
HAL Id: inria-00628643
https://hal.inria.fr/inria-00628643

Submitted on 15 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reflective Platform for Highly Adaptive Multi-Cloud
Systems

Philippe Merle, Romain Rouvoy, Lionel Seinturier

To cite this version:
Philippe Merle, Romain Rouvoy, Lionel Seinturier. A Reflective Platform for Highly Adaptive Multi-
Cloud Systems. 10th International Workshop on Adaptive and Reflective Middleware (ARM’2011)
at the12th ACM/IFIP/USENIX International Middleware Conference, Dec 2011, Lisbonne, Portugal.
pp.1-7. �inria-00628643�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49957376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00628643
https://hal.archives-ouvertes.fr

A Reflective Platform for Highly Adaptive Multi-Cloud Syste ms

Philippe Merle, Romain Rouvoy
University Lille 1 - LIFL CNRS UMR 8022

INRIA Lille – Nord Europe
59655 Villeneuve d’Ascq, France

firstname.lastname@inria.fr

Lionel Seinturier
University Lille 1 - LIFL CNRS UMR 8022 & IUF

INRIA Lille – Nord Europe
59655 Villeneuve d’Ascq, France

Lionel.Seinturier@univ-lille1.fr

Abstract

Cloud platforms are increasingly used for hosting a broad di-
versity of services from traditional e-commerce applications to in-
teractive web-based IDEs. However, we observe that the prolif-
eration of offers by Cloud vendors raises several challenges. De-
velopers will not only have to deploy applications for a specific
Cloud, but will also have to consider migrating services from one
cloud to another, and to manage applications spanning multiple
Clouds. In this paper, we therefore report on a first experiment we
conducted to build a multi-Cloud system on top of thirteen existing
IaaS/PaaS. From this experiment, we advocate for two dimensions
of adaptability— design and execution time—that applications for
such systems require to exhibit. Finally, we propose a roadmap for
future multi-Cloud systems.

1. Introduction

Cloud computing is a major trend in current research for dis-
tributed computing environments. Cloud computing emergedas
a way for "enabling convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort orser-
vice provider interaction." [10]. Several layers of Cloud comput-
ing exist, from the infrastructure, platform, and application layers,
which provide for the end-users functionalities referred to as IaaS,
PaaS, and SaaS, respectively [13]. Amazon EC2, Microsoft Azure,
and Google App Engine are the three most well-know Cloud plat-
form providers, yet the offer has increased rapidly over thelast
months and tens of solutions are now available1. Besides, many

1http://upon2020.com/2011/04/the-ever-growing-list-of-paas-
companies-and-paas-projects

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ARM’2011,December 12th, 2011, Lisbon, Portugal.
Copyright 2011 ACM 978-1-4503-1070-3/11/12 ...$10.00.

big players in the IT business are also offering private Cloud solu-
tions for their data centers.

Nonetheless, this proliferation of solutions raises several key
challenges:(i) Migration. To avoid the vendor lock-in syndrome,
services should be able to migrate, either statically or dynamically,
from one Cloud provider to another. Static migration is the abil-
ity to select the target cloud before deploying a SaaS. Dynamic
migration is the ability to move a running SaaS for one cloud to
another. While the static migration can be considered as a porta-
bility issue, the dynamic migration raises more fundamental issues
related to consistency and state preservation of running SaaS.(ii)
Interoperability.The diversity of offers combined with Cloud ser-
vices going mainstream will lead to scenarios of distributed appli-
cations whose parts are hosted on different cloud platforms, and
will therefore need to interoperate and cooperate through efficient
and reliable protocols.(iii) Brokering. The diversity of pricing
strategies of Cloud solution vendors will make it relevant for third
party actors to come up with offers proposing the highest level of
resources for the best price. This economic optimum may vary
over time, or may differ depending on the kind of resources re-
quested. Solutions for moving swiftly between these cloud solu-
tions in order to benefit from these best offers will then be required.
(iv) Geo-diversity.Finally, [13] advocates that small data centers,
which consume less power, may be more advantageous than large
ones, and that geo-diversity tends to better match user demands.
This has led to the idea that federated Cloud platforms, so-called
intercloud solutions [6], are needed.

