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PLUG-IN ESTIMATION OF LEVEL SETS IN A NON-COMPACT SETTING

WITH APPLICATIONS IN MULTIVARIATE RISK THEORY

Elena Di Bernardino1, Thomas Laloë2, Véronique Maume-Deschamps3 and

Clémentine Prieur4

Abstract. This paper deals with the problem of estimating the level sets L(c) = {F (x) ≥ c}, with
c ∈ (0, 1), of an unknown distribution function F on R2

+. A plug-in approach is followed. That is,
given a consistent estimator Fn of F , we estimate L(c) by Ln(c) = {Fn(x) ≥ c}. In our setting, non-
compactness property is a priori required for the level sets to estimate. We state consistency results
with respect to the Hausdorff distance and the volume of the symmetric difference. Our results are
motivated by applications in multivariate risk theory. In particular we propose a new bivariate version
of the Conditional Tail Expectation by conditioning the two-dimensional random vector to be in the
level set L(c). We also present simulated and real examples which illustrate our theoretical results.
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The dates will be set by the publisher.

Introduction

The Conditional Tail Expectation (CTE) is a commonly used tool in the univariate risk theory. Given a random
variable X with continuous and strictly monotonic distribution function FX , the CTE at level α is defined by

CTEα(X) = E[X |X ≥ QX(α) ], (1)

with α ∈ (0, 1) and QX(α) the univariate quantile function of X at level α. In other words the CTEα(X) is
defined by the expectation value of X conditionally to the fact that X belongs to a certain one-dimensional
level set of FX . For further details about this univariate risk measure we refer the reader e.g. to Denuit et al. [16].

In this paper we are interested to introduce a new bivariate generalization of CTE in (1) and to provide a
consistent procedure to estimate it. Consequently we essentially need a generalization of the notion of quantile
in dimension higher than one. Therefore we remark that the quantile function is a relevant tool in statistics and
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probability, but its practical use is mostly confined to the univariate case where it is easily interpretable and
calculable. The bivariate (or multivariate) characterization has received some attention however, it is much less
common, due to a number of theoretical and practical reasons. In particular the main difficulty is that there
does not exist a natural ordering in n-dimensions, for n > 1. For this reason, in the last decade several attempts
have been made to provide a multidimensional generalization of the univariate quantile function. We refer to
Serfling [31] for a complete review on the topic. For example Massé and Theodorescu [23] defined multivariate
quantiles as halfplanes and Koltchinskii [21] provided a general treatment of multivariate quantiles as inversions
of mappings.

As a possible generalization of the univariate quantile function, Tibiletti [32], Fernández-Ponce and Suárez-
Lloréns [18] and Belzunce et al. [4] defined a multivariate quantile as a set of points which accumulate the
same probability for a fixed orthant. They called it level curves or quantile curves. In this sense de Haan and
Huang [14] model a risk-problem of flood in the bivariate setting using an estimator of level curves of bivariate
distribution function. In this paper we will follow this approach in order to propose a new risk measure which
generalizes the CTE in (1). To this end we need to estimate the level sets of a bivariate distribution function
F . This leads us into the general field of level sets estimation.

The problem of estimating level sets of an unknown function (for instance of a density function and more re-
cently a regression function) has received attention recently. In particular the estimation of density level sets has
been studied in Polonik [25], Tsybakov [33], Báıllo et al. [3], Báıllo [2], Cadre [7], Rigollet and Vert [27], Biau et

al. [5]. The estimation of regression level sets in a compact setting has been analyzed in Cavalier [9], Laloë [22].
An alternative approach, based on the geometric properties of the compact support sets, has been presented by
Hartigan [20], Cuevas and Fraiman [11], Cuevas and Rodŕıguez-Casal [13]. The problem of estimating general
level sets under compactness assumptions has been discussed by Cuevas et al. [12]. The asymptotic behavior of
minimum volume sets and of a generalized quantile process is analyzed by Polonik [26].

Considering the level sets of a bivariate distribution function, the commonly assumed property of compactness
for these sets is no more reasonable. Then, differing from the literature cited above, we need to work in a
non-compact setting and this requires special attention in the statement of our problem.

Our general approach will be the following: first, we provide a consistent estimator of the level set

L(c) = {F (x) ≥ c}, for c ∈ (0, 1).

Therefore we consider a plug-in approach (e.g. see Báıllo et al. [3]; Rigollet and Vert [27]; Cuevas et al. [12]),
that is, L(c) is estimated by

Ln(c) = {Fn(x) ≥ c}, for c ∈ (0, 1),

where Fn is a consistent estimator of F . The regularity properties of F and Fn as well as the consistency
properties of Fn will be specified in the statements of our theorems.

In order to provide a consistency results we define two proximity criteria between sets. A standard choice is the
volume of the symmetric difference. Another natural criterion is given by the Hausdorff distance that corre-
sponds to an intuitive notion of “physical proximity” between sets. Our consistency properties are stated with
respect to these two criteria under reasonable assumptions on F and Fn (Theorems 2.1 - 3.1). These results
are based on a slight modification of Proposition 3.1 in the PhD Thesis of Rodŕıguez-Casal [28] (Proposition 1.1).

We then introduce our new bivariate version of the Conditional Tail Expectation by conditioning the two-
dimensional random vector to be in the level set L(c). This new risk measure is based on the bivariate Value-
at-Risk proposed in Embrechts and Puccetti [17] and Nappo and Spizzichino [24] and it is different from the
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existing bivariate generalizations of the univariate Conditional Tail Expectation (e.g. see Cai and Li [8]). Indeed
we do not use any aggregate risk in the portfolio in order to analyze the bivariate risk’s issue. Our bivariate
version of the CTE deals with the simultaneous joint damages considering the dependence structure of data in
a bivariate specific risk’s area (L(c)). We propose an estimator for this new risk measure using plug-in approach
for level sets and provide a consistency result (Theorem 4.1).

The paper is organized as follows. We introduce some notation, tools and technical assumptions in Section 1.
Consistency and asymptotic properties of our estimator of L(c) are given in Sections 2 and 3. In Section 4
we introduce a new bivariate generalization of CTE in (1) and we provide a consistent estimator for this risk
measure. Illustrations with simulated and real data are presented in Section 5. Section 6 summarizes and briefly
mentions directions for future research. Finally, some auxiliary results and more technical proofs are postponed
to Section 7.

1. Notation and preliminaries

In this section we introduce some notation and tools which will be useful later.

Let N∗ = N \ {0}, R2
+
∗
= R2

+ \ (0, 0), F the set of continuous distribution functions R2
+ → [0, 1] and F ∈ F .

Given an i.i.d sample {Xi}ni=1 in R2
+ with distribution function F , we denote by Fn(·) = Fn(X1, X2, . . . , Xn, ·)

an estimator of F based on the finite sample (X1, X2, . . . , Xn). We restrict ourselves to R2
+ for convenience

but the following results are completely adaptable in R2. This choice is motivated essentially by our applica-
tion in risk theory proposed in Section 4, where random variables will be losses then defined in a positive support.

Define, for c ∈ (0, 1), the upper c-level set of F ∈ F and its plug-in estimator

L(c) = {x ∈ R2
+ : F (x) ≥ c}, Ln(c) = {x ∈ R2

+ : Fn(x) ≥ c},

and

{F = c} = {x ∈ R2
+ : F (x) = c}.

In addition, given T > 0, we set

L(c)T = {x ∈ [0, T ]2 : F (x) ≥ c}, Ln(c)
T = {x ∈ [0, T ]2 : Fn(x) ≥ c},

{F = c}T = {x ∈ [0, T ]2 : F (x) = c}.
Furthermore, for any A ⊂ R2

+ we denote by ∂A its boundary.

