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Data-Driven Trajectory Smoothing

Résumé : Motivated by the increasing availability of large collections of noisy
GPS traces, we present a new data-driven framework for smoothing trajectory
data. The framework, which can be viewed of as a generalization of the classi-
cal moving average technique, naturally leads to e�cient algorithms for various
smoothing objectives. We analyze an algorithm based on this framework and
provide connections to previous smoothing techniques. We implement a varia-
tion of the algorithm to smooth an entire collection of trajectories and show that
it perform well on both synthetic data and massive collections of GPS traces.

Mots-clés : Geographic Information System (GIS),Theory, Smoothing, Tra-
jectories, Data-Driven Techniques
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Figure 1: The underlying path in solid black, a collection of traces in dashed red, and the

query trajectory in dashed-dotted blue. Note that the noisy traces only partially sample the

underlying path and that there may not exist a single trace sampling the same portion of the

path as the query trajectory.

1 Introduction

Motivation Large scale collections of trajectory data, such as GPS traces, are
becoming widely available, and many applications [47, 48, 26, 28, 14, 46, 45] that
involve understanding and extracting information out of such data are emerging.
However, using such data in practice is often challenging as the noise levels
often exceed those for which many algorithms are designed. One solution to
cope with this problem is a class of tools known as smoothing techniques, which
preprocess the data by removing the noise, and thereby revealing the important
underlying paths. Indeed, in practice, standard smoothing techniques, such as
kernel smoothers [22], smoothing splines [23], generalized additive models [23],
and Kalman �lters [44] are often used to preprocess GPS data in preparation
for road network generation [7] and other model extraction tasks [25].

However, these methods do not leverage the special structure of trajectory
data and the opportunities for statistical estimation given by the large collection
of trajectories at the same time. In this paper, we explore a new smoothing
framework speci�cally tailored for trajectory data. Moreover, our approach is
data-driven rather than model-driven, and hence is suitable for the setting where
we have a large collection of traces sampling underlying paths which may belong
to vastly di�erent classes of curves. In this paper, we formalize the data-driven
smoothing paradigm by developing both a model for the input data, and a
novel and elegant algorithmic framework that results in practical and e�cient
algorithms.

Input and Output We assume that there exist: (1) An underlying path
which we cannot observe directly, (2) a database of traces partially sampling
the path and (3) a query trajectory sampling from the path that we seek to
smooth using the traces (See Figure 1). The goal is then to use the collection of
traces to output a smoothed version of the query trajectory. Note that there may
not be a single trace that samples the entire portion of the path corresponding
to the query trajectory. In the particular example of GPS data, this model
allows the query trajectory to correspond to a route in the road network that
we do not have in the database. However, the route can be split into many
sub-routes, where each sub-route is covered by a trace in the database. If the
particular application requires that the entire database of traces be smoothed,
we can iterate over the traces, and assign each as the query trajectory.

RR n° 7754



Data-Driven Trajectory Smoothing 4

Algorithmic Framework Inspired by [42], we propose a simple and elegant
method that begins by embedding each point p of the traces and query trajec-
tory into a high dimensional space as p̂ using its delay coordinates, which are
the coordinates of a window of sample points preceding and following p (see
Section 3). We call this process lifting p, the high dimensional space the lifted
space, and the embedded image p̂ the lifted image of p. We then move each
point p̂ in the lifted image of the query trajectory towards several of its nearest
neighbors in the lifted space (Laplacian smoothing). The exact set of nearest
neighbors selected for this step depends on the smoothing objective. Finally,
we recover the original traces by averaging the relevant coordinates of the lifted
images.

Analysis and Experiments We prove that, under natural smoothing objec-
tives, the process of using delay coordinates achieves much better results than
considering the individual sample points by themselves. We show that under
some weak probabilistic assumptions, a variant of the algorithm moves a noisy
query trajectory towards the portion of the underlying path that it is sampled
from. Under certain assumptions, the technique can be shown to be an unbi-
ased estimator of the underlying path with high probability. Furthermore, we
are able to dramatically reduce the variance of the error from that of the original
data by smoothing with respect to a large database of traces.