Although these challenges are not yet met and remain research
directions, in this paper, we advocate reflective middleware-based
solutions for adapting Cloud applications between different Cloud
environments, and obtain so-called multi-Cloud systems. Based
on our experience with the development of the FRASCATI SCA
middleware platform (cf. Section 2), we report on a first experi-
ment (cf. Section 3) that we conducted over eleven cloud environ-
ments: Amazon EC2, Amazon Elastic Beanstalk, BitNami, Cloud-
Bees, Cloud Foundry, DotCloud, Google App Engine, Heroku, In-
staCompute, Jelastic, and OpenShift. Then, we discuss two di-
mensions of adaptability applied in this experiment and beyond
to obtain adaptive multi-Cloud systems—i.e., adaptability at de-
sign time (cf. Section 4.1), adaptability at execution time(cf.
Section 4.2). We compare our contribution to the related work
(cf. Section 5). Section 6 concludes this paper and presents, as a
roadmap for future work in the domain of middleware for Cloud
computing, some of the challenges that remain to be met.

2. Background on FRASCATI

We consider that Cloud infrastructures require to support awide
diversity of programming technics and communication paradigms
to cope with the diversity of applications that they can host. There-
fore, we considered the OASISService Component Architecture
(SCA) standard [3] as a suitable framework for designing and
developing technology-agnostic Cloud systems. SCA provides a
component-based approach and targets the heterogeneous compo-
sition of various interface definition languages (WSDL, Java, etc.),
implementation technologies (Java, Spring, BPEL, C++, COBOL,
C, etc.), and binding technologies (Web Services, JMS, etc.).

As illustrated in Figure 1, in SCA the basic construction blocks
are softwarecomponents, which haveservices(or provided inter-
faces),references(or required interfaces) and exposeproperties.
The references and services are connected by means ofwires. SCA
specifies a hierarchical component model, which means that com-
ponents can be implemented either by primitive language entities
or by subcomponents. In the latter case the components are called
composites. Both component references and services can be ex-
posed at the composite level by means ofpromotion links. SCA
is designed to be independent from programming languages, in-
terface definition languages (IDL), communication protocols, and
non-functional properties. In particular, to support interaction via
different communication protocols, SCA provides the notion of
binding. For SCA references, bindings describe the access mecha-
nism used to invoke a service. In the case of services, the bindings
describe the access mechanism that clients use to invoke theser-
vice.

MyApp

View

Model

SCA Legend:

wire

servicereference

A

component

B

composite property

promotion link

Figure 1. Overview of an SCA Component.

The code excerpt below reflects part of the configuration de-
picted in Figure 1 using the SCA assembly language:

<composite name="MyApp"
xmlns="http://www.osoa.org/xmlns/sca/1.0">

<service name="run" promote="View/run"/>
<component name="View">

<implementation.java class="app.gui.SwingGuiImpl"/>
<service name="run">

<interface.java interface="java.lang.Runnable"/>
</service>
<reference name="model" autowire="true">

<interface.java interface="app.api.ModelService"/>
</reference>
<property name="orientation">landscape</property>

</component>
...

</composite>

Listing 1. Description of the application
MyApp.

We use the FRASCATI [12] middleware platform, which en-
ables the development and the execution of distributed SOA ap-
plications based on SCA. Beyond the support of standard SCA

features, FRASCATI brings reflection to SCA—i.e., introspection
and reconfiguration capabilities, via a specialization of the Fractal
component model [5]. Figure 2 shows FRASCATI EXPLORER2:
A reflective graphical tool provided by FRASCATI.

Figure 2. FraSCAti Explorer.

The FRASCATI platform is itself built as an SCA application—
i.e., its different subsystems are implemented as SCA components3,
which means that both the SCA applications, but also the underly-
ing platform can be introspected and reconfiguration at execution
time. Overall, FRASCATI provides a flexible and extensible com-
ponent model that can be used in distributed environments todeal
with heterogeneity.

3. Experiment

In order to tackle the challenges introduced in Section 1, weset
up an heterogeneous multi-Cloud platform for experimenting the
deployment of SaaS applications spanning different IaaS/PaaS. In
this section, we therefore describe the IaaS and PaaS provisioned
to build such a multi-Cloud platform, the SaaS we deployed ontop
of them, and finally the lessons learnt from this experiment.

3.1 Provisioned IaaS/PaaS

To build our multi-Cloud platform, we chose IaaS/PaaS provi-
ders offering free trial accounts and we used open source software.
In particular, we provisioned IaaS resources (i.e., CPU, memory,
storage, network, load balancer, firewall, and public IP address)
from Amazon Elastic Compute Cloud(Amazon EC2)4 and Tata
Communications’sInstaCompute5. After configuring these IaaS
resources, we installed a PaaS stack composed of a Linux distri-
bution, a Java virtual machine, and a Web application container.

