
HAL Id: inria-00629503
https://hal.inria.fr/inria-00629503

Submitted on 6 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating CRDTs for Real-time Document Editing
Mehdi Ahmed-Nacer, Claudia-Lavinia Ignat, Gérald Oster, Hyun-Gul Roh,

Pascal Urso

To cite this version:
Mehdi Ahmed-Nacer, Claudia-Lavinia Ignat, Gérald Oster, Hyun-Gul Roh, Pascal Urso. Evaluating
CRDTs for Real-time Document Editing. 11th ACM Symposium on Document Engineering, Sep 2011,
Mountain View, California, United States. pp.103–112, �10.1145/2034691.2034717�. �inria-00629503�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49956609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00629503
https://hal.archives-ouvertes.fr

Evaluating CRDTs for Real-time Document Editing∗

Mehdi Ahmed-Nacer
Université de Lorraine

LORIA
54506 Vandœuvre-lès-Nancy,

France
mahmedna@loria.fr

Claudia-Lavinia Ignat
INRIA Nancy - Grand Est

LORIA
54600 Villers-lès-Nancy,

France
ignatcla@loria.fr

Gérald Oster
Université de Lorraine

LORIA
54506 Vandœuvre-lès-Nancy,

France
oster@loria.fr

Hyun-Gul Roh
INRIA Nancy - Grand Est

LORIA
54600 Villers-lès-Nancy,

France
roh@loria.fr

Pascal Urso
Université de Lorraine

LORIA
54506 Vandœuvre-lès-Nancy,

France
urso@loria.fr

ABSTRACT
Nowadays, real-time editing systems are catching on. Tools
such as Etherpad or Google Docs enable multiple authors
at dispersed locations to collaboratively write shared docu-
ments. In such systems, a replication mechanism is required
to ensure consistency when merging concurrent changes per-
formed on the same document. Current editing systems
make use of operational transformation (OT), a traditional
replication mechanism for concurrent document editing.

Recently, Commutative Replicated Data Types (CRDTs)
were introduced as a new class of replication mechanisms
whose concurrent operations are designed to be natively
commutative. CRDTs, such as WOOT, Logoot, Treedoc,
and RGAs, are expected to be substitutes of replication
mechanisms in collaborative editing systems.

This paper demonstrates the suitability of CRDTs for
real-time collaborative editing. To reflect the tendency of
decentralised collaboration, which can resist censorship, tol-
erate failures, and let users have control over documents,
we collected editing logs from real-time peer-to-peer collab-
orations. We present our experiment results obtained by
replaying those editing logs on various CRDTs and an OT
algorithm implemented in the same environment.

Categories and Subject Descriptors
I.7.1 [Document and Text Processing]: Document and
Text Editing; D.2.8 [Software Engineering]: Metrics—

∗This work is partially funded by the french national re-
search programs ConcoRDanT (ANR-10-BLAN-0208) and
STREAMS (ANR-10-SEGI-010).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’11, September 19–22, 2011, Mountain View, California, USA.
Copyright 2011 ACM 978-1-4503-0863-2/11/09 ...$10.00.

complexity measures, performance measures; C.2.4 [Computer-
Communication Networks]: Distributed Systems—Dis-
tributed applications

General Terms
Algorithms, Experimentation, Performance

Keywords
Real-time Editing, Collaboration, Benchmark, Commuta-
tive Replicated Data Types

1. INTRODUCTION
Collaboration is a very important aspect of any team ac-

tivity and hence of importance to any organisation such as
business, science, education, administration, political or so-
cial institutes. Central to collaboration is editing of shared
documents. Collaborative editing has to take into account
the geographical distribution of team members, possibly across
a wide range of time zones, together with the mobility of in-
dividuals. Collaborative systems require that users be able
to edit shared documents as easily as one edits a single-
author document. The major benefits of collaborative edit-
ing include reducing task completion time, reducing errors,
getting different viewpoints and skills, and obtaining an ac-
curate text [13, 27].

The nature of collaboration varies extensively in terms of
strategies and proximity of writing groups [27]. For instance,
there exist various writing strategies; users can jointly write
a document by working closely together; or they can work
separately, and afterwards their works are subject to review
by other group members. According to proximity, all mem-
bers of some groups can work in the same location and on
the same time schedule, while other groups work on different
schedules and may be located thousands of miles apart.

Depending on such strategies and proximities, the collab-
oration between users can be synchronous or asynchronous.
In asynchronous collaboration, members of the group modify
the copies of the documents in isolation, synchronising after-
wards their copies to re-establish a common view of the data.

Synchronous or real-time collaboration means that modifica-
tions by a member are immediately seen by other members
of the group. Such real-time and synchronous features could
be very helpful; for example, when a paper deadline is im-
minent, authors of a paper can avoid the time consumed
for synchronisation of the copied documents and can edit
their parts, being aware of the changes made by the other
members.

Recently, real-time collaborative editing gained much at-
tention as Google Docs and Google Wave support such fea-
tures. It is also a main subject of investigation by recent
user studies [20] that focus on user behaviour during real-
time collaboration. This paper focuses on consistency main-
tenance algorithms for real-time collaborative editing.

Data replication is necessary in collaborative editing to
achieve high responsiveness. Many mechanisms dealing with
data replication have been introduced. In the domains of
replicated databases, pessimistic approaches are usually used,
which gives users the illusion of a single copy [1]. High avail-
ability can be obtained by allowing read operations on any
replica, while update operations have to be atomically ap-
plied on all replicas. Pessimistic approaches cannot ensure
high responsiveness for real-time collaboration because the
initiator of an update should acquire an exclusive access, and
an update cannot be applied immediately before resolving
conflicts.