We also show that our method can be viewed of as a generalization of stan-
dard moving average techniques for smoothing time series data. When there is
no database of traces available to smooth a query trajectory, then our method
is equivalent to the moving average technique. The result of such a smoothing
technique optimizes an objective function that weighs the distance between the
query trajectory and a constant velocity trajectory in a natural manner.

Experimentally, we consider both synthetic noisy data, as well as a collection
of real GPS traces from Moscow and a collection of taxi cab traces from an
unidenti�ed major city. We adapt our framework for all three datasets and
show that they result in trajectories that are signi�cantly smoother and less
noisy than the input trajectories.

Related Work Our work is most similar to, and motivated by that of Cao
and Krumm [8], who also smooth GPS traces before using them to construct
a routable road map. Their approach, which is based on simulating forces of
physical attraction, is also data-driven rather than model-driven. Our method is
arguably simpler and easier to implement, and is equipped with rigorous analysis
showing that it is an unbiased estimator of the underlying path. Practically, our
method, like that of Cao and Krumm, also allows di�erent directions of travel
on a road to be identi�ed, but since we do not use repelling forces, our method
works for both left-hand and right-hand drive systems, and does not arti�cially
push lanes of opposite directions away from the centerline.

There have also been many developments in smoothing, noise-removal and
outlier detection techniques in the GIS community: Nearest neighbor ap-
proaches for outlier detection are well studied [40, 41, 43, 11, 12]. Chen et
al. [13] leverage spatio-temporal redundancy to cleanse RFID data. Guilbert
and Lin [18] developed a B-spline smoothing method with positional constraints
for marine charts, where spatial con�icts induced by normal B-spline smoothing
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can present navigational safety issues. Liu et al. [31], explore various random
walk based approaches for spatial outlier detection. Arge, et. al. [5], presented
a method to clean sonar point clouds. They show theoretical analysis that their
method is I/O e�cient, and hence is practical for massive data sets.

Other related work in the GIS community includes that of Hönle et al. [24],
who presented an experimental study on various compression algorithms for
trajectories, of Panangadan and Talukder [35], who use a data driven approach
for tracking applications, of Johanssan and Jern [29], who integrate statistical
�ltering techniques into a geographic visualization tool, and of Hall et al. [19],
who investigate various heuristics to clean up personal GPS data.

In the broader research community, related work includes principal
curves [21], which are smooth curves passing through point clouds. They can be
considered to be a nonlinear generalization of principal components. Cheng et
al. [15] use a data-driven approach to clean entries in a probabilistic database.
Chazal et al. [9] show connections between the distance to k-nearest neighbors
and a natural distance function between probability measures. Their results
can be used for robust topological and geometric reconstruction from data with
heavy, but known, noise distributions. There has also been work on comput-
ing mean shapes [38, 30] which study collections of shapes by considering their
distributions in a shape-space.

2 Preliminaries

Recall that we have an underlying path, a database of traces and a query trajec-
tory. We model the underlying path as a curve f : R→ RD. We cannot observe
this underlying path; instead, what we observe is the database of traces, which
we model as noisy, discrete and �nite vectors {f (i)}i with the following proper-
ties:

1. Each vector is of the form f (i) := (f
(i)
αi , f

(i)
αi+1, f

(i)
αi+2, . . . , f

(i)
αi+m) where

f
(i)
x ∈ RD and f (i)x = f(x) + ε

(i)
x where ε(i)x corresponds to an error term.

2. Each ε
(i)
x is an independent and identically distributed error term with

mean 0 and with E‖ε(i)x ‖2 = σ2. Here, E‖ε(i)x ‖2 is the trace of the covari-
ance matrix of ε(i)x , which characterizes the variances of ε(i)x . In addition,
we assume that there exists an upper bound M on the magnitude of the
error, e.g., ‖ε(i)x ‖ ≤M .

The query trajectory that the algorithm seeks to smooth is of the form
g := (gαi , gαi+1, gαi+2, . . . , gαi+l) where gx ∈ RD and gx = f(x) + ηx where η(i)

corresponds to an error term that has the same distribution ε
(i)
x . The query

trajectory may or may not come from the collection {f (i)}i. The smoothing ob-
jective is then to reduce the variance of the deviation errors of g with respect to
the underlying path f by using the collection {f (i)}i, and output the smoothed
trajectory as ğ.

