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Abstract

Cloud platforms are increasingly used for hosting a broad di
versity of services from traditional e-commerce applicas to in-
teractive web-based IDEs. However, we observe that théf-prol
eration of offers by Cloud vendors raises several challendie-
velopers will not only have to deploy applications for a sfiec
Cloud, but will also have to consider migrating servicesrirone
cloud to another, and to manage applications spanning iplelti
Clouds. In this paper, we therefore report on a first experitivee
conducted to build a multi-Cloud system on top of thirteesting
laaS/PaaS. From this experiment, we advocate for two diiroess
of adaptability— design and execution time—that applaratifor
such systems require to exhibit. Finally, we propose a rcaulfor
future multi-Cloud systems.

1. Introduction

Cloud computing is a major trend in current research for dis-
tributed computing environments. Cloud computing emergged
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big players in the IT business are also offering private @lsolu-
tions for their data centers.

Nonetheless, this proliferation of solutions raises savieey
challenges(i) Migration. To avoid the vendor lock-in syndrome,
services should be able to migrate, either statically oadyically,
from one Cloud provider to another. Static migration is thé-a
ity to select the target cloud before deploying a SaaS. Dynam
migration is the ability to move a running SaaS for one cloud t
another. While the static migration can be considered astapo
bility issue, the dynamic migration raises more fundanléssaes
related to consistency and state preservation of runnia® $id
Interoperability. The diversity of offers combined with Cloud ser-
vices going mainstream will lead to scenarios of distridwppli-
cations whose parts are hosted on different cloud platfoemd
will therefore need to interoperate and cooperate throtfitient
and reliable protocols(iii) Brokering. The diversity of pricing
strategies of Cloud solution vendors will make it relevamtthird
party actors to come up with offers proposing the highestllef
resources for the best price. This economic optimum may vary
over time, or may differ depending on the kind of resources re
quested. Solutions for moving swiftly between these cloald-s
tions in order to benefit from these best offers will then tzpieed.

a way for 'enabling convenient, on-demand network access to a (iv) Geo-diversity.Finally, [13] advocates that small data centers,

shared pool of configurable computing resources (e.g., ordsy
servers, storage, applications, and services) that candpédty
provisioned and released with minimal management effoseor
vice provider interactiori.[10]. Several layers of Cloud comput-
ing exist, from the infrastructure, platform, and applicatayers,
which provide for the end-users functionalities referreds laas,
PaaS, and SaaS, respectively [13]. Amazon EC2, Microsaftéz
and Google App Engine are the three most well-know Cloud plat
form providers, yet the offer has increased rapidly overl#st
months and tens of solutions are now availablBesides, many

http://upon2020.com/2011/04/the-ever-growing-liEpaas-
companies-and-paas-projects
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which consume less power, may be more advantageous than larg
ones, and that geo-diversity tends to better match user rsna
This has led to the idea that federated Cloud platforms afleet
intercloud solutions [6], are needed.

Although these challenges are not yet met and remain rdsearc
directions, in this paper, we advocate reflective middleazased
solutions for adapting Cloud applications between difie@loud
environments, and obtain so-called multi-Cloud systemase#
on our experience with the development of thrRASCATI SCA
middleware platform (cf. Section 2), we report on a first ekpe
ment (cf. Section 3) that we conducted over eleven cloudenvi
ments: Amazon EC2, Amazon Elastic Beanstalk, BitNami, Giou
Bees, Cloud Foundry, DotCloud, Google App Engine, Heroky, |
staCompute, Jelastic, and OpensShift. Then, we discuss itwo d
mensions of adaptability applied in this experiment andobely
to obtain adaptive multi-Cloud systems:e;, adaptability at de-
sign time (cf. Section 4.1), adaptability at execution tifcé
Section 4.2). We compare our contribution to the relatedkwor
(cf. Section 5). Section 6 concludes this paper and presasis
roadmap for future work in the domain of middleware for Cloud
computing, some of the challenges that remain to be met.