Optimistic replication [19] is a family of approaches suit-
able for real-time collaboration. Compared to pessimistic
approaches, optimistic replication needs no atomic update.
Though replicas are allowed to diverge temporarily, they are
expected to converge eventually.

Optimistic synchronisation algorithms are classified into
state-based and operation-based. State-based approaches
use only information about the different states of the docu-
ments and no information about the evolution of one state
into another. Examples of state-based approaches are three-
way merges adopted by version control systems such as Sub-
version [3] and differential synchronisation approaches [5].
On the other hand, operation-based merging approaches
keep the information about the evolution of one state of
the document into another in a buffer. The merging is done
by executing the operations performed on a copy of the doc-
ument onto the other copy of the document to be merged.
State-based approaches are generally not suitable to be used
in the real-time communication as the difference between
versions has to be computed each time an operation is per-
formed resulting in an increased time complexity. In this
paper we study operation-based optimistic synchronisation
approaches.

Operational transformation (OT) approach has been iden-
tified as an appropriate operation-based synchronisation mech-
anism for real-time collaboration [4, 17, 25, 12, 24, 29, 26].
Modifications are represented by means of operations such
as insertion and deletion of a character in the case of textual
documents. OT changes the index of an operation based on
the history of operations in order to take into account the
effects of concurrent operations and to eventually achieve
consistency. A few commercial document editing systems
such as Google Wave and Google Docs adopt centralised OT
algorithms, such as Jupiter [12]. However, the centralised
approaches may store not only shared documents and all
changes, but also some personal information, which could

be a privacy threat, in the hands of a single large corpora-
tion.

In order to overcome the disadvantages of central author-
ity, i.e., to let users have control over their documents, to
resist censorship, and to tolerate failures, a tendency is to
move towards decentralised peer-to-peer collaboration [2].
This solution is suitable for user communities that rely on
sharing their infrastructures and administration costs. An
example of this tendency in the domain of real-time col-
laborative editing is Microsoft SharePoint Workspace 2010
[22] (previously known as Groove). This software allows
documents of desktop office applications to be synchronised
through a peer-to-peer network of SharePoint servers while
managing security of local copy. However, most decentralised
OT algorithms use version vectors [24, 26] or central times-
tamps [29] to detect concurrent operations which do not
scale well in cloud and peer-to-peer environments with dy-
namic groups.

Performance is a key factor of the success of real-time col-
laborative applications. If these applications cannot quickly
respond to user actions, users may get frustrated and will
quit the application. Studies in [23, 8] found that people
can comfortably notice changes which respond to local and
remote actions within 50ms.

Very recently, a new class of algorithms called CRDT
(commutative replicated data types) [15, 31, 16, 18] that en-
sures consistency of highly dynamic contents on peer-to-peer
networks emerged. Unlike OT algorithms, CRDTs require
no history of operations, and no detection of concurrency
in order to ensure consistency. Instead, they are designed
for concurrent operations to be natively commutative by ac-
tively using the characteristics of abstract data types such
as lists or ordered trees. However, CRDT algorithms have
not yet been applied for real-time collaborative editing.

In this paper, we investigate the suitability of CRDT al-
gorithms by performing evaluations of CRDT algorithms
against real editing logs of real-time peer-to-peer collabora-
tion. The results we obtained show that CRDT algorithms
are suitable for real-time collaboration and that they out-
perform a representative class of OT approaches.

The paper is structured as follows. In the next section,
we start by giving an overview of main CRDTs and OT al-
gorithms, and study their theoretical complexity. Then, we
describe how we designed real-time peer-to-peer collabora-
tions from which the editing logs are collected, and provide
some details on the logs. We then provide evaluation results
of the analysed CRDTs and OT algorithms by replaying the
collected logs. We also compare our work with existing ex-
perimental results of related work. In the last section we
provide concluding remarks and directions of future work.

2. STUDIED REAL-TIME DOCUMENT
EDITING ALGORITHMS

In the nineties, various OT algorithms have been proposed
[4, 17, 25, 12, 24, 29, 26, 10]. They constitute the ground-
work of CRDT approaches that emerged in the last decade:
WOOT [15], Treedoc[16], Logoot[31], RGA [18], partial per-
sistent data structure (PPDS) [33] and causal tree model [6]
were presented.

In the following subsections, we briefly describe some rep-
resentative algorithms belonging to the families of CRDT

and OT approaches. We also provide their theoretical com-
plexities.

2.1 WOOT Algorithm
WOOT [15] is the first CRDT algorithm which was pro-

posed. Operations used by this algorithm are insertion and
deletion of elements in a linear structure. Elements are
uniquely identified. An insertion is defined by specifying the
new element identifier, the element content and the identi-
fiers of the preceding and following elements. Concurrent
operations determine partial orders between elements. The
merging mechanism can be seen as a linearisation of the par-
tial order to obtain a total order. To obtain convergence,
the total order has to be the same at all peers. As opera-
tions are integrated in any order at a site, merging has to
be computed incrementally and independently of the order
of arrival. WOOTO [30] is an optimisation of WOOT that
uses element degree to compare unordered elements.

The advantage of these algorithms is their suitability for
open user groups where users often join and leave the net-
work. Moreover they do not require a causal delivery of op-
erations. A disadvantage is that the algorithms use tomb-
stones, i.e. elements are not physically deleted but only
marked as deleted. Since tombstones cannot be removed
without compromising consistency, performance degrades
during time.

We designed a new version of WOOTO, called WOOTH,
inspired by RGA approach. A hash table and a linked list
are used for optimising retrieval, update and insertion of an
element.