Note that {F = c} can be a portion of quadrant R2
+ instead of a set of Lebesgue measure null in R2

+ (that is
the presence of plateau at level c). In the following we will introduce suitable conditions in order to avoid the
presence of plateau in the graph of F .

In the metric space (R2
+, d), where d stands for the Euclidean distance, we denote by B(x, ρ) the closed ball

centered on x and with positive radius ρ. Let B(S, ρ) =
⋃

x∈S B(x, ρ), with S a closed set of R2
+. For r > 0

and ζ > 0, define

E = B({x ∈ R2
+ : | F (x)− c |≤ r}, ζ),

and, for a twice differentiable function F ,

m▽ = inf
x∈E

‖(∇F )x‖, MH = sup
x∈E

‖(HF )x‖,
3



where (∇F )x is the gradient vector of F evaluated at x and ‖(∇F )x‖ its Euclidean norm, (HF )x the Hessian
matrix evaluated in x and ‖(HF )x‖ its matrix norm induced by the Euclidean norm.

For sake of completeness, we recall that if A1 and A2 are compact sets in (R2
+, d), the Hausdorff distance between

A1 and A2 is defined by

dH(A1, A2) = inf{ρ > 0 : A1 ⊂ B(A2, ρ), A2 ⊂ B(A1, ρ)},

or equivalently by

dH(A1, A2) = max

{
sup
x∈A1

d(x,A2), sup
x∈A2

d(x,A1)

}
,

where d(x,A2) = infy∈A2
‖ x− y ‖.

The above expression is well-defined even when A1 and A2 are just closed (not necessarily compact) sets but
in this case the value dH(A1, A2) could be infinity. Then in our setting, in order to avoid these situations we
need a truncated version of Assumption T in Cuevas et al. [12] or Tsybakov [33]. More precisely we introduce
the following assumption.

H: There exist γ > 0 and A > 0 such that, if | t − c | ≤ γ then ∀ T > 0 such that {F = c}T 6= ∅ and
{F = t}T 6= ∅,

dH({F = c}T , {F = t}T ) ≤ A | t− c | .
Assumption H is satisfied under mild conditions. Proposition 1.1 below is a slight modification of Proposition
3.1 in the PhD Thesis of Rodŕıguez-Casal [28] in order to deal with non-compact sets.

Proposition 1.1. Let c ∈ (0, 1). Let F ∈ F be twice differentiable on R2∗
+ . Assume there exist r > 0, ζ > 0

such that m▽ > 0 and MH < ∞. Then F satisfies Assumption H, with A = 2
m▽ .

The proof is postponed to Section 7.

Remark 1. Under assumptions of Proposition 1.1, F is continuous and m▽ > 0, there is no plateau in the
graph of F for each level t such that | t− c | ≤ r. Furthermore from Theorem 1 in Rossi [30] we know that
each half-line in R2

+, parallel to one of the axis, meets {F = t} in a connected set of points. As a consequence
we obtain that {F = t} is a curve in the quadrant R2

+. In particular, from m▽ > 0, for a fixed x we have
to consider all corresponding values y in a specific interval (we refer the interested reader to Remark 2.1 in
Rossi [30] or Remark 3.1 in Rossi [29]). In this case the plane curve {F = t} is not the graph of a function
but it has the following monotonic property. We consider (x, y), (x′, y′) ∈ {F = t}, if x < x′ then y ≥ y′,
if y < y′ then x ≥ x′. In particular if we suppose that each component of (∇F )x is greater than zero in E
then {F = t} is a monotone decreasing curve in R2

+. Finally under assumptions of Proposition 1.1 we obtain

∂L(c)T = {F = c}T = {F = c} ∩ [0, T ]2 (we refer for details to Theorem 3.2 in Rodŕıguez-Casal [28]).

2. Consistency in terms of the Hausdorff distance

In this section we study the consistency properties of Ln(c)
T with respect to the Hausdorff distance between

∂Ln(c)
T and ∂L(c)T . The Hausdorff distance corresponds to an intuitive notion of “physical proximity” be-

tween sets (see Figure 1(left) for a graphical illustration). However the metric dH is not always completely
successful in capturing the shape properties: two sets can be very close in dH and still have quite different
shapes. For instance in Figure 1(right) we have X, the outside ball, and Y the set of balls inside X. The
distance dH(X,Y ) is small even if X and Y are quite different in many important aspects. In order to avoid
these situations, following Cuevas and Rodŕıguez-Casal [13] and Cuevas et al. [12], a way to reinforce the notion
of visual proximity between two sets provided by dH is to impose the proximity of the respective boundaries.

4



Figure 1. (left) Hausdorff distance between sets; (right) particular case where dH(X,Y ) does
not capture the shape properties of X and Y .

We will follow this approach in Theorem 2.1 below.

From now on we note, for n ∈ N∗,

‖F − Fn‖∞ = sup
x∈R2

+

| F (x)− Fn(x) |,

and for T > 0

‖F − Fn‖T∞ = sup
x∈ [0,T ]2

| F (x)− Fn(x) | .

The following result can be considered an adapted version of Theorem 2 in Cuevas et al. [12].

Theorem 2.1. Let c ∈ (0, 1). Let F ∈ F be twice differentiable on R2∗
+ . Assume that there exist r > 0, ζ > 0

such that m▽ > 0 and MH < ∞. Let T1 > 0 such that for all t : | t − c | ≤ r, ∂L(t)T1 6= ∅. Let (Tn)n∈N∗ be

an increasing sequence of positive values. Assume that, for each n and for almost all samples of size n, Fn is a

continuous function and that

‖F − Fn‖∞ → 0, a.s. (2)

Then

dH(∂L(c)Tn , ∂Ln(c)
Tn) = O(‖F − Fn‖∞), a.s.

The proof is postponed to Section 7. Under assumptions of Theorem 2.1, dH(∂L(c)Tn , ∂Ln(c)
Tn) converges to

zero and the quality of our plug-in estimator is obviously related to the quality of the estimator Fn.

Remark 2. Theorem 2.1 provides an asymptotic result for a fixed level c. In particular following the proof of
Theorem 2.1 (postponed to Section 7) we remark that, for n large enough,

dH(∂L(c)Tn , ∂Ln(c)
Tn) ≤ 6A ‖F − Fn‖Tn

∞ , a.s.,

where A = 2
m▽ . Note that in the case c is close to one the constant A could be large. In this case, we will need

a large number of data to get a reasonable estimation.

Note that the empirical distribution estimator does not satisfy continuity assumption imposed in Theorem 2.1.
However, in order to overcome this problem it can be considered a smooth version of this estimator (e.g. see
Chaubey and Sen [10]), which satisfies convergence in (2). However we remark that the continuity assumption,
imposed in Theorem 2.1, will not be necessary in the following results.
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3. L1 consistency

The previous section was devoted to the consistency of Ln in terms of the Hausdorff distance. We consider now
another consistency criterion: the consistency of the volume (in the Lebesgue measure sense) of the symmetric
difference between L(c)Tn and Ln(c)

Tn . This means that we define the distance between two subsets A1 and
A2 of R+

2 by

dλ(A1, A2) = λ(A1 △A2),

where λ stands for the Lebesgue measure on R2 and △ for the symmetric difference.

Let us introduce the following assumption:

A1 There exist positive increasing sequences (vn)n∈N∗ and (Tn)n∈N∗ such that

vn

∫

[0,Tn]2
| F − Fn |p λ(dx)

P→
n→∞

0,

for some 1 ≤ p < ∞.

We now establish our consistency result in terms of the volume of the symmetric difference. We can interpret the
following theorem as a generalization of Theorem 3 in Cuevas et al. [12] (Section 3) in the case of non-compact
level sets. In addition, we provide also a convergence rate for the symmetric difference between L(c)Tn and
Ln(c)

Tn .