2. Background on FRASCATI

We consider that Cloud infrastructures require to suppeitia
diversity of programming technics and communication prad
to cope with the diversity of applications that they can h@siere-
fore, we considered the OASIService Component Architecture
(SCA) standard [3] as a suitable framework for designing and
developing technology-agnostic Cloud systems. SCA pes/ia
component-based approach and targets the heterogeneops-co
sition of various interface definition languages (WSDL a]atc.),
implementation technologies (Java, Spring, BPEL, C++, CQB
C, etc.), and binding technologies (Web Services, JMS).etc.

As illustrated in Figure 1, in SCA the basic constructiondii®
are softwareomponentswhich haveserviceqor provided inter-
faces),referenceqor required interfaces) and expogmperties
The references and services are connected by meangesf SCA
specifies a hierarchical component model, which means tmat c
ponents can be implemented either by primitive languagiéiesnt
or by subcomponents. In the latter case the components léed ca

composites Both component references and services can be ex-

posed at the composite level by meangpaimotion links SCA
is designed to be independent from programming languages, i
terface definition languages (IDL), communication protscand
non-functional properties. In particular, to support iatgion via
different communication protocols, SCA provides the notaf

binding For SCA references, bindings describe the access mecha

nism used to invoke a service. In the case of services, thtriga
describe the access mechanism that clients use to involsethe
vice.

| SCA Legend:

| component  composite property
promotion link

wire.

. reference service

Figure 1. Overview of an SCA Component.

The code excerpt below reflects part of the configuration de-
picted in Figure 1 using the SCA assembly language:

<conposi te nanme="M/App"
xm ns="http://ww. osoa. org/ xm ns/sca/ 1. 0" >
<servi ce name="run" pronote="View run"/>
<conponent nane="View'>
<i npl enentation.java class="app. gui . Swi ngGui | npl "/ >
<servi ce name="run">
<interface.java interface="java.|ang. Runnabl e"/>
</ service>
<ref erence nane="nodel "
<interface.java interface="app. api.
</reference>
<property nane="orientation">l andscape</ property>
</ conponent >

autow re="true">
Model Service"/>

</ conposi te>

Listing 1. Description of the application
MyApp.

We use the RASCATI [12] middleware platform, which en-
ables the development and the execution of distributed S®A a

features, RASCATI brings reflection to SCA-e., introspection
and reconfiguration capabilities, via a specializatiorheffractal
component model [5]. Figure 2 showRKkSCATI EXPLORER:
A reflective graphical tool provided byRASCATI.

FraSCAY Explore:

REST WS Jsonfoc RMI)

[[Putp /frascati ow? org/assembly-facton]

(Rsdbinding ) (_Cancel )

Figure 2. FraSCAti Explorer.

The FRRASCATI platform is itself built as an SCA application—
i.e, its different subsystems are implemented as SCA compshent
which means that both the SCA applications, but also thenlyrde
ing platform can be introspected and reconfiguration at i@t
time. Overall, RASCATI provides a flexible and extensible com-
ponent model that can be used in distributed environmerdsab
with heterogeneity.

3. Experiment

In order to tackle the challenges introduced in Section 1sete
up an heterogeneous multi-Cloud platform for experimentire
deployment of SaaS applications spanning different |a@eSPIn
this section, we therefore describe the laaS and PaaS jomoeis
to build such a multi-Cloud platform, the SaaS we deployetbpn
of them, and finally the lessons learnt from this experiment.

3.1 Provisioned IaaS/PaaS

To build our multi-Cloud platform, we chose laaS/PaaS provi
ders offering free trial accounts and we used open sourte .
In particular, we provisioned laaS resources.(CPU, memory,
storage, network, load balancer, firewall, and public IPrasis)
from Amazon Elastic Compute Cloyémazon EC2j and Tata
Communications’dnstaComputd After configuring these laaS
resources, we installed a PaaS stack composed of a Linuk dist
bution, a Java virtual machine, and a Web application coatai

We also provisioned PaaS resourdes,(PaaS stacks deployed
on top of provisioned laaS resources) frdimazon Elastic Beans-
talk®, BitNam{, CloudBee% Cloud Foundry, DotCloud®, Google