2.2 Logoot Algorithm
Logoot [31] is another CRDT approach that ensures con-

sistency of linear structures. Logoot associates to the list
of elements of the structure, an ordered list of identifiers.
Identifiers are composed by a list of positions. Positions
are 3-tuples formed with a digit in specific numeric base,
a unique site identifier and a clock value. When inserting
an element, Logoot generates a new identifier. Identifiers
have unbounded lengths and are totally ordered by a lexico-
graphic order. So a new identifier can always be generated
between two consecutive elements. Different strategies can
be adopted to produce the new identifier [32], all of them
using randomness to prevent different replicas to produce
concurrently close identifiers.

The advantage of Logoot is the absence of tombstones and
an improvement of the algorithmic complexity compared to
WOOT/WOOTO/WOOTH. A disadvantage is the size of
the identifier that can grow unbounded. However, experi-
ments made on collaboration traces produced on Wikipedia
shown that the size of identifiers stays low even for largest
collaborative contributions [32].

2.3 Replicated Growable Array (RGA)
Replicated growable array [18] is a CRDT that supports

not only insertion and deletion but also update operations
which replace the content of an element without changing
the size of the document. In this paper, we evaluate only
insertion and deletion operations. RGAs maintain a linked
list of elements, via which local operations find their target
elements with integer indexes. Meanwhile, a remote oper-
ation retrieves its target element via a hash table with a
unique index of the target.

As a unique index, the paper [18] introduces s4vector con-
sisting of four integers. A unique s4vector is issued with
every operation, and the oldness or newness of multiple
s4vectors can be determined transitively, respecting causal-
ity. Using the properties of uniqueness and transitivity, the
s4vector associated with the insertion that creates an ele-
ment is used as a unique index of the element, which is also
used to resolve conflicts between concurrent insertions at the
same position. An insertion compares its s4vector with the
s4vector identifiers of elements next to its target element,
and adds its new element in front of the first encountered el-
ement that has an older s4vector. That is, a newer insertion
inserts an element closely to its target position with higher
precedence than relatively order concurrent insertions. Such
precedence transitivity, realised with s4vectors, ensures con-
sistency of concurrent insertions. As some other CRDTs,
RGAs also uses tombstones for deleted elements. Tomb-
stones should be preserved as long as they can be accessed
by other remote operations.

2.4 Operational Transformation Algorithms
Most representative OT algorithms that do not make any

assumption on using a central server for a total order broad-
cast of operations are SOCT2 [24] and GOTO [25] algo-
rithms. The principle of this class of algorithms is that when
a causally ready operation is integrated at a site, the whole
log of operations is traversed and reordered. After reorder-
ing, causally preceding operations come before concurrent
ones in the history buffer. Finally, the remote operation has
to be transformed according to the sequence of concurrent
operations. In order to reduce the complexity of the inte-
gration mechanism of a remote operation, history buffer is
pruned by using a garbage collection mechanism as proposed
in [9, 26]. Replicas use this mechanism to remove operations
they know to be received by all other replicas. However, the
garbage collection mechanism has no effect in open peer-to-
peer networks were users often join and leave.

These algorithms require transformation functions satis-
fying conditions C1 and C2 [17, 24]. Satisfying C1 allows
executing in any order two concurrent operations defined on
the same document state while ensuring convergence of the
document. C1 is sufficient with only two sites or in client-
server applications. C2 expresses the equality between an
operation transformed against two equivalent sequences of
operations. These two conditions ensure that transforming
any operation with any two sequences of the same set of con-
current operations in different execution orders always yields
the same result. C1 and C2 are sufficient for ensuring con-
vergence in a peer-to-peer architecture. In [7], it was shown
that many proposed transformation functions fail to satisfy
these conditions. The only existing transformation functions
that satisfy conditions C1 and C2 are the ones proposed by
the TTF (Tombstone Transformation Functions) approach
[14]. In the TTF approach when a deletion of a character
is performed, the character is not physically removed from
the document, but just marked for deletion, i.e. deleted
characters are replaced by tombstones.

2.5 Theoretical Evaluation
The worst case complexity for each of the above described

algorithms is presented in Table 1. We consider the time
complexity of generation of a local user operation (single
character insert or delete) and for the execution of a remote

operation. We denote by R the number of replicas and by H
the number of operations that had affected the document.
We consider constant time for accessing an element in a hash
table. In the worst case scenario for the approaches that use
tombstones, the document size including tombstones equals
H. For the approaches that use state vectors we took into
account the complexity of state vector creation, i.e. O(R),
associated with the operation at the moment of its genera-
tion.

Algorithm
local remote

ins del ins del

WOOT O(H3) O(H) O(H3) O(H)

WOOTO O(H2) O(H) O(H2) O(H)

WOOTH O(H2) O(H) O(H2) O(log(H))
Logoot O(H) O(1) O(H.log(H)) O(H.log(H))
RGA O(H) O(H) O(H) O(log(H))

SOCT2/TTF O(H + R) O(H + R) O(H2) O(H2)

Table 1: Worst-case time-complexity analysis

The average complexity of each of the above described al-
gorithms is presented in Table 2. We denote by:

c the average number of operations concurrent to a given
one,

n the size of the document (non deleted characters),
N the total number of inserted characters (including the

ones that were deleted called tombstones),
k the average size of Logoot identifier1.
t = N − n the number of tombstones,
d = d(t+c)/ne the average number of elements (tombstones

and concurrently inserted elements) found between to
successive document elements

Algorithms using tombstones (WOOTs, RGA and TTF)
have a complexity depending on N for retrieving an element
or a document position in their model. WOOT algorithms
have a complexity proportional to d2 since they call a re-
cursive algorithm to place a newly inserted element between
these O(d) elements. RGA algorithm compares a remote in-
serted element only with the elements inserted concurrently
at the same position (c/n in average). The SOCT2 algo-
rithm reorders each operation of the log against O(c) concur-
rent ones. With an efficient garbage collection mechanism,
there are O(c) operations in the SOCT2 log.