Theorem 3.1. Let c ∈ (0, 1). Let F ∈ F be twice differentiable on R2∗
+ . Assume that there exist r > 0, ζ > 0

such that m▽ > 0 and MH < ∞. Assume that for each n, with probability one, Fn is measurable. Let (vn)n∈N∗

and (Tn)n∈N∗ positive increasing sequences such that Assumption A1 is satisfied and that for all t : | t−c | ≤ r,

∂L(t)T1 6= ∅. Then it holds that

pn dλ(L(c)
Tn , Ln(c)

Tn)
P→

n→∞
0,

with pn an increasing positive sequence such that pn = o

(
v

1
p+1
n /T

p

p+1
n

)
.

The proof is postponed to Section 7. Theorem 3.1 provides a convergence rate, which is closely related to the
choice of the sequence Tn. A sequence Tn whose divergence rate is large implies a convergence rate pn quite
slow. Note that, as in Theorem 3 in Cuevas et al. [12], Theorem 3.1 above does not require any continuity
assumption on Fn.

Remark 3. Assumptions on gradient vector and Hessian matrix of F , in Theorems 2.1 and 3.1, are satisfied for
a quite large class of classical bivariate distribution functions; for instance independent copula and exponential
marginals, Farlie-Gumbel-Morgenstern (FGM), Clayton or Survival Clayton copulas and Burr marginals.

We now suppose that there exists a positive increasing sequences (vn)n∈N∗ such that vn ‖F − Fn‖∞ P→
n→∞

0.

Then

∀ p ≥ 1, wn

∫

[0,Tn]2
| F − Fn |p λ(dx)

P→
n→∞

0, with wn =
vpn
T 2
n

.

In this case, from Theorem 3.1 we get

pn = o(w
1

p+1
n /T

p

p+1
n ) = o(v

p

p+1
n /T

p+2
p+1
n ). (3)

From these considerations we can introduce the following remark.
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Remark 4. Let Fn the bivariate empirical distribution function. Then it holds that vn ‖F−Fn‖∞ P→
n→∞

0, with

vn = o(
√
n). From Theorem 3.1 and using the convergence rate in (3) with p = 2, we obtain pn = o(n

1
3 /T

4
3
n ).

For instance, for F (x, y) = (1 − e−x) (1 − e−2 y) and using the bivariate empirical distribution function Fn we

obtain pn = o(n
1
3 / ln(n)

4
3 ), with p = 2 and Tn = ln(n).

4. Application in bivariate risk theory

From the usual definition in the univariate setting we know that the quantile function QX provides a point
which accumulates a probability α to the left tail and 1−α to the right tail. More precisely, given an univariate
continuous and strictly monotonic loss distribution function FX ,

QX(α) = F−1
X (α), ∀α ∈ (0, 1). (4)

The notion of univariate quantile function QX is used in risk theory to define an univariate measure of risk: the
Value-at-Risk (VaR). This measure is defined as

VaRα(X) = QX(α), ∀α ∈ (0, 1). (5)

As presented in the introduction of this paper, following the general ideas of Embrechts and Puccetti [17] and
Nappo and Spizzichino [24] an intuitive generalization of the VaR measure in the case of a bidimensional loss
distribution function F is given by its α-quantile curves. More precisely:

Definition 4.1. For α ∈ (0, 1) and F ∈ F , the bidimensional Value-at-Risk at probability level α is the boundary

of its α-level set, i.e. VaRα(F ) = ∂L(α).

As pointed out in Tibiletti [32], imposing α = 1
2 in Definition 4.1, we get a natural extension of the bidimensional

median. For details about a parametric formulation of the quantile curve ∂L(α) see Belzunce et al. [4]. For
details about its properties see for instance Fernández-Ponce and Suárez-Lloréns [18] (and references therein)
and Nappo and Spizzichino [24].

Then, using a bivariate estimator Fn as in Sections 2 - 3, we can define our plug-in estimator of the bivariate
Value-at-Risk by

VaRα(Fn) = ∂Ln(α), for α ∈ (0, 1).

Moreover, under assumptions of Theorem 2.1, we obtain a consistency result, with respect to the Hausdorff
distance, for the VaRα(Fn) on the quadrant R2

+ i.e.

dH(VaRα(F )Tn ,VaRα(Fn)
Tn) = O(‖F − Fn‖∞), a.s.

As in the univariate case, the two-dimensional VaR at a predetermined level α does not give any information
about thickness of the upper tail of the distribution function. This is a considerable shortcoming of VaR measure
because in practice we are not only concerned with frequency of the default but also with the severity of loss in
case of default. In other words we are interested to analyze the behavior of X and Y not only on the boundary
but also in the whole α-level set.

In dimension one, in order to overcome this problem, another risk measure has recently received growing
attention in insurance and finance literature: Conditional Tail Expectation (CTE). Following Artzner et al. [1]
and Dedu and Ciumara [15], for a continuous loss distribution function FX the CTE at level α is defined by

CTEα(X) = E[X |X ≥ VaRα(X) ],
7



where VaRα(X) is the univariate VaR in (5). For a comprehensive treatment and for references to the extensive
literature on VaRα(X) and CTEα(X) one may refer to Denuit et al. [16].

Several bivariate generalizations of the classical univariate CTE have been proposed; mainly using as condition-
ing events the total risk or some univariate aggregate extreme risk in the portfolio (for instance the sum, the
max or the min between two risks):

E[ (X,Y ) |X + Y > QX+Y (α) ], E[ (X,Y ) | min{X,Y } > Qmin{X,Y }(α) ]

and E[ (X,Y ) | max{X,Y } > Qmax{X,Y }(α) ].

The interested reader is referred to Cai and Li [8] for further details. Using the same approach of Definition
4.1, we are interested to preserve the complete information about dependence structure between X and Y and
the bi-dimensional aspect of our problem. To this end, starting from these general considerations, we propose
to study a new bivariate version of the Conditional Tail Expectation (Definition 4.2 below).

Let us first introduce the following assumption:

A2: X and Y are positive random variables fulfilling E(X2) < ∞ and E(Y 2) < ∞. The random vector
(X,Y ) has a λ-density function f such that

∫
f1+rdλ < ∞, for some r > 0.

Definition 4.2. Consider a random vector (X,Y ) satisfying Assumption A2, with associate distribution func-

tion F ∈ F . For α ∈ (0, 1), we define

(1) the bivariate α-Conditional Tail Expectation

CTEα(X,Y ) = E[(X,Y )|(X,Y ) ∈ L(α)] =

(
E[X | (X,Y ) ∈ L(α) ]

E[Y | (X,Y ) ∈ L(α) ]

)
.

(2) the estimated bivariate α-Conditional Tail Expectation

ĈTEα(X,Y ) =




∑n
i=1 Xi1{(Xi,Yi)∈Ln(α)}∑n
i=1 1{(Xi,Yi)∈Ln(α)}∑n

i=1 Yi1{(Xi,Yi)∈Ln(α)}∑n
i=1 1{(Xi,Yi)∈Ln(α)}


 . (6)

Note that this bivariate Conditional Tail Expectation is a natural extension of the univariate one. Moreover, if
X and Y are identically distributed with a symmetric copula then E[X | (X,Y ) ∈ L(α) ] = E[Y | (X,Y ) ∈ L(α) ].

Contrarily to the generalizations of the univariate CTE above, our CTEα(X,Y ) does not use an aggregate vari-
able (sum, min, max . . .) in order to analyze the bivariate risk’s issue. By contrast, using a geometric approach,
CTEα(X,Y ) rather deals with the simultaneous joint damages considering the bivariate dependence structure
of data in a specific risk’s area (L(α)).