2http://frascati.ow2.org/doc/1.4/ch07.html
Shttp://frascati.ow2.org/doc/1.4/ch12s04.html
*http://aws.amazon.com/ec2
Shttp://iaas.tatacommunications.com
Shttp://aws.amazon.com/elasticbeanstalk
"http://bitnami.org
8http:/iww.cloudbees.com
®http://ww.cloudfoundry.com

plications based on SCA. Beyond the support of standard SCA°http://www.dotcloud.com
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Figure 3. The FRASCATI multi-Cloud platform.
Cloud laaS hardware PaasS software stack
Provider | Location CPU | RAM | Storage| OS | JRE | Web container
Amazon EC2 Asia Pacific (Singapore] 1 EC2 virtual core| 613MB | 8GB Amazon Linux OpenJDK 1.9.1 Apache Tomcat 7.0.2(
Amazon EC2 Asia Pacific (Tokyo) 1 EC2 virtual core| 613MB | 8GB Amazon Linux OpenJDK 1.9.1 Apache Tomcat 7.0.2(
Amazon EC2 EU North (Ireland) 1 EC2 virtual core| 613MB | 8GB Amazon Linux OpenJDK 1.9.1 Apache Tomcat 7.0.2(
Amazon Elastic Beanstalf US East (Virginia) 1 EC2 virtual core| 613MB | 8GB Amazon Linux OpenJDK 1.9.1 Apache Tomcat 7
BitNami Amazon EC2 Singapord 1 EC2 virtual core| 613MB | 3GB Amazon Linux JVM 6 Apache Tomcat 6.0.29
CloudBees Amazon EC2 US West Data not available JVM 6 Apache Tomcat 6.0.37
Cloud Foundry US Utah Data not available
DotCloud Amazon EC2 US West Data not available [ Oracle JRE 1.6.0 24-b07 Jetty 6.1.22
Google App Engine us Data not available Google Jetty
Heroku Amazon EC2 US West Data not available JVM 6 Jetty 7.4.5
InstaCompute India 1core1.00GHz [ 1GB [ 20GB [ CentOS 5.4 X64[ Oracle JRE 1.6.0 26-b03 Apache Tomcat 7.0.2(
Jelastic Germany Data not available JVM 6 GlassFish 3.1.1
OpenShift from Red Hat | Amazon EC2 US West Data not available JBoss AS 7.0

Figure 4. The provisioned multi-Cloud platform



Peer 'OW2 FraSCALi in Jelastic' of the OW2 FraSCAti Peer-to-Peer Netwerk in the Cloud

App Enging(GAE)!!, Heroku'?, Jelasti¢® , and Red Hat'©pen- e = .
Shiff“, Let us note that Amazon Elastic Beanstalk, BitNami, CIoud--J: M — “f;j e B A a D
Bees, DotCloud, Heroku, and OpenShift provision laaS nessu . ——

from Amazon EC2. All these Paa$S provide a Linux distribution - Pian. jm'me
a Java virtual machine, and a Web application containetheff- ‘J i |
shelf. E

Table 4 summarizes the characteristics of the thirteenswage @J
provisioned for our multi-Cloud platform. The reader mayéda [+ i

noticed that, with CloudBees, Cloud Foundry, DotCloud, GAE

Heroku, Jelastic, and OpenShift, descriptions of laaSuess i = atcea
are not available because these PaaS provision them aidaliyat | - b st - —
and hide them to the end-user. The resulting multi-Cloutfquian OB R e B

therefore exhibits a wide diversity of geolocations (Gemgnadn-
dia, Ireland, Japan, US, Singapore) and SaaS containeasgGl
Fish, Jetty, Tomcat, JBoss) as depicted in Figure 3.

a0

Condiiotsidiutisatlon

3.2 Deployed SaaS

Figure 5. The multi-Cloud FraSCAti peer-to-

15 ; ; _
Then, we deploy RASCATI, our reflective middleware plat peer network.