Algorithm
avg. local avg. remote

ins del ins del

WOOT O(N.d2) O(N) O(N.d2) O(N)

WOOTO O(N.d2) O(N) O(N + d2) O(N)

WOOTH O(N + d2) O(N) O(d2) O(1)
Logoot O(k) O(1) O(k.log(n)) O(k.log(n))
RGA O(N) O(N) O(1 + c/n) O(1)

SOCT2/TTF O(N + R) O(N + R) O(H.c) O(H.c)

with g.c. O(N + R) O(N + R) O(c2) O(c2)

Table 2: Average time-complexity analysis

The space complexity of meta-data used by each replica
is presented in Table 3. In average, algorithms using tomb-

1Theoretically, the size of a Logoot identifier is only bounded
byH, but due to stochastic nature of Logoot identifier gener-
ation, it has only an infinitesimal chance to be proportional
to H.

stones need to store N elements in their model. Logoot
stores n identifiers with an average size of O(k). SOCT2
additionally stores a log of operations, each one containing
a version vector with size of O(R).

Algorithm
space complexity

worst average

WOOT-WOOTO-WOOTH O(H) O(N)

Logoot O(H2) O(k.n)
RGA O(H) O(N)

SOCT2/TTF O(H.R) O(H.R)
SOCT2/TTF with g.c. O(H.R) O(N + c.R)

Table 3: Space complexity analysis of meta-data

3. OBTAINING LOGS FROM REAL-TIME
P2P COLLABORATION

Currently, some commercial real-time collaboration sys-
tems such as Google Docs are on service, but their logs are
not complete and freely available. For example, the revision
log provided by Google server is a serialisation of user op-
erations transformed by the Jupiter algorithm [12]. There-
fore, the revision logs open to the public do not include the
information needed for replaying the real-time peer-to-peer
collaboration, such as version vectors.

Due to unavailability of logs of the real-time peer-to-peer
collaboration, we set up an experiment where we asked stu-
dents to collaboratively write documents by using a collab-
orative editor and logged a number of operations generated
during this experiment.

3.1 Design of Real-time P2P Collaborations
We designed real-time peer-to-peer collaborations in order

to obtain their logs. In this section, we describe the collab-
oration design and some features of the obtained operation
logs such as their lengths and operation types. TeamEdit [28]
is the real-time collaborative editor used in our collabora-
tions. We modified it in order to log user operations per-
formed during the collaboration. TeamEdit software uses a
central server, but only to establish communication between
the different sites. It does not serialise the operations, nor
uses the server as a merge mechanism for concurrent opera-
tions. Students could use the undo/redo feature we added to
TeamEdit, but, however, these operations were transformed
into the corresponding insert/delete operations.

We performed two collaborations with groups of students:
report and series. The first collaboration (report) was per-
formed with 13 master students divided into three groups:
two groups composed of 4 students and one group composed
of 5 students. Each group was asked to collaboratively write
a report of its semester project in the Software Engineer-
ing lecture. Each student in a group worked on the report
from a private computer, and was not allowed to use any
other communication tools except TeamEdit. The collabo-
ration lasted for one and a half hours. Collaboration was
encouraged by noticing that each student will be evaluated
according not only to the content of the report but also to
the size of his/her contribution. Students were allowed to
copy-paste text blocks from some other documents.

In our second collaboration (series) that lasted for about
one and a half hours, we asked 18 students to watch an

episode of the series “The Big Bang Theory” and to pro-
duce a transcription of the episode while watching it. The
transcription of the episode was edited into a shared docu-
ment with TeamEdit editor. Students were divided into nine
groups of two, and each group was asked to make a tran-
scription of a certain hero or to describe the environment
and actions that happened during the episode. During this
collaboration, students were allowed to communicate mutu-
ally. Each student had his/her own computer for editing the
shared document. The same episode was played twice, and
we assigned different groups to each task in order to obtain
more operations from the collaboration.

To minimise internal threats to validity, the whole exper-
iment was conducted in the same period (during one morn-
ing), with the same working stations, and with students not
aware of our research and non experts in real-time collab-
orative editing. Of course, this experiment only captures a
subset of all the behaviors observable when users collabo-
rate. This selection bias can only be reduced with access
to the internal logs of a public widely used real-time edi-
tor. Another threat to validity is that the experiment was
conducted on a local area network. Thus, propagation time
between user desktops was shorter than in a wide area net-
work, leading to a slightly lower concurrency degree between
operations. Thus, one can expect sightly lower performance
for all studied algorithms in wide area networks.

3.2 Description of Collaboration Logs
TeamEdit was modified to log the following user opera-

tions: insertions of a text block and deletions of a range of
characters. Text blocks and ranges have a size of one char-
acter when a user types on the keyboard. They have a larger
size when a user copy-pastes a text block or deletes a selected
block. When an operation is generated it has associated a
version vector that indicates the number of operations re-
ceived by the generating site from each of the other sites. In
order to apply the studied algorithms on the generated logs,
user operations must be transformed into character opera-
tions. In the Table 4, the total numbers of user operations
and character operations are specified for all the collabora-
tions, the report and the series.

Report Series
group 1 group 2 group 3 doc 1 doc 2

No. user
11 211 11 066 13 702 9 042 9 828

operations
No. char.

26 956 47 992 42 443 29 882 10 268
operations
% of del 12 12 12 9 5

Table 4: Total number of user/character operations

The proportion of delete operations is smaller in the series
experiments due to the difficulty for non-specialists to type
a transcript as quickly as actors talk. So the students had
less time to make corrections on their document.