We also provisioned PaaS resources (i.e., PaaS stacks deployed
on top of provisioned IaaS resources) fromAmazon Elastic Beans-
talk6, BitNami7, CloudBees8, Cloud Foundry9, DotCloud10, Google

2http://frascati.ow2.org/doc/1.4/ch07.html
3http://frascati.ow2.org/doc/1.4/ch12s04.html
4http://aws.amazon.com/ec2
5http://iaas.tatacommunications.com
6http://aws.amazon.com/elasticbeanstalk
7http://bitnami.org
8http://www.cloudbees.com
9http://www.cloudfoundry.com

10http://www.dotcloud.com

!""#$

%""#$

#""#$

&'($

)*"+,-$

&."/01$

23"-/4".5$

%33674,78336$*,-94,69-:$"88.91"0,-$

Figure 3. The FRASCATI multi-Cloud platform.

Cloud IaaS hardware PaaS software stack
Provider Location CPU RAM Storage OS JRE Web container

Amazon EC2 Asia Pacific (Singapore) 1 EC2 virtual core 613MB 8GB Amazon Linux OpenJDK 1.9.1 Apache Tomcat 7.0.20
Amazon EC2 Asia Pacific (Tokyo) 1 EC2 virtual core 613MB 8GB Amazon Linux OpenJDK 1.9.1 Apache Tomcat 7.0.20
Amazon EC2 EU North (Ireland) 1 EC2 virtual core 613MB 8GB Amazon Linux OpenJDK 1.9.1 Apache Tomcat 7.0.20
Amazon Elastic Beanstalk US East (Virginia) 1 EC2 virtual core 613MB 8GB Amazon Linux OpenJDK 1.9.1 Apache Tomcat 7
BitNami Amazon EC2 Singapore 1 EC2 virtual core 613MB 3GB Amazon Linux JVM 6 Apache Tomcat 6.0.29
CloudBees Amazon EC2 US West Data not available JVM 6 Apache Tomcat 6.0.32
Cloud Foundry US Utah Data not available
DotCloud Amazon EC2 US West Data not available Oracle JRE 1.6.0 24-b07 Jetty 6.1.22
Google App Engine US Data not available Google Jetty
Heroku Amazon EC2 US West Data not available JVM 6 Jetty 7.4.5
InstaCompute India 1 core 1.00 GHz 1GB 20GB CentOS 5.4 X64 Oracle JRE 1.6.0 26-b03 Apache Tomcat 7.0.20
Jelastic Germany Data not available JVM 6 GlassFish 3.1.1
OpenShift from Red Hat Amazon EC2 US West Data not available JBoss AS 7.0

Figure 4. The provisioned multi-Cloud platform

App Engine(GAE)11, Heroku12, Jelastic13 , and Red Hat’sOpen-
Shift14. Let us note that Amazon Elastic Beanstalk, BitNami, Cloud-
Bees, DotCloud, Heroku, and OpenShift provision IaaS resources
from Amazon EC2. All these PaaS provide a Linux distribution,
a Java virtual machine, and a Web application container off-the-
shelf.

Table 4 summarizes the characteristics of the thirteen nodes we
provisioned for our multi-Cloud platform. The reader may have
noticed that, with CloudBees, Cloud Foundry, DotCloud, GAE,
Heroku, Jelastic, and OpenShift, descriptions of IaaS resources
are not available because these PaaS provision them automatically
and hide them to the end-user. The resulting multi-Cloud platform
therefore exhibits a wide diversity of geolocations (Germany, In-
dia, Ireland, Japan, US, Singapore) and SaaS containers (Glass-
Fish, Jetty, Tomcat, JBoss) as depicted in Figure 3.

3.2 Deployed SaaS

Then, we deploy FRASCATI15, our reflective middleware plat-
form, as a SaaS over these thirteen PaaS. But, FRASCATI can also
be considered as a PaaS hosting SCA-based applications, so we
develop five SaaS based on SCA: 1) the computation of Fibonacci
series exposed as a Web service and a REST resource, 2) a web
application for checking ISBN numbers16, 3) a web application
for checking email addresses17, 4) a Web application for getting
weather information18, and 5) a public proxy to the secured Ohloh
REST API for obtaining information about open source projects19.
Each of these applications is implemented as an SCA composite
containing one SCA component. Then, these five SOA applica-
tions are replicated on the thirteen nodes of the multi-Cloud plat-
form as shown in Figure 3.