Let α ∈ (0, 1) and F ∈ F . We introduce truncated versions of the theoretical and estimated CTEα:

CTET
α(X,Y ) = E[(X,Y )|(X,Y ) ∈ L(α)T ],

8



ĈTE
T

α(X,Y ) =




∑n
i=1 Xi1{(Xi,Yi)∈Ln(α)T }∑n
i=1 1{(Xi,Yi)∈Ln(α)T }∑n

i=1 Yi1{(Xi,Yi)∈Ln(α)T }∑n
i=1 1{(Xi,Yi)∈Ln(α)T }


 ,

where L(α)T and Ln(α)
T are the truncated versions of theoretical and estimated upper α-level set defined in

Section 1.

Theorem 4.1. Under Assumption A2, Assumptions of Theorem 3.1 and with the notation of Theorem 3.1, it

holds that

βn

∣∣CTETn

α (X,Y )− ĈTE
Tn

α (X,Y )
∣∣ P→
n→∞

0, (7)

where βn = min{ p
r

2(1+r)
n , an }, with r > 0 satisfying Assumption A2 and an = o (

√
n).

The convergence in (7) must be interpreted as a componentwise convergence. In the case of a bounded density
function f(X,Y ) we obtain βn = min{√pn, an }.

Using Theorem 4.1 and Remark 4, we obtain the following result in the case of the bivariate empirical distribution
function.

Corollary 4.1. Let Fn the bivariate empirical distribution function. Under Assumptions Theorem 4.1 and with

the notation of Theorem 4.1, it holds that

βn

∣∣CTETn

α (X,Y )− ĈTE
Tn

α (X,Y )
∣∣ P→
n→∞

0,

where βn = o

(
n

r
6 (1+r) /T

2 r
3 (1+r)
n

)
, with r > 0 satisfying Assumption A2.

In the case of a bounded density function f(X,Y ), βn = o
(
n

1
6 /T

2
3
n

)
.

Remark 5. Starting from Corollary 4.1, it could be interesting to consider the convergence∣∣CTEα(X,Y )− ĈTE
Tn

α (X,Y )
∣∣. We remark that in this case the speed of convergence will also depend on the

convergence rate to zero of
∣∣ CTEα(X,Y )− CTETn

α (X,Y )
∣∣ , then, in particular of P[(X,Y ) ∈ L(α) \ L(α)Tn ]

for n → ∞. More precisely
∣∣CTEα(X,Y )− CTETn

α (X,Y )
∣∣ decays to zero at least with a convergence rate

(P[X ≥ Tn or Y ≥ Tn])
−1. We now provide an illustration (in a simple case) on how to choose Tn in order to

consider the convergence
∣∣CTEα(X,Y )− ĈTE

Tn

α (X,Y )
∣∣ . Let F (x, y) = (1 − e−x)(1 − e−y), i.e. independent

and exponentially distributed marginals with parameter 1, with bounded density function in R2
+. Let Fn the

bivariate empirical distribution function. In this case all assumptions of Corollary 4.1 are satisfied. Then we

obtain that
∣∣CTEα(X,Y )− ĈTE

Tn

α (X,Y )
∣∣ decays to zero at least with a convergence rate βn = o(n

1
6 / ln(n)

2
3 ),

with a choice of sequence Tn = ln(n). We remark that (P[X ≥ Tn or Y ≥ Tn])
−1 is increasing in Tn, whereas the

speed of convergence is decreasing in Tn. This kind of compromise provides an illustration on how to choose Tn,
apart from satisfying the assumptions of consistency results in Section 3 (see Section 5.2.1 for several numerical
illustrations of this aspect).
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5. Illustrations

5.1. Estimation of the level sets

In this section we confront our estimator of level sets of the distribution function with various simulated samples.
The plug-in estimation of level sets is constructed using the empirical estimator Fn. We consider two distribu-
tion functions which satisfy assumptions of Theorem 3.1: independent copula with exponential marginals and
Survival Clayton copula with Burr marginals.

Following Remark 4 we consider Tn = ln(n) and we obtain pn = o(n
1
3 / ln(n)

4
3 ). We also take Tn = n0.45. This

second sequence provides an illustration for the case of Tn too large (see Tables 1(b)-2(b) and 4(b)-5(b)).

We take a random grid of 10000 points in [0, Tn]
2 and a distribution with independent and exponentially

distributed marginals with parameter 1 and 2 respectively. We provide a Monte Carlo approximation for
λ(L(α)Tn △ Ln(α)

Tn) (averaged on 100 iterations), for different values of α and n. The results are gathered in
Table 1.

(a) Tn = ln(n)

α n= 500 n= 1000 n= 2000

0.10 0.099 0.089 0.078

0.24 0.226 0.176 0.075

0.38 0.248 0.183 0.143

0.52 0.324 0.223 0.217

0.66 0.429 0.259 0.232

0.80 0.613 0.371 0.332

(b) Tn = n
0.45

α n= 500 n= 1000 n= 2000

0.10 0.331 0.326 0.223

0.24 0.519 0.391 0.249

0.38 0.591 0.469 0.396

0.52 1.057 0.906 0.881

0.66 1.222 0.989 0.904

0.80 1.541 1.367 1.334

Table 1. Distribution with independent and exponentially distributed marginals with param-
eter 1 and 2 respectively. Approximated λ(L(α)Tn △ Ln(α)

Tn).

In order to illustrate the influence of the choice of Tn, in Table 2 we show pn λ(L(α)
Tn △ Ln(α)

Tn), with

pn = o(n
1
3 / ln(n)

4
3 ) in the case Tn = ln(n) (Table 2(a)) and Tn = n0.45 (Table 2(b)). Results in Table 2(a) set

out how pn = o(n
1
3 / ln(n)

4
3 ) is at least the convergence rate of λ(L(α)Tn △ Ln(α)

Tn) in this particular case.
This illustrates not only the consistency property but also the speed of convergence of our plug-in estimator.
As expected in Table 2(b) we see that taking Tn too large, we can not expect to get a good approximation of
λ(L(α)Tn △ Ln(α)

Tn).

(a) Tn = ln(n)

α n= 500 n= 1000 n= 2000

0.10 0.069 0.068 0.065

0.24 0.156 0.134 0.063

0.38 0.172 0.139 0.121

0.52 0.225 0.169 0.183

0.66 0.298 0.199 0.195

0.80 0.426 0.282 0.279

(b) Tn = n
0.45

α n= 500 n= 1000 n= 2000

0.10 0.229 0.248 0.188

0.24 0.361 0.298 0.209

0.38 0.411 0.357 0.339

0.52 0.734 0.689 0.743

0.66 0.849 0.752 0.762

0.80 1.071 1.039 1.124

Table 2. Distribution with independent and exponentially distributed marginals with param-
eter 1 and 2 respectively. Approximated pn λ(L(α)

Tn △ Ln(α)
Tn), with pn = o(n

1
3 / ln(n)

4
3 ).
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In Tables 3(a) and 3(b) we calculate the theoretical λ(L(α)Tn), for Tn = ln(n) and Tn = n0.45 respectively, and
for different values of n and α. These quantities provide an illustration of the truncation of level sets L(α), with
respect to Tn and α.

(a) Tn = ln(n)

α n= 500 n= 1000 n= 2000

0.10 37.472 46.459 56.405

0.24 35.777 44.588 54.358

0.38 33.837 42.436 51.995

0.52 31.505 39.837 49.129

0.66 28.513 36.487 45.421

0.80 24.201 31.621 40.003

(b) Tn = n
0.45

α n= 500 n= 1000 n= 2000

0.10 142.205 248.516 433.872

0.24 139.039 244.378 428.449

0.38 135.328 239.495 422.021

0.52 130.771 233.464 414.045

0.66 124.779 225.488 403.451

0.80 115.851 213.505 387.436

Table 3. Theoretical λ(L(α)Tn), for different values of n and α. Distribution with independent
and exponentially distributed marginals with parameter 1 and 2 respectively.