We also observed that, without instructions from us, some
students disconnected and then reconnected to the real-time
collaboration session during almost all collaborations.

4. EXPERIMENTAL EVALUATION
To evaluate algorithms performance, we designed a frame-

work called ReplicationBenchmark in Java, and reveal the

source on GitHub platform2 under the terms of the GPL
license.

The framework provides base classes for common elements
of real-time document editing algorithms, such as document,
operation, generation and integration algorithms, and ver-
sion vector, so that each algorithm can be implemented by
inheriting them. The framework lets replicas of every al-
gorithm generate character operations in its own formats
for the given user operations in the logs; we first measured
this generation and local execution time of user operations.
The framework also provides a dispatcher that enables each
replica to receive generated character operations in the same
order as that in the logs. A replica, therefore, can execute
character operations, enabling measurement of the net exe-
cution time of character operations in each algorithm. The
framework uses java.lang.System.nanoTime() for the mea-
surement of execution time of each user operation and each
character operation.

To obtain the presented results, we ran each algorithm
on each log twenty times on the same JVM execution. The
heap size was 1GB. We compute the average execution time
per replica for each user operation and for each character
operation. From the obtained results, we remove the aber-
rant values due to java garbage collection, i.e. values more
than twice the average for a given operation.

We ran our experiments on a dual processor machine with
Intel(R) Xeon(R) 5160 dual-core processor (4Mb Cache, 3.00
GHz, 1333 MHz FSB), that has installed GNU/Linux 2.6.9-
5. During the experiment, only one processor was used.
We present no results for the WOOT algorithm since it is
obviously outperformed by its optimised versions WOOTO
and WOOTH algorithms.

4.1 Execution times

4.1.1 User operations
The execution times, in microseconds, of user operations

including generation of the corresponding character opera-
tions are presented in Table 5. We present the average and
the maximum response time, and the standard deviation σ3.

During execution of an operation the user interface of a
document editor is frozen and the user is prevented from
typing. If this value is greater than the 50ms, users will
notice the bad performance of the collaborative application.
The average values measured and presented in Table 5 give
the impression that all algorithms performed very well since
no average value is greater than 0.2ms. However, if we
consider 50ms as a limit for the maximum response time, the
algorithms belonging to the WOOT family cannot be used
safely to build a real-time collaborative applications since
the maximum value, confirmed by a high standard deviation,
is often greater than 50ms.

The maximum execution time, for every experiment and
algorithm, is almost always due to an operation inserting or
suppressing a block of hundreds, or thousands, of characters.
The only experiment where all algorithms perform very well
is the second series since there is no such user operation.

4.1.2 Character operations
The average execution time of character operations are

2http://github.com/PascalUrso/ReplicationBenchmark

3σ computed using the classical formula

√∑N
i=1 (xi−xav)2

N
.

Report Series
group 1 group 2 group 3 doc 1 doc 2

L
o
g
o
o
t Avg 6 7 7 5 5

Max 751 901 2 322 2 267 77
σ 10 18 26 30 3

W
o
o
t
H Avg 26 43 49 46 16

Max 3 623 40 042 156 407 164 934 453
σ 44 464 1 396 1 735 16

W
o
o
t
O Avg 43 112 96 110 23

Max 13 489 208 985 340 068 494 030 162
σ 207 2 948 3 331 5 388 16

S
O
C
T
2 Avg 21 40 30 27 19

Max 5 753 24 741 15 312 8 912 147
σ 85 389 190 119 16

R
G
A

Avg 27 32 32 20 17
Max 998 2 082 1 971 2 671 550
σ 32 46 38 52 19

Table 5: User operation execution times (in µs)

presented in Table 6. This value represents the computa-
tion time needed to integrate a remote incoming character
operation into the current document.

Report Series
group 1 group 2 group 3 doc 1 doc 2

L
o
g
o
o
t Avg 5 6 5 3 4

Max 91 127 110 80 36
σ 2 3 3 2 3

W
o
o
t
H Avg 2 4 7 8 2

Max 694 44 190 4 330 567 200
σ 8 211 24 17 3

W
o
o
t
O Avg 54 97 99 84 25

Max 2 027 72 937 8 903 1 334 133
σ 51 352 108 71 18

S
O
C
T
2 Avg 80 573 130 1 383 305

Max 5 286 13 278 5 832 20 727 2 848
σ 133 1 087 175 1 974 397

R
G
A

Avg 2 2 2 1 2
Max 750 1 295 1 002 403 252
σ 5 7 7 3 3

Table 6: Character operation execution times (in µs)

Since one user operation corresponds to one or more char-
acter operations (up to 5000 characters for the biggest copy-
paste), we expect that each algorithm performs better for
character operations. This is actually the case for almost
all maximum execution times. However, the WOOTO al-
gorithm still has a maximum execution time higher than
50ms.

The average character operation execution times are much
better than user ones for WOOTH and RGA algorithms (due
to hash table usage) and similar for Logoot and WOOTO.
The case of SOCT2 is different. SOCT2 has a low maximum
execution time but an average execution time that exceeds
1ms. Let us consider a user that copy-pastes a block of
5000 characters, as seen in our experiments. This user oper-
ation is translated into 5000 character operations that will
be executed one by one on the document replicas of other
users. It means that the other users will see the characters

of the inserted block appearing one by one in a total du-
ration of five seconds. This is not acceptable from a user’s
point of view. This performance issues are mainly due to
the transformation algorithm coupled with the inefficiency
of the garbage collection mechanism as seen in the behavior
study described in the next subsection.

Finally, concerning character operations execution times,
Logoot algorithm has the best maximum execution times
(MAX values in Table 6) and RGA has the best average for
every experiment.