form, as a SaaS over these thirteen PaaS. BRESFCATI can also
be considered as a PaaS hosting SCA-based applications so w
develop five SaaS based on SCA: 1) the computation of Fibonacc

series exposed as a \Web service and a REST resource, 2) a We) FraSCATI SCRIPT to execute complex introspection and re-
application for checking ISBN numbéfs 3) a web application  ¢onfiguration scripts sent via HTTP requests, and @\&CATI

for checking email addressés4) a Web application for getting g ExpLoreRa Web application to introspect and reconfigure
weather mformatlo_??_, an_d 5)a pl_JbIlc proxy to the secured thoh SCA applications via dynamically generated HTML pages.fThe
REST API for obtaining information about open source prisiec _ these reflective features provide a fine-grained managefaent
Each of these applications is implemented as an SCA coneposit cijity to deploy/undeploy SCA composites, add/start/stemove
containing one SCA component. Then, these five SOA applica- gca components, get/set SCA properties, wire/unwire/imd

tions are replicated on the thirteen nodes of the multi-Glplat- bind both SCA services and references, update bindindpates,

form as shown in Figure 3. ) o add/update/remove SCA non-functional properties, ingekeice
To experiment distributed multi-Cloud applications, weelep operations.

a peer-to-peer network monitoring application where a ede- These six SOA applications plus alRESCATI required fea-

ployed on each node of our multi-Cloud platform. Each peer is yres were packaged as a Web ARchive (WAR) of a size of 15.5MB.
implemented by three SCA componentssensorexposes local  op the CloudBees PaaS, we observed a memory consumption of
monitoring data (peer name, url, geolocation, hostname&dP  g5vB including the Java virtual machine, the Web applicatio
dress, current date, available processors, free/totalfmemory) container, RASCATI and the six SCA applications.

as a REST resource, aygregatorcollects monitoring data for Our multi-Cloud platform is freely available bt t p: / / fr a

all peers and computes network latency, andviea component  gcat i . ow2. or g.

produces a dynamic HTML page showing a Google Map geolo-
cating the thirteen peers, network latencies between paedsall
collected monitoring data (see Figure 5). To summarizs,rion-
itoring application is composed of thirteen SCA compositieisty
nine SCA components, and uses two external services camgputi
peer geolocatici] and maps, respectively.

3.3 Lessons Learnt

Regarding the challenges introduced in Section 1, thisréxpe
ment clearly and fully addressessatic migration(the portability

Orthogonally, the deployedrASCAT! includes reflective ca- of SaasS to various PaaS/Iaa&)eroperabillity(th.e distribution of
pabilities remotely accessible: mote REST managemeoex- SaaS across several PaaS/laaS), gemdiversity(SaaS/PaaS/I-
pose all SCA concepts presented in Section 2 as REST resource 325 hosted over the world) thanks teASCATI and SCA. As

which are introspectable and reconfigurable via HTTP regues this early stage experiment started in July 2011, kbthamic
migration andbrokeringchallenges have not been addressed yet.

Hhttp://code.google.com/appengine However, the deployed peer-to-peer network monitorindieap
http:/www.heroku.com tion could be seen as a preliminary support for collectiragict
Bhttp:/fjelastic.com and dynamic information required to our future cloud brahkgr
Yhttp://openshift.redhat.com algorithms.

Bhttp://frascati.ow2.org Some lessons can be learnt from this experiment:

8http://webservices.daehosting.com/services/isbitewso
http://ws.xwebservices.com/XWebEmailValidation/VR&bEmail Heterogeneous laaS/PaaS managemeurrently, each laaS/Pa-

Validation.wsdl aS provides its own management tools (client SDK, Web
Bhttp://www.webservicex.net/globalweather.asmx Service or REST API, Web-based dashboard) for provision-
http://www.ohloh.net/api ing laaS/Paas resources, deploying SaaS, and monitoting al

Dhttp://freegeoip.net the hardware and software resources. Then for our experi-



ment, we develop different scripts for managing each tar- i.e., PaaS shared by applications deployed by differera-org
geted laaS/PaaS. Future multi-Cloud platforms will there- nizations. Then, each application would define its own se-
fore require to provide an abstraction to deal with the man- curity access control policy for fine-grained reconfigurati
agement variability of laaS/PaaS. Here, SCA amh§&-
CATI could be appropriate candidates for designing and im- . .
plementing such a multi-Cloud management facility as a 4. Different Degrees of Adaptatlon
service.