To experiment distributed multi-Cloud applications, we develop
a peer-to-peer network monitoring application where a peeris de-
ployed on each node of our multi-Cloud platform. Each peer is
implemented by three SCA components: asensorexposes local
monitoring data (peer name, url, geolocation, hostname, IPad-
dress, current date, available processors, free/total/max memory)
as a REST resource, anaggregatorcollects monitoring data for
all peers and computes network latency, and theviewcomponent
produces a dynamic HTML page showing a Google Map geolo-
cating the thirteen peers, network latencies between peers, and all
collected monitoring data (see Figure 5). To summarize, this mon-
itoring application is composed of thirteen SCA composites, thirty
nine SCA components, and uses two external services computing
peer geolocation20 and maps, respectively.

Orthogonally, the deployed FRASCATI includes reflective ca-
pabilities remotely accessible: 1)remote REST managementto ex-
pose all SCA concepts presented in Section 2 as REST resources,
which are introspectable and reconfigurable via HTTP requests,

11http://code.google.com/appengine
12http://www.heroku.com
13http://jelastic.com
14http://openshift.redhat.com
15http://frascati.ow2.org
16http://webservices.daehosting.com/services/isbnservice.wso
17http://ws.xwebservices.com/XWebEmailValidation/V2/XWebEmail
Validation.wsdl

18http://www.webservicex.net/globalweather.asmx
19http://www.ohloh.net/api
20http://freegeoip.net

Figure 5. The multi-Cloud FraSCAti peer-to-
peer network.

2) FRASCATI SCRIPT to execute complex introspection and re-
configuration scripts sent via HTTP requests, and 3) FRASCATI

WEB EXPLORERa Web application to introspect and reconfigure
SCA applications via dynamically generated HTML pages. Then,
these reflective features provide a fine-grained managementfa-
cility to deploy/undeploy SCA composites, add/start/stop/remove
SCA components, get/set SCA properties, wire/unwire/bind/un-
bind both SCA services and references, update binding attributes,
add/update/remove SCA non-functional properties, invokeservice
operations.

These six SOA applications plus all FRASCATI required fea-
tures were packaged as a Web ARchive (WAR) of a size of 15.5MB.
On the CloudBees PaaS, we observed a memory consumption of
95MB including the Java virtual machine, the Web application
container, FRASCATI and the six SCA applications.

Our multi-Cloud platform is freely available athttp://fra
scati.ow2.org.

3.3 Lessons Learnt

Regarding the challenges introduced in Section 1, this experi-
ment clearly and fully addressesstatic migration(the portability
of SaaS to various PaaS/IaaS),interoperability(the distribution of
SaaS across several PaaS/IaaS), andgeo-diversity(SaaS/PaaS/I-
aaS hosted over the world) thanks to FRASCATI and SCA. As
this early stage experiment started in July 2011, bothdynamic
migrationandbrokeringchallenges have not been addressed yet.
However, the deployed peer-to-peer network monitoring applica-
tion could be seen as a preliminary support for collecting static
and dynamic information required to our future cloud brokering
algorithms.

Some lessons can be learnt from this experiment:

Heterogeneous IaaS/PaaS managementCurrently, each IaaS/Pa-
aS provides its own management tools (client SDK, Web
Service or REST API, Web-based dashboard) for provision-
ing IaaS/PaaS resources, deploying SaaS, and monitoring all
the hardware and software resources. Then for our experi-

ment, we develop different scripts for managing each tar-
geted IaaS/PaaS. Future multi-Cloud platforms will there-
fore require to provide an abstraction to deal with the man-
agement variability of IaaS/PaaS. Here, SCA and FRAS-
CATI could be appropriate candidates for designing and im-
plementing such a multi-Cloud management facility as a
service.

SaaS portability Our experiment shows the capability to deploy
the same SaaS (here six SCA applications running on FraS-
CAti) over different PaaS/IaaS. This SaaS portability is main-
ly due to the adoption of the Java programming language
and the WAR packaging format. However, GAE provides a
Java sandbox supporting a strict subset of standard Java API.
For example, a GAE application cannot write on the filesys-
tem, spawn a sub-process or a thread, or use a signed JAR.
Thus, this requires to be able to select the right SaaS features
according to IaaS/PaaS restrictions. Moreover, each PaaS/I-
aaS provides its own specific cloud services for user man-
agement, data storage, efficient intra-Cloud communication
and coordination, etc. Another challenge will be then to pro-
vide cross-Cloud application programming interfaces that
abstract common cloud platform services and make SaaS
more portable.