RR n° 7754
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3 Algorithmic Framework

The input to the algorithm consists of the traces {f (i)}i and a query trajectory
g sampling an underlying path f . The algorithmic framework consists of three
main steps:

1. Delay Embedding (Lifting): For the delay embedding, we choose an in-
teger parameter n ≥ 0 that controls the length of the embedding. In a
sense, this parameter controls the importance we place on the sequen-
tial information over the positional information. Now, given a vector
h = (hα, hα+1, . . . hα+m), we embed each hx ∈ RD into the lifted space

RD(2n+1) by mapping it to its lifted image ĥx:

ĥx = (hx−n(1), hx−n(2), . . . , hx−n(D);

hx−n+1(1), hx−n+1(2), . . . , hx−n+1(D);

. . . , hx+n(1), hx+n(2), . . . , hx+n(D))

where hx−m(i) is de�ned to be the ith coordinate of hx−m ∈ RD.
For example, a vector ((1, 1), (2, 2, ), . . . , (k, k)) would be lifted to
((1, 1, 2, 2, 3, 3), (2, 2, 3, 3, 4, 4), . . . , (k−2, k−2, k−1, k−1, k, k)) for n = 1.
One caveat is the lifted vectors are now shorter, but in practice this is not
much of an issue, since n can be set to value that is much smaller than
the length of the vectors. We apply this lifting procedure to all points on
f (i) and g to obtain f̂ (i) and ĝ.

The advantages of using this lifting procedure are twofold. First, the
sequential information around the point of interest encodes important at-
tributes of the path such as speed and direction. This allows opposite
directions of travel to be di�erentiated, for example. Second, the delay
embedding also allows us to take advantage of statistical concentration to
reduce noise even further. In Section 4, we analyze this e�ect in detail.

2. Moving Towards Nearest Neighbors: We embed each point of the traces
and query trajectory into the lifted space, forming a point cloud P in
R(2n+1)D. Inspired by [9], in which points are moved along the gradient of
the so-called distance-to-measure function, the smoothing technique works
in the lifted space R(2n+1)D by moving the point ĝx to its nearest neighbor
or to the barycenter of its k nearest neighbors in the point cloud P, i.e.,

g̃x =
1

k

∑
x∈knn(ĝx)

x

where x, ĝx ∈ R(2n+1)D.

3. Recovering the Trajectory: With each point ĝx moved to a new position
(denoted by g̃x) in the last step, we now recover a new trajectory ğ from
the points ĝx's. Let

g̃x = (g̃x−n(1), g̃x−n(2), . . . , g̃x−n(D);

g̃x−n+1(1), g̃x−n+1(2), . . . , g̃x−n+1(D);

. . . , g̃x+n(1), g̃x+n(2), . . . , g̃x+n(D))

RR n° 7754
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There are several alternatives for this procedure. One simple strategy is to
use the center of g̃x, which is (g̃x(1), g̃x(2), . . . , g̃x(D)) as the coordinates
for ğx. We note that (g̃x(1), g̃x(2), . . . , g̃x(D)) may appear in di�erent g̃x's,
which are not necessarily the same. Thus another strategy is that we can
take the average of all (g̃x(1), g̃x(2), . . . , g̃x(D)) that appears in di�erent
g̃x's as the coordinates for ğx.

Our method is easy to summarize: we simply move the points of the lifted
trajectory ĝx to the barycenter of several of its nearest neighbors in the lifted
points of {f (i)}i. There are several variations of this framework: the particular
one we will analyze is where we only look for one nearest neighbor from each
trace f (i). We reproject each lifted point to a point in the original space by
averaging over all values of the smoothed coordinates of its image in the original
embedding. For ease of reference, we outline the algorithmic framework in
Algorithm 1.

Algorithm 1 Smoothing Framework
Input: Collection of traces {f (i)}i and a query trajectory g sampling an underlying path f .
Output: Smoothed trajectory ğ.
1: Embed {f (i)}i and g in a high dimensional space as in Section 3 to obtain {f̂ (i)}i and ĝ.
2: Move each point in ĝ towards several of its nearest neighbors in the points of {f (i)}i.
3: Recover trajectory ğ in original dimension by averaging relevant coordinates in ĝ.