We believe that the above described experiment provides a si

Saas portability Our experiment shows the capability to deploy nificant example of the variety of requirements that a modisn

the same SaaS (here six SCA applications running on FraS-tributed application has to face. The middleware systemthed
CAti) over different PaaS/laaS. This Saas portability isma  application have to be flexible enough in order to incorposatoo-
ly due to the adoption of the Java programming language thly these different features. In the following subsedtione ad-
and the WAR packaging format. However, GAE provides a vocate that, to achieve such a challenge, several degresapf
Java sandbox supporting a strict subset of standard Java APItation are required: at design time and at runtime.
For example, a GAE application cannot write on the filesys-
tem, spawn a sub-process or a thread, or use a signed JAR4,1  Adaptation at Design Time
Thus, this requires to be able to select the right SaaS fatur
according to laaS/Paas restrictions. Moreover, each RPaaS/
aaS provides its own specific cloud services for user man-
agement, data storage, efficient intra-Cloud communieatio
and coordination, etc. Another challenge will be then te pro
vide cross-Cloud application programming interfaces that
abstract common cloud platform services and make SaaS
more portable.

At design time, the adaptability of the platform relies oe th
combination of two mechanisms: a plugin-like SCA-basedhiarc
tecture, and feature diagrams.

The FRASCATI platform has been designed as a plugin-based
architecture in order to let it to be adapted to many diffexemi-
ants of execution environments. The motivating idea is tbéna
platform developer to select the right and minimal set ofdess
she needs to compose her platform on demand. The variability
obtained here mainly corresponds to the independence niepe
of SCA enumerated in Section 2: component implementation la

, bindin hnologies, and interf finiti .
PaaS hosting the _six depl_oyed SCA-based applications. Ingu?sei1 rt;]a?tergotfe gxa%g%?isgsctiﬂasagiis etxc;gtu::)ggjp_
future work, we will experiment the deployment oRES- port different component implementation languages: JAREL,
CATI on top of laaS without requiring a standalone Web  gpring Fractal ADL, OSGi (Equinox, Felix, or KnopflerfisSga-
application Paas like Jgtty, Tomcat, GIas_sFlsh or JBa@ss, la, scripting languages (BeanShell, FScript, Groovy, Savit,
see RASCATI as a native PaaS. This WI|| reduce both the JRuby, Jython, Xquery), Apache Velocity, Web resourcesn-Si
memory consumption and deployment time. ilarly, 11 FRASCATI plugins support different binding technolo-
) ) . » gies: HTTP, JMS, JSON-RPC, REST, Java RMI, SOAP, JGroups,
Fine-grained reflectivity and scalability FRASCATI adds an ex- SLP, UPnP, OSGi, and JNA. AdditionaRESCATI plugins exist
tra layer of indirection between applications and undedyi 5 support different interface definition languages (JAVSDL,
PaaS/laaS. This high level abstraction layer mainly imple- ypnp service description). These plugins are designechapiehi
ments SCA heterogeneity support and fine-grained reflec- mented as SCA components, which can be embedded or not in the
tive capabilities on top of the low level Java Serviet APIpro  grchitecture of the platform. An API is provided for deveitap
vided by underlying used PaasS. Our experiment shows that ey plugins in order to address unforeseen requirementthéfu
SCA heterogeneity support an&kSCATI fine-grainedre-  mqre; several other functionalities of the platform (reenBEST
flectivity are compatible with Cloud computing scalability management, Web Explorer, dynamic code generation andicomp
and can be combined to build large-scale heterogeneous mu'tation, SCA metamodel parsing, etc.) are also plugin-béesad-