FRASCATI as a SaaS and a PaaSFRASCATI is part of the SaaS
stack (the WAR) we deploy on the thirteen Web application
containers. However, FRASCATI could also be seen as a
PaaS hosting the six deployed SCA-based applications. In
future work, we will experiment the deployment of FRAS-
CATI on top of IaaS without requiring a standalone Web
application PaaS like Jetty, Tomcat, GlassFish or JBoss,i.e.,
see FRASCATI as a native PaaS. This will reduce both the
memory consumption and deployment time.

Fine-grained reflectivity and scalability FRASCATI adds an ex-
tra layer of indirection between applications and underlying
PaaS/IaaS. This high level abstraction layer mainly imple-
ments SCA heterogeneity support and fine-grained reflec-
tive capabilities on top of the low level Java Servlet API pro-
vided by underlying used PaaS. Our experiment shows that
SCA heterogeneity support and FRASCATI fine-grained re-
flectivity are compatible with Cloud computing scalability
and can be combined to build large-scale heterogeneous mul-
ti-Cloud systems.

Reconfiguration and security Currently, FRASCATI provides re-
mote fine-grained reconfiguration services but without secu-
rity access control. So any remote program could reconfig-
ure SCA applications. At the beginning of the experiment,
Web robots like Google indexed HTML pages dynamically
generated by FRASCATI WEB EXPLORER and then ran-
domly start and stop SCA components of the six deployed
applications introducing some denial of services. This issue
was easily resolved by using the Robots Exclusion Proto-
col21. Therefore, when building public reflective cloud sys-
tems, a tension exists between fine-grained SaaS reconfigu-
ration and security access control. A future challenge will
be to mitigate this tension, especially for multi-tenants PaaS,

21http://www.robotstxt.org

i.e., PaaS shared by applications deployed by different orga-
nizations. Then, each application would define its own se-
curity access control policy for fine-grained reconfiguration.

4. Different Degrees of Adaptation

We believe that the above described experiment provides a sig-
nificant example of the variety of requirements that a moderndis-
tributed application has to face. The middleware system andthe
application have to be flexible enough in order to incorporate smoo-
thly these different features. In the following subsections, we ad-
vocate that, to achieve such a challenge, several degrees ofadap-
tation are required: at design time and at runtime.

4.1 Adaptation at Design Time

At design time, the adaptability of the platform relies on the
combination of two mechanisms: a plugin-like SCA-based archi-
tecture, and feature diagrams.

The FRASCATI platform has been designed as a plugin-based
architecture in order to let it to be adapted to many different vari-
ants of execution environments. The motivating idea is to enable a
platform developer to select the right and minimal set of features
she needs to compose her platform on demand. The variability
obtained here mainly corresponds to the independence properties
of SCA enumerated in Section 2: component implementation lan-
guages, binding technologies, and interface definition languages.

As a matter of example, 18 FRASCATI plugins exist to sup-
port different component implementation languages: Java,BPEL,
Spring, Fractal ADL, OSGi (Equinox, Felix, or Knopflerfish),Sca-
la, scripting languages (BeanShell, FScript, Groovy, JavaScript,
JRuby, Jython, Xquery), Apache Velocity, Web resources. Sim-
ilarly, 11 FRASCATI plugins support different binding technolo-
gies: HTTP, JMS, JSON-RPC, REST, Java RMI, SOAP, JGroups,
SLP, UPnP, OSGi, and JNA. Additional FRASCATI plugins exist
to support different interface definition languages (Java,WSDL,
UPnP service description). These plugins are designed and imple-
mented as SCA components, which can be embedded or not in the
architecture of the platform. An API is provided for developing
new plugins in order to address unforeseen requirements. Further-
more, several other functionalities of the platform (remote REST
management, Web Explorer, dynamic code generation and compi-
lation, SCA metamodel parsing, etc.) are also plugin-basedlead-
ing to a set of 62 existing plugins in the FRASCATI code base22 at
the date of the writing of this paper.

The experiment described in Section 3 used 22 FRASCATI plu-
gins: 2 component implementation languages (Java and Apache
Velocity), 3 binding technologies (HTTP, REST, SOAP), 2 inter-
face languages (WSDL, Java), 3 metamodels (OSOA SCA, FRAS-
CATI SCA, FRASCATI Web), 8 core plugins (SCA parser, As-
sembly Factory, Component Factory, Binding Factory, remote RE-
ST management, FRASCATI Web Explorer), and 4 plugins for
dynamic code generation and compilation. However, the lastfour
plugins were not deployed on GAE because they require to write
on the filesystem which is forbidden by GAE.