Table 4 provides a Monte Carlo approximation for λ(L(α)Tn △ Ln(α)
Tn) (averaged on 100 iterations), in the

case of a Survival Clayton copula with parameter 1 and Burr(2, 1) marginals. In Table 5 we show pn λ(L(α)
Tn △

Ln(α)
Tn), with pn = o(n

1
3 / ln(n)

4
3 ) in the case Tn = ln(n) (Table 5(a)) and Tn = n0.45 (Table 5(b)). We obtain

results that are analogous to those Table 2.

(a) Tn = ln(n)

α n= 500 n= 1000 n= 2000

0.10 0.208 0.171 0.126

0.24 0.252 0.241 0.149

0.38 0.339 0.288 0.132

0.52 0.349 0.335 0.245

0.66 0.499 0.364 0.353

0.80 0.771 0.644 0.605

(b) Tn = n
0.45

α n= 500 n= 1000 n= 2000

0.10 0.697 0.633 0.536

0.24 0.893 0.872 0.809

0.38 0.971 0.911 0.879

0.52 1.001 0.982 1.229

0.66 1.569 1.522 1.413

0.80 2.377 2.269 2.175

Table 4. Distribution with Survival Clayton copula with parameter 1 and Burr(2, 1)
marginals. Approximated λ(L(α)Tn △ Ln(α)

Tn).

(a) Tn = ln(n)

α n= 500 n= 1000 n= 2000

0.10 0.144 0.129 0.106

0.24 0.175 0.183 0.126

0.38 0.235 0.219 0.111

0.52 0.242 0.254 0.206

0.66 0.347 0.277 0.297

0.80 0.535 0.489 0.501

(b) Tn = n
0.45

α n= 500 n= 1000 n= 2000

0.10 0.484 0.481 0.452

0.24 0.620 0.663 0.682

0.38 0.674 0.692 0.741

0.52 0.695 0.746 1.036

0.66 1.089 1.157 1.191

0.80 1.651 1.725 1.834

Table 5. Distribution with Survival Clayton copula with parameter 1 and Burr(2, 1)

marginals. Approximated pn λ(L(α)
Tn △ Ln(α)

Tn), with pn = o(n
1
3 / ln(n)

4
3 ).
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As expected, the greater n is, the better the estimations are (see Tables 1(a) and 4(a)). Moreover we note that
for big values of α we need more data to get a good estimation of the level sets. This may come from the
fact that when α grows the gradient of the distribution function decreases to zero and the constant A grows
significantly (see proof of Theorem 3.1 in Section 7).

Remark 6. As remarked in Section 3 the choice of the sequence Tn is essentially a compromise: if Tn is large
we have a quite slow convergence rate pn for λ(L(α)Tn △ Ln(α)

Tn) and if Tn is quite small we obtain a faster
convergence rate. However choosing Tn too small we substantially truncate our level sets. This aspect can be
problematic in the case c is close to one. Finally the theoretical optimal criterion for the choice of sequence Tn

in Theorem 3.1 is an open interesting problem that we leave for a future work.

5.2. Estimation of CTEα(X,Y )

5.2.1. Simulated data

In order to evaluate the performance of our estimator we present here some simulated cases of estimation of
CTEα(X,Y ), for different values of level α. To compare the estimated results with the theoretical ones we con-
sider cases for which we can calculate (with Maple) the explicit value of the theoretical CTEα(X,Y ). However
our estimator can be applied to much more general cases. By being able to get a good estimator for the level
sets, we can expect a good estimator for CTEα(X,Y ).

In the following we compare ĈTE
Tn

α (X,Y ) with the theoretical CTEα(X,Y ), for different distributions: Inde-
pendent copula with exponentially distributed marginals; Clayton copula with parameter 1, with exponential
and Burr(4, 1) univariate marginals. The plug-in estimation of level sets is constructed using the empirical
estimator Fn of the bivariate distribution function, with n = 1000.

In the following we denote ĈTEα

Tn

(X,Y ) =
(
ĈTEα

Tn,1
(X,Y ), ĈTEα

Tn,2
(X,Y )

)
the mean (coordinate by co-

ordinate) of ĈTE
Tn

α (X,Y ) on 100 simulations. We denote σ̂ = (σ̂1, σ̂2) the empirical standard deviation
(coordinate by coordinate) with

σ̂1 =

√
1
99

∑100
j=1

(
ĈTEα

Tn,1
(X,Y )j − ĈTEα

Tn,1
(X,Y )

)2

relatives to the first coordinate (resp. σ̂2 relatives to the second one).

We denote RMSE= (RMSE1,RMSE2) the relative mean square error (coordinate by coordinate) with

RMSE1 =

√√√√ 1
100

∑100
j=1

(
̂CTE

Tn,1

α (X,Y )j−CTE
Tn,1

α (X,Y )

CTETn,1

α (X,Y )

)2

relatives to the first coordinate of CTETn

α (X,Y ) (resp. RMSE2 relatives to the second one).

For the Independent copula with exponentially distributed marginals, from Corollary 4.1 and Remark 5, we take
Tn = ln(n) (see Tables 6 and 8). This choice provides a convergence rate βn = o(n

1
6 / ln(n)

2
3 ). Furthermore, as

in Section 5.1, we consider the case with Tn = n0.45. This second sequence provides an illustration for the case
of Tn too large (see Tables 7 and 9). Following the same approach of Remark 5, in the case of Clayton copula

with parameter 1, with exponential and Burr(4, 1) univariate marginals we have βn = o(n
1
6 /(n0.2)

2
3 ), with a

sequence Tn = n0.2 (see Table 10). Also in this case, we show the behavior of our estimator for Tn = n0.45 (see
Table 11).
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α CTEα(X,Y ) ĈTEα

Tn

(X,Y ) σ̂ RMSE

0.10 (0.627, 0.627) (0.585, 0.637) (0.022, 0.021) (0.035, 0.039)

0.24 (0.761, 0.761) (0.766, 0.759) (0.031, 0.031) (0.041, 0.046)

0.38 (0.896, 0.896) (0.864, 0.917) (0.036, 0.037) (0.053, 0.049)

0.52 (1.051, 1.051) (1.027, 1.071) (0.051, 0.053) (0.055, 0.052)

0.66 (1.246, 1.246) (1.252, 1.238) (0.075, 0.067) (0.063, 0.065)

0.80 (1.531, 1.531) (1.497, 1.549) (0.123, 0.117) (0.083, 0.077)

Table 6. (X,Y ) with independent and exponentially distributed components with parameter
2; Tn = ln(n).

α CTEα(X,Y ) ĈTEα

Tn

(X,Y ) σ̂ RMSE

0.10 (0.627, 0.627) (0.603, 0.656) (0.031, 0.031) (0.062, 0.068)

0.24 (0.761, 0.761) (0.774, 0.731) (0.061, 0.071) (0.082, 0.130)

0.38 (0.896, 0.896) (0.927, 0.871) (0.072, 0.076) (0.087, 0.119)

0.52 (1.051, 1.051) (1.086, 1.128) (0.094, 0.082) (0.095, 0.107)

0.66 (1.246, 1.246) (1.281, 1.322) (0.127, 0.101) (0.102, 0.101)

0.80 (1.531, 1.531) (1.545, 1.611) (0.157, 0.161) (0.105, 0.117)

Table 7. (X,Y ) with independent and exponentially distributed components with parameter
2; Tn = n0.45.