4.1.3 Consistency with theoretical evaluation
The average results obtained for user and character op-

erations are consistent with the average time-complexities
presented in table 2. For local user operations, Logoot has
the best results with O(k)/O(1), WOOTO has the worst re-
sults with O(N.d2)/O(N) while RGA, WOOTH and SOCT2
have medium results with complexities around O(N). For
remote character operations, RGA and WOOTH have the
best complexities and best results, followed by Logoot.

The worst case complexities are also consistent with the
results obtained. WOOTO and WOOTH have the worst
maximum result for user operations withO(H2)/O(H). SOCT2
and WOOTO have the worst maximum results for character
operations with O(H2). These correlations validate our im-
plementation of the algorithms for average and worst cases.

4.2 Behaviour

0 20 40 60 80 100

101

102

operations (×100)

g
e
n
e
ra

ti
o
n
/
e
x
e
c
u
ti
o
n

ti
m
e
(i
n
µ
s)

Logoot

RGA

SOCT2

WootO

WootH

Figure 1: User operation execution times - 1st group
report

Since performance of all studied algorithms may degrade
over time due to tombstones or growing identifiers, we present
in this subsection performance behaviour over time.

The observed behaviour was approximately the same within
the two collaboration categories (report and series). We
therefore present here only a selection of the comparisons
we obtained for certain collaboration logs.

In order to obtain meaningful representations of algorithms
behaviour we computed an average of the local generation
and respectively execution times for every hundred user op-
erations and every three hundred character operations. The
horizontal axis uses a linear scale representing the number

0 20 40 60 80 100

101

102

operations (×100)

g
e
n
e
ra

ti
o
n
/
e
x
e
c
u
ti
o
n

ti
m
e
(i
n
µ
s)

Logoot

RGA

SOCT2

WootO

WootH

Figure 2: User operation execution times - 2nd group
report

0 20 40 60 80

101

102

operations (×100)

g
e
n
e
ra

ti
o
n
/
e
x
e
c
u
ti
o
n

ti
m
e
(i
n
µ
s)

Logoot

RGA

SOCT2

WootO

WootH

Figure 3: User operation execution times - 1st series

of elapsed operations. The vertical axis uses a logarithmic
scale and represents the average time, in microseconds, re-
quired to execute operations.

4.2.1 User operations
In Figure 1, 2 and 3 we present algorithms’ behaviour for

execution times of user operation for the first and second
project report and respectively for the first series.

Accordingly to their average time-complexity, the perfor-
mances of the algorithms using tombstones (WOOTs, RGA
and SOCT2) eventually degrade over time. Indeed, all these
algorithms have to count the number of tombstones and
characters present before an inserted or suppressed string.
Temporary improvement of the performance of these algo-
rithms, for instance in first report between the 40th and
60th block of operations, are due to a period where users
mostly edit at the beginning of the document. This is also
the case at the very end of the three report experiments due
to instructions given to students to sign the document by

typing their names at the very beginning of the document.
The performance of Logoot remains good during all exper-
iments. Indeed, the average size of Logoot identifier stays
very low even for large documents as demonstrated in [32].

For every experiment, peaks of low performance common
to all algorithms exist, for instance in second report for the
43th block of operations. Such peaks are all due to operation
inserting a block of hundreds, or thousands, of characters.

Finally, the global performance behaviors of RGA, WOOTH
and SOCT2 algorithms are quite similar (especially for 2nd

report), even if they are very different algorithms. This sim-
ilarity is less obvious in table 5. Such an observation, leads
to state the conjecture that any algorithm counting tomb-
stones will have, at best, similar performances.

4.2.2 Character operations
In Figure 4, 5 and 6 we present execution time behaviours

for character operations for the second and third project
report and respectively for the second series.

During these experiments, their is no peak of low perfor-
mance common to all the algorithm as for user operation.
So, their is no character operation that represent the worst
case for all the algorithm. Only WOOTH and WOOTO
have such common peaks, for instance in the second report
for the 126th block of operation, due to the similar nature
of these algorithms.

We can notice that the performance remains stable for
Logoot. The performance of RGA and WOOTH are, in
average, better than Logoot but have a more erratic behav-
ior for the reports. The behavior of RGA and WOOTH is
composed of a base line at 1 µs and some lower performance
periods due to more frequent concurrent editing. RGA over-
perform WOOTH in case of concurrent delete operation.

The performances of WOOTO and SOCT2 degrade over
time since they are around ten times slower at the end of the
experiments than at the beginning. SOCT2 have the most
erratic behavior and the worst average performance.

The behavior of SOCT2 performance is mainly due to
its garbage collection mechanism. In our experiments, some
users had a period of inactivity between performing two suc-
cessive modifications. Their inactivity implies that other
users do not receive any information regarding the progress
of the document state of this inactive user and therefore the
garbage mechanism cannot purge the history log. The same
situation happens when users left the editing session without
notification. It is well-known that pruning history in peer-
to-peer networks by using a garbage collection is impossible
in these situations. One the over hand, when a user inactive
since long produces an operation the performance of SOCT2
temporally improves, for instance in the third report for the
87th block of operation.

The experiments on the series have a slightly different be-
havior since they contain few deletes and a lot of concurrent
operations. Indeed, the students don’t have time to type as
fast as actor talks.