FRASCATI as a SaaS and a PaaFRASCATI is part of the SaaS
stack (the WAR) we deploy on the thirteen Web application
containers. However, BASCATI could also be seen as a

ti-Cloud systems. ing to a set of 62 existing plugins in thekESCATI code bas® at
] ) ) ) the date of the writing of this paper.
Reconfiguration and security Currently, RASCATI provides re- The experiment described in Section 3 used R2ECATI plu-

mote fine-grained reconfiguration services but without secu gins: 2 component implementation languages (Java and &pach
rity access control. So any remote program could reconfig- velocity), 3 binding technologies (HTTP, REST, SOAP), Zint
ure SCA applications. At the beginning of the experiment, face languages (WSDL, Java), 3 metamodels (OSOA SGAS-
Web robots like Google indexed HTML pages dynamically car| SCA, FRASCATI Web), 8 core plugins (SCA parser, As-
generated by RASCATI WEB EXPLORER and then ran-  semply Factory, Component Factory, Binding Factory, renii-
domly start and stop SCA components of the six deployed ST management, FASCATI Web Explorer), and 4 plugins for
applications introducing some denial of services. Thiggss  dynamic code generation and compilation. However, theftast
was easily resolved by using the Robots Exclusion Proto- pjugins were not deployed on GAE because they require t@writ
col!. Therefore, when building public reflective cloud sys- on the filesystem which is forbidden by GAE.

tems, a tension exists between fine-grained SaaS reconfigu-  Thjs plugin-based mechanism enables a first degree of flexibi
ration and security access control. A future challenge will ity on a per needed functionality basis. All the possibleficnma-

be to mitigate this tension, especially for multi-tenarda®,  tions of the platform which can of be obtained from 6245 CATI

Zhttp://www.robotstxt.org Z2http://websvn.ow2.org/listing.php?repname=frascati



plugins is huge. Yet, it appears that not all plugins are catibfe
with each other and that some plugins correspond to sulsésatu
of a given feature. In order to rule the complexity generdigd
this high degree of variability, in [1], we proposéeature dia-
gramsto obtain aSoftware Product Lin€SPL) for the RASCATI
platform. An SPL can be defined &s set of software-intensive

has been presented in the previous section. Features ale imp
mented by one or several components. Furthermore, thet g
closer to the level where the developer may wish to interaitt w
the system: this is easier to reason in terms of added or regnov
features than in terms of the set of components which impikéme
them. Thus, in future work, we plan to extena &S CATI Script

systems that share a common, managed set of features and thawith feature-based reconfiguration capabilities.
are developed from a common set of core assets in a prescribed

way" [7]. A Feature Model is used to compactly define all fea-
tures in an SPL and their valid combinations [2]. This SPL en-
ables the developer to finely select the configuration of the p
form that matches SaaS needs with the guarantee that it avill b
legal with respect to the composability of theASCATI plugins.
An exhaustive description of theRRSCATI SPL is available at
http://frascati.ow2.org/doc/1.4/chl2. htn.
Overall, the plugin-based architecture and the SPL proside
way to address the interoperability and the geo-diversiaflenges
identified in Section 1. We can select and configure the right s
lutions enabling multi-Cloud systems to interoperate at$®aaS

5. Related Work

Virtual laaS solutions.

BitNami, CloudBees, DotCloud, Heroku, and OpenShift are
Cloud computing providers acting as Cloud intermediariegrio-
viding developers with an application server provisionadap of
the Amazon EC2 laaS. These providers are therefore offering
dedicated PaaS on top of an existing laaS, but these satution
not cross the boundaries of Amazon EC2 and cannot be used to de

level. In addition, we believe that the SPL approach can be ap ploy a multi-Cloud system. The solution we propose in thisgra

plied to the laaS/ PaaS levels as well, in order to reason @n th
characteristics needed for deploying a particular Saas.

4.2 Adaptation at Execution Time

The execution time adaptation of th& K<SCATI platform re-
lies on two core features: introspection and reconfigunatioone
side, and dynamic deployment of reconfiguration scriptshan t
other side.