α CTEα(X,Y ) ĈTEα

Tn

(X,Y ) σ̂ RMSE

0.10 (1.255, 0.627) (1.222, 0.638) (0.044, 0.022) (0.043, 0.039)

0.24 (1.521, 0.761) (1.488, 0.811) (0.069, 0.023) (0.051, 0.042)

0.38 (1.792, 0.896) (1.797, 0.911) (0.075, 0.038) (0.044, 0.046)

0.52 (2.102, 1.051) (2.082, 1.047) (0.104, 0.052) (0.052, 0.052)

0.66 (2.492, 1.246) (2.461, 1.255) (0.139, 0.071) (0.057, 0.056)

0.80 (3.061, 1.531) (3.011, 1.544) (0.251, 0.125) (0.084, 0.082)

Table 8. (X,Y ) with independent and exponentially distributed components with parameter
1 and 2 respectively; Tn = ln(n).
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α CTEα(X,Y ) ĈTEα

Tn

(X,Y ) σ̂ RMSE

0.10 (1.255, 0.627) (1.253, 0.624) (0.061, 0.043) (0.051, 0.054)

0.24 (1.521, 0.761) (1.514, 0.803) (0.074, 0.049) (0.048, 0.075)

0.38 (1.792, 0.896) (1.793, 0.948) (0.096, 0.055) (0.053, 0.084)

0.52 (2.102, 1.051) (2.087, 1.111) (0.118, 0.076) (0.056, 0.092)

0.66 (2.492, 1.246) (2.497, 1.311) (0.169, 0.108) (0.068, 0.101)

0.80 (3.061, 1.531) (3.056, 1.602) (0.313, 0.153) (0.102, 0.111)

Table 9. (X,Y ) with independent and exponentially distributed components with parameter
1 and 2 respectively; Tn = n0.45.

α CTEα(X,Y ) ĈTEα

Tn

(X,Y ) σ̂ RMSE

0.10 (1.188, 1.229) (1.049, 1.192) (0.032, 0.021) (0.019, 0.033)

0.24 (1.448, 1.366) (1.283, 1.379) (0.053, 0.224) (0.019, 0.063)

0.38 (1.727, 1.505) (1.525, 1.471) (0.046, 0.031) (0.019, 0.031)

0.52 (2.049, 1.666) (1.803, 1.625) (0.058, 0.041) (0.023, 0.034)

0.66 (2.454, 1.875) (2.129, 1.823) (0.071, 0.054) (0.035, 0.039)

0.80 (3.039, 2.202) (2.591, 2.144) (0.111, 0.105) (0.055, 0.054)

Table 10. (X,Y ) with Clayton copula with parameter 1, FX exponential distribution with
parameter 1, FY Burr(4, 1) distribution; Tn = n0.2.

α CTEα(X,Y ) ĈTEα

Tn

(X,Y ) σ̂ RMSE

0.10 (1.188, 1.229) (1.189, 1.238) (0.061, 0.035) (0.039, 0.029)

0.24 (1.448, 1.366) (1.462, 1.365) (0.065, 0.037) (0.046, 0.031)

0.38 (1.727, 1.505) (1.751, 1.536) (0.082, 0.046) (0.049, 0.037)

0.52 (2.049, 1.666) (2.063, 1.713) (0.091, 0.061) (0.051, 0.045)

0.66 (2.454, 1.875) (2.457, 1.951) (0.117, 0.104) (0.057, 0.068)

0.80 (3.039, 2.202) (3.037, 2.322) (0.192, 0.165) (0.063, 0.108)

Table 11. (X,Y ) with Clayton copula with parameter 1, FX exponential distribution with
parameter 1, FY Burr(4, 1) distribution; Tn = n0.45.

Following we show that for high levels (here α = 0.9), one needs to use large samples to get reasonable esti-
mates of CTEα. We consider for the purpose (X, Y ) independent and exponentially distributed with respective
parameters 1 and 2. The theoretical value is CTE0.9(X,Y ) = (3.78, 1.89). We take Tn = ln(n) (see Table 12).
In this case we need between 2000 and 2500 data to get the same performances as for lower level (see Table 8
above). Furthermore we consider the case Tn = n0.45 (see Table 13). In this case we need between 2500 and
5000 data to get the same performances as for lower level (see Table 9 above).
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n 500 1000 1500 2000 2500 5000

σ̂ (0.614, 0.359) (0.444, 0.308) (0.431, 0.295) (0.377, 0.168) (0.241, 0.123) (0.216, 0.121)

RMSE (0.168, 0.189) (0.123, 0.163) (0.115, 0.161) (0.099, 0.089) (0.077, 0.079) (0.063, 0.057)

Table 12. Evolution of σ̂ and RMSE in terms of sample size n for α = 0.9; (X,Y ) independent
and exponentially distributed components with parameter 1 and 2 respectively. Tn = ln(n).

n 500 1000 1500 2000 2500 5000

σ̂ (0.919, 0.419) (0.568, 0.319) (0.511, 0.294) (0.382, 0.239) (0.348, 0.223) (0.307, 0.151)

RMSE (0.242, 0.221) (0.151, 0.172) (0.133, 0.165) (0.101, 0.144) (0.093, 0.129) (0.092, 0.108)

Table 13. Evolution of σ̂ and RMSE in terms of sample size n for α = 0.9; (X,Y ) independent
and exponentially distributed components with parameter 1 and 2 respectively. Tn = n0.45.

The bad properties of the estimate for sample sizes less than 2000 (in the case of Tn = ln(n)) can be explained
by the fact that for high levels, the constant A is large (see proof of Theorem 3.1 in Section 7), but also by the
fact that for large values of α the empirical estimate Fn of F may not be the most appropriate.

5.2.2. Real data

We consider here the estimation of CTEα in a real case: Loss-ALAE data in the log scale (for details see Frees
and Valdez [19]). Each claim consists of an indemnity payment (the loss, X) and an allocated loss adjustment
expense (ALAE, Y ). Examples of ALAE are the fees paid to outside attorneys, experts, and investigators used
to defend claims.

The data size is n = 1500. Let Tn = n0.4. Again our estimator is constructed using the empirical estimator
Fn. Results about the estimation of CTETn

α are gathered in Table 14. In Figure 2 we represent data, estimated
level sets and estimated bivariate Conditional Tail Expectation for several values of α.

α 0.10 0.24 0.38

ĈTE
Tn

α (9.937, 9.252) (10.361, 9.566) (10.731, 9.728)

α 0.52 0.66 0.80

ĈTE
Tn

α (11.096, 10.011) (11.518, 10.315) (12.057, 10.758)

Table 14. ĈTE
Tn

α for Loss-ALAE data in log scale, with different values of level α.

In this real setting the estimation of CTEα can be used in order to quantify the mean of the Loss (resp. ALAE)
in the log scale conditionally to the fact that Loss and ALAE data belong jointly to the specific risk’s area L(α).
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Figure 2. Loss-ALAE data in log scale: boundary of estimated level sets (line) and ĈTE
Tn

α

(star) for different values of α.

6. Conclusion

In this paper we have provided convergence results for the plug-in estimator of the level sets of an unknown
distribution function on R2

+ in terms of Hausdorff distance and volume of the symmetric difference. In this
setting we have proposed and estimated a new bivariate risk measure: CTEα(X,Y ). A future work comparing
our bivariate Conditional Tail Expectation with existing bivariate generalizations of the CTE in terms of classical
properties (monotonicity, translation invariance, homogeneity, . . .), dependence structure, behavior with respect
to different risk scenarios, is in preparation.
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7. Proofs

Proof of Proposition 1.1

Take T > 0 such that for all t : | t − c | ≤ r, {F = t}T 6= ∅, (from assumptions of Proposition 1.1 we know
that such an T there exists).