5. RELATED WORK
Although OT algorithms have been studied since 1989,

the first performance report was published in 2006 on the
analysis of SDT and ABT algorithms [10]. Performance of
the improved versions of these algorithms was published in
[11] [21]. In [18] an evaluation of RGA approach was pro-
vided. However, these algorithms were not compared with

0 20 40 60 80 100 120 140 160

100

101

102

103

operations (×300)

e
x
e
c
u
ti
o
n

ti
m
e
(i
n
µ
s)

Logoot

RGA

SOCT2

WootO

WootH

Figure 4: Character operation execution times - 2nd

group report

0 20 40 60 80 100 120 140

100

101

102

103

operations (×300)

e
x
e
c
u
ti
o
n

ti
m
e
(i
n
µ
s)

Logoot

RGA

SOCT2

WootO

WootH

Figure 5: Character operation execution times - 3rd

group report

other existing ones. Moreover, performance was measured
by using simulated data and not real collaboration traces.

CRDTs such as Treedoc [16] and Logoot[31, 32] presented
experimental results, but they were focused not on perfor-
mance, but on the overhead incurred by tombstones or meta
data. PPDS approach [33] presented performance evaluation
on their own algorithm without comparing it with other al-
gorithms. All the above mentioned CRDT approaches [16,
31, 32, 33] were evaluated by using Wikipedia and/or Sub-
version collaboration traces. However, Wikipedia and Sub-
version traces represent a serialisation of user operations
where conflicts between concurrent changes were already re-
solved by the users.

In this regard, this is the first paper that presents the com-
parison of real-time document editing algorithms written in
the same language and environment. Moreover, this is the
first work that evaluates algorithms by using collaboration

0 5 10 15 20 25 30 35

100

101

102

103

operations (×300)

e
x
e
c
u
ti
o
n

ti
m
e
(i
n
µ
s)

Logoot

RGA

SOCT2

WootO

WootH

Figure 6: Character operation execution times - 2nd

series

traces including concurrency and generated during real-time
collaborative editing.

6. CONCLUSION AND FUTURE WORK
In this paper, we evaluated representative consistency main-

tenance algorithms for real-time collaboration. We provided
a theoretical evaluation as well as an experimental one against
traces of real-time collaborative editing. We found out that
CRDT algorithms initially designed for peer-to-peer asyn-
chronous collaboration are suitable for real-time collabora-
tion. Moreover, they outperform some representative opera-
tional transformation approaches that were well established
for real-time collaboration in terms of local generation time
and remote integration time. As an example, in average
case, Logoot and RGA algorithms outperform between 25
and 1000 times faster than SOCT2 OT algorithm. We can
also notice that the results we obtained are conforming to
the worst case and average theoretical complexities. Best
overall performances are obtained by RGA and Logoot al-
gorithms.

One of our directions for future work is to extend our
study to other operational transformation and CRDT algo-
rithms and to study other evaluation criteria such as mem-
ory occupation, communication complexity and convergence
latency. We also plan to obtain larger size traces of real-
time collaborations and to generate automatically traces
that have the same characteristics as real traces. In this
paper we considered and compared decentralised algorithms
for real-time collaborative editing. We plan to extend our
study to centralised real-time collaborative editing and to
analyse suitability of CRDT approaches for this kind of col-
laboration.

7. REFERENCES
[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman.

Concurrency Control and Recovery in Database
Systems. Addison-Wesley, Boston, MA, USA, 1987.

[2] S. Buchegger, D. Schiöberg, L. H. Vu, and A. Datta.
PeerSoN: P2P Social Networking - Early Experiences
and Insights. In Proceedings of the Second ACM

EuroSys Workshop on Social Network Systems - SNS
2009, pages 46–52, Nürnberg, Germany, March 2009.
ACM Press.

[3] B. Collins-Sussman, B. W. Fitzpatrick, and C. M.
Pilato. Version control with Subversion. O’Reilly &
Associates, Inc., 2004.

[4] C. A. Ellis and S. J. Gibbs. Concurrency Control in
Groupware Systems. SIGMOD Record : Proceedings of
the ACM SIGMOD Conference on the Management of
Data - SIGMOD ’89, 18(2):399–407, May 1989.

[5] N. Fraser. Differential Synchronization. In Proceedings
of the 9th ACM Symposium on Document engineering
- DocEng 2009, pages 13–20, Munich, Germany,
September 2009. ACM Press.

[6] V. Grishchenko. Deep Hypertext with Embedded
Revision Control Implemented in Regular Expressions.
In Proceedings of the 6th International Symposium on
Wikis and Open Collaboration - WikiSym 2010, pages
1–10, Gdańsk, Poland, July 2010. ACM Press.

[7] A. Imine, P. Molli, G. Oster, and M. Rusinowitch.
Proving Correctness of Transformation Functions in
Real-Time Groupware. In Proceedings of the European
Conference on Computer-Supported Cooperative Work
- ECSCW 2003, pages 277–293, Helsinki, Finland,
September 2003. Kluwer Academic Publishers.

[8] C. Jay, M. Glencross, and R. Hubbold. Modeling the
Effects of Delayed Haptic and Visual Feedback in a
Collaborative Virtual Environment. ACM
Transactions on Computer-Human Interaction, 14(2),
August 2007.

[9] P. R. Johnson and R. H. Thomas. Maintenance of
Duplicate Databases. RFC 677, Internet Engineering
Task Force, January 1975.
http://www.ietf.org/rfc/rfc677.txt.

[10] D. Li and R. Li. A Performance Study of Group
Editing Algorithms. In Proceedings of the
International Conference on Parallel and Distributed
Systems - ICPADS 2006, pages 300–307, Minneapolis,
MN, USA, July 2006. IEEE Computer Society.

[11] D. Li and R. Li. An Operational Transformation
Algorithm and Performance Evaluation. Computer
Supported Cooperative Work, 17(5-6):469–508,
December 2008.