The RRASCATI platform follows the principles of component-
based software development. The application and the phathoe
built as hierarchies of components. The architecture cfdlvem-
ponents are reified at runtime enabling to discover theiamish-
tion in hierarchies, their connections, the services thieyide and
require, their properties. Furthermore, these charatiesican be
modified in order to adapt the application to new needs atmant
Overall, this introspection and this reconfiguration carapplied
at three levels: for the application executed by the platfdor the
non-functional services (such as transaction, secutity), esed by
the application, and for the container hosting the apptcatom-
ponents, read [12] for more details. Currently, our multu@
platform exposes both remote REST management &abEATI
Web Explorer allowing users to introspect and reconfigulréhal
components of the six SCA-based applications and HeFCATI
platform.

The second feature for execution time adaptation is refated
the possibility of dynamically deploying a reconfiguratiscript.
The FRASCATI Script DSL has been designed for that [12RAS-

rather builds on virtual l1aaS platforms to provide a unifigetio
programming model for SaaS, based on the SCA standard.

Provisioning of heterogeneous laasS.

Most of the current research activities focus on the promisi
ing of web applications in heterogeneous Clouds [8, 9]. &hes
approaches are resource allocation algorithms that mhehet
sources of the node provisioned by the laaS (CPU, I/O) inrorde
to maximize the performances of the deployed PaaS. Although
these approaches do not apply to multi-Cloud systems, vievieel
that they can be used for considering the automatic praovisip
of Clouds according to pricing and latency dimensions. Bgve
open source libraries exist to manage heterogeneous lag$lg-
ploy images and create/start/stop/destroy virtual mashisuch
as Apache Deltaclodd, Apache Libcloud’, jcloud$®, and Sim-
pleCloud®. Each of them provides its own API abstracting the
heterogeneity between underlying laaS management APemMev
theless, these abstractions are too low level as they ga@arndm-
perative programming model instead of a declarative model.

SCA-based SaaS.

To avoid the vendor lock-in syndrome, [11] proposes an SCA-
based format for packaging and deploying multi-tenant awan-
figurable composite SaaS applications. This format ext&s
with variability descriptors and SaaS multi-tenancy pate We
think that this SCA-based format can be reused or extended fo
multi-Cloud systems. To avoid lock-in to a specific cloud lagap
tion platform, Apache Nuvefd defines an open SCA-based appli-

CATI Script provides a dedicated syntax to wrap the basic recon- cation programming interface for common cloud applicagen-

figuration actions, such as navigating the component libyamn-
trospecting/modifying connections, starting/stoppingponents,
setting properties. A dedicated API is provided bgASCATI
for remotely deploying and executing these scripts. They by
this way, adapt the platform and the application to the nem+ co
figuration. For instance, FASCATI Script can allow to program
management scripts for the monitoring peer-to-peer nétveog,

adding a new peer or removing a broken down peer implies bind-

ing/unbinding all other peers, respectively.

The adaptation performed by &ESCATI Script is currently
applied at the granularity of a component or a compositicsoof-
ponents. This is somewhat much finer than the feature levéthwv

vices, allowing applications to be easily ported acrossntivst
popular cloud platforms. [4] shows how to build and integrat
SCA-based composite applications using Apache Tuscam¥zuh
calyptus open source cloud framework, and OpenVPN to ceeate
hybrid composite application. Technical talks at JavaCoE0?

Bhttp://incubator.apache.org/deltacloud
Z4http://libcloud.apache.org

Bhttp:/ww.jclouds.org

http://simplecloud.org
Z'http://incubator.apache.org/nuvem
Bhttp://www.slideshare.net/luckbr1975/s314011-depieig-



and ApacheCon NA 2070 presented how to develop composite
applications for the Cloud using Apache Tuscany. Our expeni

is distributed across a larger multi-Cloud platform amhS CATI
brings reflective capabilities to SCA, which is not the case f
Apache Tuscany.

deliver SaaS whenever evolutions are required, while scal-

ability addresses the provision and the deployment of the

SaaS on a very-large number of nodes. Such a continuous
service delivery could be implemented by a virtual PaaS so-

lution that supports the seamless deployment of SaaS.