Let x ∈ {z ∈ [0, T ]2 : | F (z)− c |≤ r}. Define for λ ∈ R

yλ ≡ yλ,x = x+ λ
(∇F )x

‖(∇F )x‖
,

so ‖yλ − x‖ =| λ |. From the differentiability properties of F and using Taylor’s formula we have, for | λ |< ζ

F (yλ) = F (x) + (∇F )Tx (yλ − x) +
1

2
(yλ − x)T (HF )x(yλ − x),

with x a point on the segment between x and yλ. So

F (yλ) = F (x) + λ‖(∇F )x‖+
λ
2

2‖(∇F )x‖2
(∇F )Tx (HF )x(∇F )x.

By the Cauchy Schwarz Inequality we obtain

F (yλ) ≥ F (x) + λ‖(∇F )x‖ −
λ
2

2‖(∇F )x‖
‖(HF )x(∇F )x‖

and

F (yλ) ≤ F (x) + λ‖(∇F )x‖+
λ
2

2‖(∇F )x‖
‖(HF )x(∇F )x‖.

Since ‖(HF )x(∇F )x‖ ≤ ‖(HF )x‖‖(∇F )x‖, we have

F (x) + λ‖(∇F )x‖ −
λ
2

2
‖(HF )x‖ ≤ F (yλ) ≤ F (x) + λ‖(∇F )x‖+

λ
2

2
‖(HF )x‖.

Since x ∈ E and MH < ∞ we obtain

F (x) + λ‖(∇F )x‖ −
λ
2

2
MH ≤ F (yλ) ≤ F (x) + λ‖(∇F )x‖+

λ
2

2
MH . (8)

For 0 < λ < ζ, we have from the left side of (8)

F (yλ) ≥ F (x) + λ‖(∇F )x‖ −
λ
2

2
MH ≥ F (x) + λm▽ − λ

2

2
MH .

We assume now that MH > 0 (the case MH = 0 is trivial).

For x ∈ {z ∈ [0, T ]2 : | F (z)− c |≤ r} and 0 < λ < ζ ∧ m▽

MH
we have then

F (yλ) ≥ F (x) +
λ

2
m▽, (9)
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Similarly using the right side of (8) we obtain for 0 < λ < ζ ∧ m▽

MH
and x ∈ {z ∈ [0, T ]2 : | F (z)− c |≤ r},

F (y−λ) ≤ F (x)− λ

2
m▽. (10)

Define

γ =

(
m▽

4

(
ζ ∧ m▽

MH

))
∧ r > 0.

Suppose that t = c+ε, 0 < ε ≤ γ. Let x ∈ [0, T ]2 such that F (x) = t = c+ε then x ∈ {z ∈ [0, T ]2 : | F (z)−c |≤
r}. Take now

0 < λ =
2ε

m▽
< ζ ∧ m▽

MH

.

We obtain from (10)

F (y−λ) ≤ F (x)− λ

2
m▽ = c+ ε− ε = c.

From the continuity property of F , we deduce that there exists y between x and y−λ such that F (y) = c and
we have

‖x− y‖ ≤ ‖x− y−λ‖ =| λ |= 2ε

m▽
=

2

m▽
| t− c | .

So we have proved that

sup
x∈{F=t}T

d(x, {F = c}T ) ≤ 2

m▽
| t− c | .

Similarly, take x ∈ [0, T ]2 such that F (x) = c and use (9) to obtain

sup
x∈{F=c}T

d(x, {F = t}T ) ≤ 2

m▽
| t− c | .

The proof in case t < c is completely analogous. So F satisfies AssumptionH (see Section 1) with A = 2
m▽ . �

Proof of Theorem 2.1

Under assumptions of Theorem 2.1, we can always take T1 > 0 such that for all t : | t− c | ≤ r, ∂L(t)T1 6= ∅.
Then for each n, for all t : | t− c | ≤ r, ∂L(t)Tn is a non-empty (and compact) set on R2

+.
In each [0, Tn]

2, from Proposition 1.1, Assumption H (Section 1) is satisfied with

γ =

(
m▽

4

(
ζ ∧ m▽

MH

))
∧ r > 0 and A =

2

m▽
.

First we have to find a bound for supx∈∂L(c)Tn d(x, ∂Ln(c)
Tn).

Take x ∈ ∂L(c)Tn and define εn = 2 ‖F − Fn‖Tn
∞ . Using ‖F − Fn‖∞ → 0, a.s., for n → ∞, then εn → 0, a.s.,

for n → ∞. So with probability one there exists n0 such that ∀n ≥ n0, εn ≤ γ.

Since for all t : | t− c | ≤ r ∂L(t)Tn 6= ∅, from Assumption H, there exist un ≡ uεn
x and ln ≡ lεnx in [0, Tn]

2 such
that

F (un) = c+ εn; d(x, un) ≤ Aεn,

F (ln) = c− εn; d(x, ln) ≤ Aεn.
18



Suppose now ‖F − Fn‖Tn
∞ > 0 (the other case is a trivial one). In this case

Fn(un) = c+ εn + Fn(un)− F (un) ≥ c+ εn − ‖F − Fn‖Tn

∞ = c+ 2‖F − Fn‖Tn

∞ − ‖F − Fn‖Tn

∞ > c,

and in a similar way we can prove that Fn(ln) < c.

As Fn(ln) < c and Fn(un) > c, with un and ln in [0, Tn]
2, there exists zn ∈ ∂Ln(c)

Tn ∩B(un, d(un, ln)) with

d(zn, x) ≤ d(zn, un)+d(un, x) ≤ d(un, ln)+d(un, x) ≤ d(un, x)+d(x, ln)+d(un, x) ≤ 3Aεn = 6A‖F−Fn‖Tn

∞ .

Hence, for n ≥ n0

sup
x∈∂L(c)Tn

d(x, ∂Ln(c)
Tn) ≤ 6A ‖F − Fn‖Tn

∞ .

Let us now bound supx∈∂Ln(c)Tn d(x, ∂L(c)Tn).

Take x ∈ ∂Ln(c)
Tn . From the a.s. continuity of Fn we obtain Fn(x) = c, a.s., so

| F (x)− c | ≤ | F (x)− Fn(x) | ≤ ‖F − Fn‖Tn

∞ ≤ εn, a.s.

Remember that ∀ n ≥ n0, εn ≤ γ, a.s. Then from AssumptionH d(x, ∂L(c)Tn) ≤ A | F (x)−c |≤ A ‖F−Fn‖Tn
∞ .

We can conclude that with probability one, for n ≥ n0

sup
x∈∂Ln(c)Tn

d(x, ∂L(c)Tn) ≤ A ‖F − Fn‖Tn

∞ .

We obtain for n ≥ n0, dH(∂L(c)Tn , ∂Ln(c)
Tn) ≤ 6A ‖F − Fn‖Tn

∞ , then

dH(∂L(c)Tn , ∂Ln(c)
Tn) = O(‖F − Fn‖Tn

∞ ), a.s.

Hence the result. �

Proof of Theorem 3.1

Under assumptions of Theorem 3.1, we can always take T1 > 0 such that for all t : | t − c | ≤ r, ∂L(t)T1 6= ∅.
Then for each n, for all t : | t− c | ≤ r, ∂L(t)Tn is a non-empty (and compact) set on R2

+.

We consider a positive sequence εn such that εn →
n→∞

0. For each n ≥ 1 the random sets L(c)Tn △ Ln(c)
Tn ,

Qεn = {x ∈ [0, Tn]
2 : | F − Fn |≤ εn} and Q̃εn = {x ∈ [0, Tn]

2 : | F − Fn |> εn} are measurable and

λ(L(c)Tn △ Ln(c)
Tn) = λ(L(c)Tn △ Ln(c)

Tn ∩ Qεn) + λ(L(c)Tn △ Ln(c)
Tn ∩ Q̃εn). (11)

Since L(c)Tn △ Ln(c)
Tn ∩ Qεn ⊂ {x ∈ [0, Tn]

2 : c− εn ≤ F < c+ εn} we obtain

λ(L(c)Tn △ Ln(c)
Tn) ≤ λ({x ∈ [0, Tn]

2 : c− εn ≤ F < c+ εn}) + λ(Q̃εn).