[12] D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping.
High-latency, Low-bandwidth Windowing in the
Jupiter Collaboration System. In Proceedings of the
8th Annual ACM Symposium on User interface and
Software Technology - UIST ’95, pages 111–120,
Pittsburgh, PA, USA, November 1995. ACM Press.

[13] S. Noël and J.-M. Robert. Empirical Study on
Collaborative Writing: What Do Co-authors Do, Use,
and Like? Computer Supported Cooperative Work,
13(1):63–89, 2004.

[14] G. Oster, P. Molli, P. Urso, and A. Imine. Tombstone
Transformation Functions for Ensuring Consistency in
Collaborative Editing Systems. In Proceedings of the
International Conference on Collaborative Computing:
Networking, Applications and Worksharing -
CollaborateCom 2006, pages 1–10, Atlanta, GA, USA,
November 2006. IEEE Computer Society.

[15] G. Oster, P. Urso, P. Molli, and A. Imine. Data
Consistency for P2P Collaborative Editing. In

Proceedings of the ACM Conference on
Computer-Supported Cooperative Work - CSCW 2006,
pages 259–267, Banff, AB, Canada, November 2006.
ACM Press.

[16] N. Preguiça, J. M. Marquès, M. Shapiro, and
M. Letia. A Commutative Replicated Data Type for
Cooperative Editing. In Proceedings of the 29th
International Conference on Distributed Computing
Systems - ICDCS 2009, pages 395–403, Montreal, QC,
Canada, June 2009. IEEE Computer Society.

[17] M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhäuser.
An Integrating, Transformation-Oriented Approach to
Concurrency Control and Undo in Group Editors. In
Proceedings of the ACM Conference on
Computer-Supported Cooperative Work - CSCW ’96,
pages 288–297, Boston, MA, USA, November 1996.
ACM Press.

[18] H.-G. Roh, M. Jeon, J. Kim, and J. Lee. Replicated
Abstract Data Types: Building Blocks for
Collaborative Applications. Journal of Parallel and
Distributed Computing, 71(3):354–368, 2011.

[19] Y. Saito and M. Shapiro. Optimistic Replication.
ACM Computing Surveys, 37(1):42–81, March 2005.

[20] L. Scissors, N. S. Shami, T. Ishihara, S. Rohall, and
S. Saito. Real-Time Collaborative Editing Behavior in
USA and Japanese Distributed Teams. In Proceedings
of the ACM International Conference on Human
Factors in Computing Systems - CHI 2011, pages
1119–1128, Vancouver, BC, Canada, May 2011. ACM
Press.

[21] B. Shao, D. Li, and N. Gu. A Fast Operational
Transformation Algorithm for Mobile and
Asynchronous Collaboration. IEEE Transactions on
Parallel and Distributed Systems, 21(12):1707–1720,
December 2010.

[22] Microsoft sharepoint workspace 2010. http://office.
microsoft.com/en-us/sharepoint-workspace/.

[23] B. Shneiderman. Response Time and Display Rate in
Human Performance with Computers. ACM
Computing Surveys, 16(3):265–285, September 1984.

[24] M. Suleiman, M. Cart, and J. Ferrié. Serialization of
Concurrent Operations in a Distributed Collaborative
Environment. In Proceedings of the ACM SIGGROUP
Conference on Supporting Group Work - GROUP ’97,
pages 435–445, Phoenix, AZ, USA, November 1997.
ACM Press.

[25] C. Sun and C. Ellis. Operational Transformation in
Real-Time Group Editors: Issues, Algorithms and
Achievements. In Proceedings of the ACM Conference
on Computer-Supported Cooperative Work - CSCW
’98, pages 59–68, Seattle, WA, USA, November 1998.
ACM Press.

[26] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen.
Achieving Convergence, Causality Preservation, and
Intention Preservation in Real-Time Cooperative
Editing Systems. ACM Transactions on
Computer-Human Interaction, 5(1):63–108, March
1998.

[27] S. G. Tammaro, J. N. Mosier, N. C. Goodwin, and
G. Spitz. Collaborative Writing Is Hard to Support: A
Field Study of Collaborative Writing.

Computer-Supported Cooperative Work, 6(1):19–51,
1997.

[28] TeamEdit. A collaborative text editor.
http://teamedit.sourceforge.net/.

[29] N. Vidot, M. Cart, J. Ferrié, and M. Suleiman. Copies
Convergence in a Distributed Real-Time Collaborative
Environment. In Proceedings of the ACM Conference
on Computer-Supported Cooperative Work - CSCW
2000, pages 171–180, Philadelphia, PA, USA,
December 2000. ACM Press.

[30] S. Weiss, P. Urso, and P. Molli. Wooki: A P2P
Wiki-based Collaborative Writing Tool. In Proceedings
of the International Conference on Web Information
Systems Engineering - WISE 2007, pages 503–512,
Nancy, France, December 2007. Springer-Verlag.

[31] S. Weiss, P. Urso, and P. Molli. Logoot : A Scalable
Optimistic Replication Algorithm for Collaborative
Editing on P2P Networks. In Proceedings of the 29th
International Conference on Distributed Computing
Systems - ICDCS 2009, pages 404–412, Montreal, QC,
Canada, June 2009. IEEE Computer Society.

[32] S. Weiss, P. Urso, and P. Molli. Logoot-Undo:
Distributed Collaborative Editing System on P2P
Networks. IEEE Transactions on Parallel and
Distributed Systems, 21(8):1162–1174, August 2010.

[33] Q. Wu, C. Pu, and J. E. Ferreira. A Partial Persistent
Data Structure to Support Consistency in Real-Time
Collaborative Editing. In Proceedings of the 26th
IEEE International Conference on Data Engineering -
ICDE 2010, pages 776–779, Long Beach, CA, USA,
March 2010. IEEE Computer Society.