Autonomous Managementcopes with the challenges addressed

6. Conclusion, Challenges & Perspectives

This paper reports on the first experiment towards an adap-
tive and reflective middleware platform for world-wide saale
heterogeneous multi-Cloud systems. We advocate that tieflec
middleware-based solutions are needed to adapt apphsat®m
different cloud systems. In this paper, we present the tesso
learnt from deploying cloud applications on Amazon EC2, Ama
zon Elastic Beanstalk, BitNami, CloudBees, Cloud Founbot-
Cloud, Google App Engine, Heroku, InstaCompute, Jelaatid,
OpensShift. We advocate that adaptation is required botesiyd
time and at runtime to match the broad range of variabilitized
by cloud platforms.

Beyond the traditional challenges identified by Cloud cotnpu
ing environments (scalability, elasticity, etc.), our eiments rai-
ses more specific challenges related to the development @fva n
generation of multi-Cloud systems. In particular, we cdasthat
these complex systems are characterized by a wide diversity
technologies, capabilities, and locations, which recuirew tool-
ing solutions to cope with the scale and the complexity issue

Complex Architecture Description addresses a design challenge
related to the description of SaaS that spawns billions of
nodes. In such a context, traditiorechitecture descrip-
tion languagefADL) offer a limited support to leverage the
description of these systems as they provide atomic idioms
to describe exhaustively every single component involved.
With regard to this challenge, we believe that high-level de
sign approaches like design patterns or macro-programming
can contribute to foster the development of complex and
scalable architectures.

Consistent Software Configuration refers to the exploration of
approaches, such awftware product line¢SPL), in the
context of Cloud Computing to cover the configuration of
SaaS and their dependencies according to specific Cloud of-
fers. Given that each solution imposes constraintsdiie-
ware development kitSDK), libraries €.g, Java), operat-
ing system, or resources (memory, processor, etc.), applic
tions have to check their configuration with regards to these
constraints. We therefore consider that appropriate nsodel
should be defined to assist in the consistent configuration of
the SaaS/PaaS/laasS layers.

Continuous Service Delivery refers to the scalable and dynamic
brokering and deployment of a system across a cloud of
clouds. This challenge exhibits the need for an abstraction
that federates existing clouds as an open infrastructuze us
to deploy SaaS in an agile and scalable manner. Agility
refers to the capability of the infrastructure to continsigu

composite-applications-for-the-cloud-with-apachseany
http://www.slideshare.net/jsdelfino/apachecon-nad28da-
reaches-the-cloud-developing-composite-applicatfonshe-
cloud-with-apache-tuscany

by the autonomic computing communityi-e:, the monitor-

ing, analysis, and reconfiguration of very-large-scale sys
tems. While autonomic computing technics are already em-
ployed at the scale of a Cloud to ensure the reliability and
the optimization of the infrastructure, no solution addess

the autonomous management of a SaaS deployed as a multi-
Cloud system. For example, such a management infrastruc-
ture can be used to monitor the pricing variations of a given
Cloud solution, and consider alternative deployments for a
given SaaS. In the context of GreenlT, a green policy could
consist in migrating the Saas to a different location accord
ing to the availability of green energies (solar, wind, etc.
We therefore believe that the autonomous management in-
frastructure should be designed and deployed as a reflective
SaasS that can scale in synchrony with the managed multi-
Cloud system.

Cloud Language Unity finally groups all the above challenges

7.

(1]

(2]

(3]
(4]

(5]

(6]

into the definition of a multi-view dynamic language, which

is continuously synchronized with the SaaS, independently
of its current state (designed, configured, deployed, run-
ning). Although each step of the Saas lifecycle is handled
by different stakeholders, we believe that a common lan-
guage should be adopted to ease the mapping and the syn-
chronization of the concepts involved in each phase. This
language should therefore be able to switch seamlessly be-
tween models used at design-time and those maintained at
runtime €.g, Model@runtime) and expose the appropriate
operations.
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