From Assumption H (Section 1) and Proposition 1.1, if 2 εn ≤ γ then

dH(∂L(c+ εn)
Tn , ∂L(c− εn)

Tn) ≤ 2 εn A.

So we can write
λ({x ∈ [0, Tn]

2 : c− εn ≤ F < c+ εn}) ≤ 2 εn A 2Tn.

If we now choose

εn = o

(
1

pn Tn

)
(12)
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we obtain that for n large enough 2 εn ≤ γ and

pn λ({x ∈ [0, Tn]
2 : c− εn ≤ F < c+ εn}) →

n→∞
0.

Let us now prove that pn λ(Q̃εn)
P→

n→∞
0. We write

pn λ(Q̃εn) = pn

∫
1{x∈[0,Tn]2: |F−Fn|>εn} λ(dx) ≤

pn
εpn

∫

[0,Tn]2
| F − Fn |p λ(dx). (13)

Take εn such that

εn =

(
pn
vn

) 1
p

. (14)

Then, from Assumption A1, in Section 3, we obtain pn λ(Q̃εn)
P→

n→∞
0. As pn = o

(
v

1
p+1
n /T

p

p+1
n

)
we can choose

εn that satisfies (12) and (14). Hence the result. �

Proof of Theorem 4.1

We only prove the result for the first coordinate of CTEα(X,Y ) (the proof is similar for the second one).
First we remark that, in the following, probabilities involving events which depend on Ln(α)

Tn , are conditional
probabilities to the sample (Xi, Yi), for i = 1, . . . n. We will denote P[(X,Y ) ∈ Ln(α)

Tn ] purely for reasons of
notational convenience.

We introduce these two preliminary results (Lemma 7.1 and 7.2):

Lemma 7.1. Under Assumption A2, Assumptions of Theorem 3.1 and with the notation of Theorem 3.1, it

holds that

p
r

2(1+r)
n

∣∣E[X | (X,Y ) ∈ L(α)Tn ]− E[X | (X,Y ) ∈ Ln(α)
Tn ]
∣∣ P→
n→∞

0,

with r > 0 satisfying Assumption A2.

Proof of Lemma 7.1

From Assumption A2 and Theorem 3.1 we obtain

p
r

2(1+r)
n

∣∣P[(X,Y ) ∈ L(α)Tn △ Ln(α)
Tn ]
∣∣ ≤ p

r
2(1+r)
n dλ

(
L(α)Tn , Ln(α)

Tn
) r

1+r ‖ f ‖1+r
P→

n→∞
0. (15)

As a straightforward consequence we find

p
r

2(1+r)
n

∣∣P[(X,Y ) ∈ L(α)Tn ]− P[(X,Y ) ∈ Ln(α)
Tn ]
∣∣ P→
n→∞

0.

Using Assumption A2 we also obtain

p
r

2(1+r)
n

∣∣∣∣∣

∫

L(α)Tn

x fX,Y (x, y)λ(dx dy)−
∫

Ln(α)Tn

x fX,Y (x, y)λ(dx dy)

∣∣∣∣∣

≤ p
r

2(1+r)
n E[X2]

1
2 dλ

(
L(α)Tn , Ln(α)

Tn
) r

2(1+r) ‖ f ‖
1
2
1+r

P→
n→∞

0. (16)
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Then

p
r

2(1+r)
n

∣∣E[X|(X,Y ) ∈ L(α)Tn ]− E[X|(X,Y ) ∈ Ln(α)
Tn ]
∣∣

= p
r

2(1+r)
n

∣∣∣∣
∫

L(α)Tn

x fX,Y (x, y)λ(dx dy) P[(X,Y ) ∈ L(α)Tn ]−1

−
∫

Ln(α)Tn

x fX,Y (x, y)λ(dx dy) P[(X,Y ) ∈ Ln(α)
Tn ]−1

∣∣∣∣

≤ p
r

2(1+r)
n

P[(X,Y ) ∈ L(α)Tn ]P[(X,Y ) ∈ Ln(α)Tn ]

(
P[(X,Y ) ∈ L(α)Tn ]

∣∣∣∣
∫

L(α)Tn

x fX,Y (x, y)λ(dx dy)−
∫

Ln(α)Tn

x fX,Y (x, y)λ(dx dy)

∣∣∣∣

+

∫

L(α)Tn

x fX,Y (x, y)λ(dx dy)

∣∣∣∣P[(X,Y ) ∈ L(α)Tn ]− P[(X,Y ) ∈ Ln(α)
Tn ]

∣∣∣∣
)
. (17)

Using (15)-(16) we obtain that (17) converges to zero in probability, for n → ∞. Hence the result. �

Lemma 7.2. Under Assumption A2, Assumptions of Theorem 3.1 and with the notation of Theorem 3.1, it

holds that

an

∣∣∣∣E[X | (X,Y ) ∈ Ln(α)
Tn ]−

∑n
i=1 Xi1{(Xi,Yi)∈Ln(α)Tn}∑n
i=1 1{(Xi,Yi)∈Ln(α)Tn}

∣∣∣∣
P→

n→∞
0,

for an = o (
√
n).

Proof of Lemma 7.2

We can write

an

∣∣∣∣∣∣∣∣∣∣

E[X|(X,Y ) ∈ Ln(α)
Tn ]−

n∑

i=1

Xi1{(Xi,Yi)∈Ln(α)Tn}

n∑

i=1

1{(Xi,Yi)∈Ln(α)Tn}

∣∣∣∣∣∣∣∣∣∣

= an

∣∣∣∣∣∣∣∣∣∣

∫

Ln(α)Tn

x fX,Y (x, y)λ(dx dy)

P[(X,Y ) ∈ Ln(α)
Tn ]

−

n∑

i=1

Xi1{(Xi,Yi)∈Ln(α)Tn}

n∑

i=1

1{(Xi,Yi)∈Ln(α)Tn}

∣∣∣∣∣∣∣∣∣∣

.

Under assumptions of Lemma 7.2, from the central limit theorem for triangular arrays (e.g. Theorem 27.2 in
Billingsley [6]) we obtain

an

∣∣∣∣∣P[(X,Y ) ∈ Ln(α)
Tn ]− 1

n

n∑

i=1

1{(Xi,Yi)∈Ln(α)Tn}

∣∣∣∣∣
P→

n→∞
0,

an

∣∣∣∣∣

∫

Ln(α)Tn

x fX,Y (x, y)λ(dx dy)−
1

n

n∑

i=1

Xi1{(Xi,Yi)∈Ln(α)Tn}

∣∣∣∣∣
P→

n→∞
0.

Hence the result. �

Then to prove Theorem 4.1 we can write (7) as
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βn

∣∣∣∣∣∣∣∣∣∣

E[X|(X,Y ) ∈ L(α)Tn ]−

n∑

i=1

Xi1{(Xi,Yi)∈Ln(α)Tn}

n∑

i=1

1{(Xi,Yi)∈Ln(α)Tn}

∣∣∣∣∣∣∣∣∣∣

≤ βn

∣∣E[X|(X,Y ) ∈ L(α)Tn ]− E[X|(X,Y ) ∈ Ln(α)
Tn ]
∣∣+βn

∣∣∣∣∣∣∣∣∣∣

E[X|(X,Y ) ∈ Ln(α)
Tn ]−

n∑

i=1

Xi1{(Xi,Yi)∈Ln(α)Tn}

n∑

i=1

1{(Xi,Yi)∈Ln(α)Tn}

∣∣∣∣∣∣∣∣∣∣

.

The result is a straightforward application of Lemma 7.1 and Lemma 7.2. �
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