-Saint Michel-Bastillgor instance, in the heart of More generally, some optimization algorithms are known
Paris (see Fig_13). These zones are attractive. Besides, tovedepend massively on the tuning of a key parameter.
consider a fourth zone which is the complementary regidtor instance,[[6] proposes an algorithm to optimize radio
inside the triangle. That one experiences scattering, @dserressources in a 802.11 network, based on Gibbs sampler. The
the three attractive zones experience filling at the same.tinitemperature parameter” of the sampler has to be tuned very
carefully, so that the optimizer can react quicklier thae th
typical time of evolution of the system itself. More con&lgt
/ in our case, supposing that we want to take users mobility int
account in a 802.11 network, if we can anticipate a scatjerin
we are able to adapt the optimizer in a suitable manner.

Also in the case of a genetic algorithm, it can be interesting
" to adapt the cross-over and the mutation rates of the ogimiz
to react to a sudden evolution of the system. Indeed, theshigh
these rates, the stronger the diversity of the genetic jadipal

Fig. 13. Traces collected during tHette de la Musiquén the triangle 1N our case, a scattering is likely to modify drastically the
Chatelet-Saint Michel-Bastille system to optimize. Thus it is useful broaden preventativel

Theoretically, a filling of a zone from 5% to 28% forthe variety of solutions that are explored.
instance should last about 10800 seconds, according to the o
value of a we found previously. Now, the filling oBastille B- Data Caching in Dense Ad-hoc Networks
lasts about 11300 seconds, so does the fillinGladtelet and In a dense data ad-hoc network, it can be useful to add
the filling of Saint Michellasts about 11000 seconds, whiclkome fixed servers which keep the most frequently asked data
is very close to our prediction. in cache memories. Various algorithms already exist on this

subject (see for instance![5][13]). The question is wherg an

In this paper, we proposed a new mobility model able to The idea is to select some strategic places where people
represent and quantify the hot spots found on traces, ald#gpally clump together. These are didrzones. Suppose that,
with their random time dynamics. Our aim was not to buil#sing sectiof V, we have previously evaluatedver the study
a generic mobility model, adapted to every kind of situatiofrea, possibly for a different number of users and zones1,The
but rather to focus on multi-event mass gatherings. We haW@asuring in real-time the actual numb®&t of users and
proved our model to be analytically tractable, by derivgtincomputing the corresponding scattering times, as soon as a
closed forms and asymptotic estimates. Using measuremeitge exhibits clumping, one knows how long on average this
from a GSM network, we also showed how to calibrate th&ill last. In other words, one knows if it is worth caching dat
model to fit reality. In addition, our model was proved to bt that place.
able to predict the order of magnitude of hot spots in difiere Conversely, if a zone is almost empty, one knows, using
time-space situations. "filling times”, if there is a risk that we will soon encountar

Apart from the main application, which consists in buildpeak of population and have to rush to cache memory there.
ing an efficient mobility model for network simulators, we
describe here some applications, that rely on the ability to APPENDIX
predicting clumping or scattering with a good likelihood. o Resolution of Equatioi)(1)

2 2500
E

500

0
18:00:00 20:00:00 22:00:00 00:00:00

A. Dynamic Spectrum Allocation and Software Defined Radio) ;. dmil,n—i) = —1 can be rewritten as:

Dynamic Spectrum Allocation (sekl![7]), consists in allecat
ing variable bandwidth resources, according to differeemtes
and different densities of population. As for Software De€in 2hn-11) = h(N—22) = W(N—T)
Radio (seel[9]), it consists in deploying base stations dnat otherwise:
able to switch from a system (like GSM) to another one (like
UMTS), depending on the demand.

Even if they have not been implemented in real networkhus we have to invert the matrixy = (u;;) with
yet, these two domains are today quite an active field of ; = 2,u; ;-1 = u;—1; = —1,u; ; = 0 otherwise. One can
research. It is crucial that implemented algorithms canehaeasily check that/ ~! is given by V/N, where the elements
an idea of the typical evolution durations of the system. of V are:

For instance, if we can predict if a zone that is full will JIN =) ifi>j
remain so for a long time, or if an empty zone will soon fill, TN =) i<,
one can decide with much more accuracy whether allocating
resources or not. Equation [[2) follows immediately.

N
2h(,N-1) = he,N-2) = sv=T
N

2hn — hnt(—1,1) = Pnr(1,-1) = pi(N—1) "



We introducer =ny/N, t =i/N anddt = 1/N. We have:

Let us now give an asymptotic estimate of this expression. Z nknk/ 1
(k) N nk

Yoo Y1
phn=Ne y < =+Nl-xz) > = -1 k- S = -1
i=ni+1 N i=ng+1 N N(K -1) ( )an ’
Both sums of the right handside can be interpreted as Riemann which completes the proof of the general case.
integrals on[z, 1] and[1 — z, 1]. Let us work out the first one At last, if a ny is zero, the(k — k') transition is
for example: forbidden, so that the corresponding term above should
not be taken into account. But fortunately, in that case we
14+1/N 1 N 1 1 1q . >
/ Z ~ 7S / Zdt havenyny /N(K — 1) = 0, so that previous calculation
+1/N 7! PP N it still holds.
A fortiori: C. Steady-state Computation
1 Y11 In this section, we will explain how to find progressively
— log(w) — Nz = Z N 7S — log(x). expression[{7). First let us tak€ = 2 and keep notations
i=ni1+1

of section[l-B. For more simplicity, let us also introduce
We would obtain the same inequality replacingoy 1 — 2.  successively:

Defining the remainder: B = %,
N ( —Oé)
rn = |hn + — (zlog(z) + (1 — z) log(1 — z)) |, u(z) = (N—2)(NB+ua),
; o v@) = u(N-a),
we haveur, < 2. Thus, our estimate i$— Nz log(x) — ) = w((m, N —m))
N(1 - x)log(1l — z))/u, and the error is uniformly bounded w(m) = w((m, )

by 2/ Note that even for = 1/N orz = N —1/N, which  Then balance equations give uspif¢ {0, N}:
yields the minimum nonzero value &f,, the remainder still

remains a little-o of,,. Gm—1,m7 (M~ 1) +tmr1mm(m + 1) = g mm(m).
B. Proof of equation[{5) Multiplying by = vields:
We are now looking for the solution of equatidd (1) fn u(m — 1)7T(m — 1) +ov(m+1)r(m+1)
dimensions. In fact, we assume tHdt (5) is the solution, aad w
prove it. First remark: ifn is an absorbing statd,](5) is equal = (u(m) +v(m))r(m).
to 0. Then, let us introducg,,’ = hn — hn. One can easily  So that if we introduce:
check thatvn, 3 . Gnn'har = 302, Gon nne- y(m) = v(m)m(m) — u(m — 1)w(m — 1),
« let us determine,,,; if n’ is not an absorbing state, we
have: we obtain:vm ¢ {0, N},y(m) = ~v(m + 1).
1 1 1 Hencevy(m) = (1) = 0. Finally:
el DD DR m DNG i1
K Ny <i<N np<i<N H N —i+ B+i— )
palen t(NB+ N —1)
Now, if n’ is an absorbing state, it means that = 1 In order to generalize this formula, we would like to rewrite
andny = N — 1. Then equatior({5) gives: it in @ symmetric manner w.r.z; andns. In fact, we have:
n1 NB+i—1 nz2 NB+i—1
hy —hy = —hp = ———— Z -, x(m) = W(O)Hizl 12 ==
/L(K — 1) 1SieN 2 HZV ) NB-;—z 1
so that it is easy to check that the previous expressionThis is equation[{7) in casf” = 2.
of enn/ is still valid. Now we can reasonably suppose tHat (7) still holds in the

_ y ~general case. In fact, this is quite immediate. Indeed,ipusv
« now, let us prove that expressidn (5) verifigs (1). In a firgiculation assures us that in cage = 2, global balance
time, let us focus on the most general casayhen none equations are satisfied. Now, thanks to the product form of

of the nys is zero. We can write: (@), we know by the same calculation that in the general case,
Z (nn’ €nn/ the partial balance equations along one transition arsfieati
n 7&“ In other words,v(k, k'), if we denoten + e, — e, by n’

”knk’ 1 andn — ey +e; by n”, we havegn nm(n’) + gn/ nm(n”) =
_ Z NE-O| X2 i X 7(0) (Gont + Goune?)-
(k") e <I<N ny <i<N This achieves the proof. Note that we can also find an
=0 by symmetry asymptotic approximate of this expression. We have:

—_

.




To determine thé.,,,s, we still miss an equation. This is the
last one before reachingn/ny < Niut}:

nk—l nk—l
log H (NB+1i) =nilogN + Z 1og<ﬁ—|— >

=0 —o qunvainthinf + qunvainf‘i’lh’Ninf‘i’l =-L
o Together withhy, +1 — hn,,, = un,,+1, this leads suc-
Approximating(+) by a Riemann’s mtegral one can find: cessively to: N s(i
ni—1 (B+ai) th _ Z HNmf§1<] ( )
Nk Tk inf — . -\ 7
ng! i ng! BBerk B+ xi, inf
= and, more generally, to;,
After multiplying K such members and removing terms that A Z Z Hl<z<7 6(d)
only depend onN or 3, we obtain: m 1 —a) JINB+ N —j)
K = -
7(n) ~ A’ H %(ﬁerk)N(ﬁ”k)*%, In particular, form = NSulD + 1, we obtain the claimed
k=1 (Nay)! formula. Now suppose we are in the general case. It is

where A’ is another normalizing constant. If we introduc®erfectly correct to consider the union of thi¢ — 1 last )
the relative error,, using the mean value theorem, one cafPnes as one big zone. A sheep will stay in this "macro-zone

obtain the following bound: with probab|I|ty netotne and a maverick will stay with
probablhty Th|s last probability is the only adaptation
< @NFTINGGT _ 1 K/4ﬂ' we have to make in the previous calculation. Introducing
"= N 8" = (K —1)3, we obtain the following new recursion:
D. Proof of equation[{8) D m(NB + N —m) -
As previously, let us begin with the cagé = 2. We are in (N =m)(NG +m)
state(m, N —m) and we are looking for the hitting timk,, _ N
of {n/n1 < Ninf}. ,Lt(l - a)(N - m)(Nﬂ + m)’

We want to obtain an analytical formula df,, (let us The rest of the calculation is exactly the same. In particula
say for Nipr < m < N, since otherwiséi,,, = 0). If we in- for a fixed n, the result is the same for each such that
troduceu,, = h,, — h.,—1, We have the following recursion n; = n.
(Ninf+1§m§N_1):

m(NB+ N —m) REFERENCES
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) 483502, 2002.
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