4 Analysis

4.1 Smoothing Curves Using Delay Coordinates

In the discrete setting of this problem, we have information about each trace
in {f (i)}i at discrete time steps. In practice, as in the example of a collection
of GPS traces, the time stamps for di�erent traces will not necessarily be syn-
chronized, i.e. αi − αj is an integer for all i, j. For ease of analysis, however,
we �rst consider a simple case where each f (i) is synchronized with the query
trajectory g. The analysis for the general asynchronized case will be provided
in Theorem 4.5.

In the synchronized case, we can dramatically smooth the query trajectory
(see Lemma 4.2, Theorem 4.3 and Proposition 4.4). This result is derived using
the Hoe�ding inequality as described in Theorem 4.1, which was proved �rst
by Cherno� [16] and Okamoto [33] for the special case of binomial random
variables:

Theorem 4.1 (Hoe�ding Inequality). Let X1, · · · , Xn be independent bounded
random variables such that Xi falls in the interval [ai, bi] with probability one,
and Sn = X1 + · · ·+Xn. Then for any t > 0 we have

P
{
Sn − ESn ≥ t

}
≤ exp

(
− 2t2/

n∑
i=1

(bi − ai)2
)

When we embed a speci�c point g0 on g, the lifted image ĝ0 is (g−n, · · · , gn).
We show that conditioned on f (i) being de�ned on indices −n to n, with high
probability, the lifted image on f̂ (i) whose delay coordinates have the same
indices is the closest one. We have the following lemma:

RR n° 7754
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Lemma 4.2. Assume that there exists a constant S ≥ 64σ2 such that the un-
derlying path fk satis�es

n∑
k=−n

‖f(k)− f(k + d)‖2 ≥ Sd2n

for every d ≥ 1. Let f (i) = f + ε(i) satisfy ‖ε(i)‖ ≤M and E‖ε(i)‖2 = σ2. Then,
if n ≥ M4/σ4, with probability at least 1 − 8 exp(−nσ4/M4), the nearest lifted

image on f̂ (i) to (gn, g−n+1, · · · , gn) is (f
(i)
−n, f

(i)
−n+1, · · · , f

(i)
n ).

Proof. For a piece of trace f (i) whose de�ning interval includes [−n, n], we
consider the probability that (g−n, · · · , gn) is closest to (f

(i)
−n, f

(i)
−n+1, · · · , f

(i)
n ).

For �xed d, we have

P
( n∑
k=−n

‖gk − f (i)k ‖
2 ≥

n∑
k=−n

‖gk − f (i)k+d‖
2
)

= P
( n∑
k=−n

‖ηk − ε(i)k ‖
2 ≥

n∑
k=−n

‖fk + ηk − fk+d − ε(i)k+d‖
2
)

= P
( n∑
k=−n

2(ηk − ε(i)k+d)
T (fk+d − fk)

+

n∑
k=−n

(ε
(i)
k+d − ε

(i)
k )T (2ηk − ε(i)k − ε

(i)
k+d)

≥
n∑

k=−n

‖fk − fk+d‖2
)

≤ P
( n∑
k=−n

(ηk − ε(i)k+d)
T (fk+d − fk)

≥ 1

4

n∑
k=−n

‖fk − fk+d‖2
)

+ P
( n∑
k=−n

(ε
(i)
k+d − ε

(i)
k )T (2ηk − ε(i)k − ε

(i)
k+d)

≥ 1

2

n∑
k=−n

‖fk − fk+d‖2
)

Since (ηk−ε(i)k+d)T (fk+d−fk) are independent random variables that are bounded
by 2M‖fk+d − fk‖, by concentration inequality, we know that

P
( n∑
k=−n

2(ηk − ε(i)k+d)
T (fk+d − fk) ≥ 1

4

n∑
k=−n

‖fk − fk+d‖2
)

≤ exp

(
−

(
∑n
k=−n ‖fk − fk+d‖2)2∑n

k=−n 64M2‖fk − fk+d‖2

)
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where the right hand side can be simpli�ed as

exp
(
− 1

64M2

n∑
k=−n

‖fk − fk+d‖2
)