This plugin-based mechanism enables a first degree of flexibil-
ity on a per needed functionality basis. All the possible configura-
tions of the platform which can of be obtained from 62 FRASCATI

22http://websvn.ow2.org/listing.php?repname=frascati

plugins is huge. Yet, it appears that not all plugins are compatible
with each other and that some plugins correspond to subfeatures
of a given feature. In order to rule the complexity generatedby
this high degree of variability, in [1], we proposedfeature dia-
gramsto obtain aSoftware Product Line(SPL) for the FRASCATI

platform. An SPL can be defined as"a set of software-intensive
systems that share a common, managed set of features and that
are developed from a common set of core assets in a prescribed
way" [7]. A Feature Model is used to compactly define all fea-
tures in an SPL and their valid combinations [2]. This SPL en-
ables the developer to finely select the configuration of the plat-
form that matches SaaS needs with the guarantee that it will be
legal with respect to the composability of the FRASCATI plugins.
An exhaustive description of the FRASCATI SPL is available at
http://frascati.ow2.org/doc/1.4/ch12.html.

Overall, the plugin-based architecture and the SPL providea
way to address the interoperability and the geo-diversity challenges
identified in Section 1. We can select and configure the right so-
lutions enabling multi-Cloud systems to interoperate at the SaaS
level. In addition, we believe that the SPL approach can be ap-
plied to the IaaS/ PaaS levels as well, in order to reason on the
characteristics needed for deploying a particular SaaS.

4.2 Adaptation at Execution Time

The execution time adaptation of the FRASCATI platform re-
lies on two core features: introspection and reconfiguration on one
side, and dynamic deployment of reconfiguration scripts on the
other side.

The FRASCATI platform follows the principles of component-
based software development. The application and the platform are
built as hierarchies of components. The architecture of these com-
ponents are reified at runtime enabling to discover their organisa-
tion in hierarchies, their connections, the services they provide and
require, their properties. Furthermore, these characteristics can be
modified in order to adapt the application to new needs at runtime.
Overall, this introspection and this reconfiguration can beapplied
at three levels: for the application executed by the platform, for the
non-functional services (such as transaction, security, etc.) used by
the application, and for the container hosting the application com-
ponents, read [12] for more details. Currently, our multi-Cloud
platform exposes both remote REST management and FRASCATI

Web Explorer allowing users to introspect and reconfigure all the
components of the six SCA-based applications and the FRASCATI

platform.
The second feature for execution time adaptation is relatedto

the possibility of dynamically deploying a reconfigurationscript.
The FRASCATI Script DSL has been designed for that [12]. FRAS-
CATI Script provides a dedicated syntax to wrap the basic recon-
figuration actions, such as navigating the component hierarchy, in-
trospecting/modifying connections, starting/stopping components,
setting properties. A dedicated API is provided by FRASCATI

for remotely deploying and executing these scripts. They can, by
this way, adapt the platform and the application to the new con-
figuration. For instance, FRASCATI Script can allow to program
management scripts for the monitoring peer-to-peer network, e.g.,
adding a new peer or removing a broken down peer implies bind-
ing/unbinding all other peers, respectively.

The adaptation performed by a FRASCATI Script is currently
applied at the granularity of a component or a composition ofcom-
ponents. This is somewhat much finer than the feature level, which

has been presented in the previous section. Features are imple-
mented by one or several components. Furthermore, their logic is
closer to the level where the developer may wish to interact with
the system: this is easier to reason in terms of added or removed
features than in terms of the set of components which implement
them. Thus, in future work, we plan to extend FRASCATI Script
with feature-based reconfiguration capabilities.

5. Related Work

Virtual IaaS solutions.
BitNami, CloudBees, DotCloud, Heroku, and OpenShift are

Cloud computing providers acting as Cloud intermediaries by pro-
viding developers with an application server provisioned on top of
the Amazon EC2 IaaS. These providers are therefore offeringa
dedicated PaaS on top of an existing IaaS, but these solutions do
not cross the boundaries of Amazon EC2 and cannot be used to de-
ploy a multi-Cloud system. The solution we propose in this paper
rather builds on virtual IaaS platforms to provide a unified open
programming model for SaaS, based on the SCA standard.

Provisioning of heterogeneous IaaS.
Most of the current research activities focus on the provision-

ing of web applications in heterogeneous Clouds [8, 9]. These
approaches are resource allocation algorithms that match the re-
sources of the node provisioned by the IaaS (CPU, I/O) in order
to maximize the performances of the deployed PaaS. Although
these approaches do not apply to multi-Cloud systems, we believe
that they can be used for considering the automatic provisioning
of Clouds according to pricing and latency dimensions. Several
open source libraries exist to manage heterogeneous IaaS, i.e., de-
ploy images and create/start/stop/destroy virtual machines, such
as Apache Deltacloud23, Apache Libcloud24, jclouds25, and Sim-
pleCloud26. Each of them provides its own API abstracting the
heterogeneity between underlying IaaS management API. Never-
theless, these abstractions are too low level as they provide an im-
perative programming model instead of a declarative model.

SCA-based SaaS.
To avoid the vendor lock-in syndrome, [11] proposes an SCA-

based format for packaging and deploying multi-tenant aware con-
figurable composite SaaS applications. This format extendsSCA
with variability descriptors and SaaS multi-tenancy patterns. We
think that this SCA-based format can be reused or extended for
multi-Cloud systems. To avoid lock-in to a specific cloud applica-
tion platform, Apache Nuvem27 defines an open SCA-based appli-
cation programming interface for common cloud applicationser-
vices, allowing applications to be easily ported across themost
popular cloud platforms. [4] shows how to build and integrate
SCA-based composite applications using Apache Tuscany, the Eu-
calyptus open source cloud framework, and OpenVPN to createa
hybrid composite application. Technical talks at JavaOne 201028

23http://incubator.apache.org/deltacloud
24http://libcloud.apache.org
25http://www.jclouds.org
26http://simplecloud.org
27http://incubator.apache.org/nuvem
28http://www.slideshare.net/luckbr1975/s314011-developing-

and ApacheCon NA 201029 presented how to develop composite
applications for the Cloud using Apache Tuscany. Our experiment
is distributed across a larger multi-Cloud platform and FRASCATI

brings reflective capabilities to SCA, which is not the case for
Apache Tuscany.

6. Conclusion, Challenges & Perspectives

This paper reports on the first experiment towards an adap-
tive and reflective middleware platform for world-wide scalable
heterogeneous multi-Cloud systems. We advocate that reflective
middleware-based solutions are needed to adapt applications to
different cloud systems. In this paper, we present the lessons
learnt from deploying cloud applications on Amazon EC2, Ama-
zon Elastic Beanstalk, BitNami, CloudBees, Cloud Foundry,Dot-
Cloud, Google App Engine, Heroku, InstaCompute, Jelastic,and
OpenShift. We advocate that adaptation is required both at design
time and at runtime to match the broad range of variability induced
by cloud platforms.

Beyond the traditional challenges identified by Cloud comput-
ing environments (scalability, elasticity, etc.), our experiments rai-
ses more specific challenges related to the development of a new
generation of multi-Cloud systems. In particular, we consider that
these complex systems are characterized by a wide diversityof
technologies, capabilities, and locations, which requires new tool-
ing solutions to cope with the scale and the complexity issues:

Complex Architecture Description addresses a design challenge
related to the description of SaaS that spawns billions of
nodes. In such a context, traditionalarchitecture descrip-
tion languages(ADL) offer a limited support to leverage the
description of these systems as they provide atomic idioms
to describe exhaustively every single component involved.
With regard to this challenge, we believe that high-level de-
sign approaches like design patterns or macro-programming
can contribute to foster the development of complex and
scalable architectures.

Consistent Software Configuration refers to the exploration of
approaches, such assoftware product lines(SPL), in the
context of Cloud Computing to cover the configuration of
SaaS and their dependencies according to specific Cloud of-
fers. Given that each solution imposes constraints likesoft-
ware development kit(SDK), libraries (e.g., Java), operat-
ing system, or resources (memory, processor, etc.), applica-
tions have to check their configuration with regards to these
constraints. We therefore consider that appropriate models
should be defined to assist in the consistent configuration of
the SaaS/PaaS/IaaS layers.

Continuous Service Delivery refers to the scalable and dynamic
brokering and deployment of a system across a cloud of
clouds. This challenge exhibits the need for an abstraction
that federates existing clouds as an open infrastructure used
to deploy SaaS in an agile and scalable manner. Agility
refers to the capability of the infrastructure to continuously

composite-applications-for-the-cloud-with-apache-tuscany
29http://www.slideshare.net/jsdelfino/apachecon-na-2010-sca-
reaches-the-cloud-developing-composite-applications-for-the-
cloud-with-apache-tuscany

deliver SaaS whenever evolutions are required, while scal-
ability addresses the provision and the deployment of the
SaaS on a very-large number of nodes. Such a continuous
service delivery could be implemented by a virtual PaaS so-
lution that supports the seamless deployment of SaaS.

Autonomous Managementcopes with the challenges addressed
by the autonomic computing community—i.e., the monitor-
ing, analysis, and reconfiguration of very-large-scale sys-
tems. While autonomic computing technics are already em-
ployed at the scale of a Cloud to ensure the reliability and
the optimization of the infrastructure, no solution addresses
the autonomous management of a SaaS deployed as a multi-
Cloud system. For example, such a management infrastruc-
ture can be used to monitor the pricing variations of a given
Cloud solution, and consider alternative deployments for a
given SaaS. In the context of GreenIT, a green policy could
consist in migrating the SaaS to a different location accord-
ing to the availability of green energies (solar, wind, etc.).
We therefore believe that the autonomous management in-
frastructure should be designed and deployed as a reflective
SaaS that can scale in synchrony with the managed multi-
Cloud system.

Cloud Language Unity finally groups all the above challenges
into the definition of a multi-view dynamic language, which
is continuously synchronized with the SaaS, independently
of its current state (designed, configured, deployed, run-
ning). Although each step of the SaaS lifecycle is handled
by different stakeholders, we believe that a common lan-
guage should be adopted to ease the mapping and the syn-
chronization of the concepts involved in each phase. This
language should therefore be able to switch seamlessly be-
tween models used at design-time and those maintained at
runtime (e.g., Model@runtime) and expose the appropriate
operations.

7. References

[1] M. Acher, A. Cleeve, P. Collet, P. Merle, L. Duchien, and
P. Lahire. Reverse Engineering Architectural Feature
Models. InProceedings of 5th European Conference of
Software Architecture (ECSA’11), Sept. 2011.

[2] D. Batory. Feature models, grammars, and propositional
formulas. InProceedings of SPLC’05, volume 3714 of
LNCS, pages 7–20, 2005.

[3] Beisiegel, M. et al. Service Component Architecture, Nov.
2007.http://www.osoa.org.

[4] R. Bhose and K. C. Nair. Integrating Composite
Applications on the Cloud Using SCA, Mar. 2010. Dr.
Dobb’s, available at
http://drdobbs.com/cpp/223800269.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B.
Stefani. The Fractal Component Model and its Support in
Java.Software Practice and Experience (SPE),
36(11-12):1257–1284, 2006.

[6] R. Buyya, R. Ranjan, and R. Calheiros. InterCloud: Scaling
of Applications across multiple Cloud Computing
Environments. InProceedings of the 10th International
Conference on Algorithms and Architectures for Parallel

Processing (ICA3PP’10), volume 6081 ofLNCS, pages
13–31, May 2010.

[7] P. Clements and L. Northrop.Software Product Lines
Practices and Patterns. Addison-Wesley, 2002.

[8] J. Dejun, G. Pierre, and C.-H. Chi. Resource Provisioning of
Web Applications in Heterogeneous Clouds. InProceedings
of the 2nd USENIX conference on Web Application
development (WebApps’11), Berkeley, CA, USA, June 2011.
USENIX Association.

[9] G. Lee, B.-G. Chun, and R. H. Katz. Heterogeneity-Aware
Resource Allocation and Scheduling in the Cloud. In
Proceedings of the 3rd USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud’11), Berkeley, CA, USA, June
2011. USENIX Association.

[10] P. Mell and T. Grance. The NIST Definition of Cloud
Computing. Technical report, National Institute of
Standards and Technology, 2009.
http://www.nist.gov/itl/cloud/upload/
cloud-def-v15.pdf.

[11] R. Mietzner, F. Leymann, and M. P. Papazoglou. Defining
Composite Configurable SaaS Application Packages Using
SCA, Variability Descriptors and Multi-tenancy Patterns.In
International Conference on Internet and Web Applications
and Services, pages 156–161, Los Alamitos, CA, USA,
2008. IEEE Computer Society.

[12] L. Seinturier, P. Merle, R. Rouvoy, D. Romero,
V. Schiavoni, and J.-B. Stefani. A Component-Based
Middleware Platform for Reconfigurable Service-Oriented
Architectures.Software: Practise and Experience (SPE),
2011.

[13] Q. Zhang, L. Cheng, and R. Boutaba. Cloud Computing:
State-of-the-art and Research Challenges.Journal of
Internet Services and Applications, 1(1):7–18, May 2010.