Note that

P
( n∑
k=−n

(ε
(i)
k+d − ε

(i)
k )T (2ηk − ε(i)k − ε

(i)
k+d)

≥ 1

2

n∑
k=−n

‖fk − fk+d‖2
)

≤ P
( n∑
k=−n

2‖ηk‖2 + 2‖εk‖2 ≥
1

2

n∑
k=−n

(fk − fk+d)2
)

Since Eη2k = σ2, then by concentration inequality again, we know the right
hand side can be bounded by

exp
(
−

(
∑n
k=−n ‖fk − fk+d‖2 − 8(2n+ 1)σ2)2

16(2n+ 1)M4

)
Under the assumption that there exist a constant S such that

∑n
k=−n ‖fk −

fk+d‖2 ≥ Sd2n where S ≥ 36σ2, we have

exp
(
− 1

64M2

n∑
k=−n

‖fk − fk+d‖2
)
≤ exp

(
− Sn

64M2
d2
)

and by using the fact that S ≥ 64σ2 we have

exp
(
−

(
∑n
k=−n ‖fk − fk+d‖2 − 8(2n+ 1)σ2)2

16(2n+ 1)M4

)
≤ exp

(
− 4(2n+ 1)σ4

M4
(2d2 − 1)2

)
Thus,

P
( n∑
k=−n

(gk − f (i)k )2 ≥
n∑

k=−n

(gk − f (i)k+d)
2
)

≤ exp
(
− Sn

64M2
d2
)

+ exp
(
− 4(2n+ 1)σ4

M4
(2d2 − 1)2

)
≤ exp

(
− nσ2

M2
d
)

+ exp
(
− nσ4

M4
d
)

By summing up with respect to all d's, we know that the probability that
(f

(i)
−n, f

(i)
−n+1, · · · , f

(i)
n ) is closest to (g−n, · · · , gn) would be at least

1−
∑
d 6=0

exp
(
− nσ2

M2
d
)
−
∑
d6=0

exp
(
− nσ4

M4
d
)

RR n° 7754
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Provided that n ≥ M4/σ4, the above quantity would be at least 1 −
8 exp(−nσ4/M4). Thus we conclude that the failure probability that the near-
est lifted image on f̂ (i) is not (f

(i)
−n, f

(i)
−n+1, · · · , f

(i)
n ) decays exponentially fast

with the number of delayed coordinates we use.

To interpret the conditions of the lemma, we note that
∑n
k=−n ‖f(k)−f(k+

d)‖2 ≥ Sd2n requires that the path is always moving in some general direction.
Note that if each component of f is strictly monotonic in some direction r with
f ′ ·r always greater than a constant, then it is clear that we have

∑n
k=−n ‖f(k)−

f(k + d)‖2 ≥ Sd2n for all d ≥ 1 and n ≥ 1. However, this is a much stronger
condition than necessary, as f satisfying the condition can also have a kink or
a zigzag pattern, provided that the size of the kink is not too large. Moreover,
we require that S ≥ 64σ2, which means that the moving speed should not be
too slow when compared with the level of noise.

Lemma 4.2 bounds the probability that the delay coordinates of the near-
est lifted image f̂ (i) to (g−n, g−n+1, · · · , gn) are not centered around index 0
for any i. Thus, if a collection of N traces are given, we can use the union
bound to bound the probability of identifying a wrong lifted image whose delay
coordinates are not centered around 0, which leads to the following theorem:

Theorem 4.3. Let {f (i)}i be a database of N noisy traces {f (i)}i, each fol-
lowing the assumptions of Lemma 4.2. Then with probability at least 1 −
8N exp(−nσ4/M4), the nearest lifted image on each f̂ (i) to (gn, g−n+1, · · · , gn)

is (f
(i)
−n, f

(i)
−n+1, · · · , f

(i)
n ), ∀i.

With the above theorem, it is easy to see that with high probability, we
would use 1

N

∑
i f

(i)
0 as the smoothed coordinate for g0. We now analyze the

use of 1
N

∑
i f

(i)
0 as an estimator for f0. Recall that if θ̂ is an estimator of θ,

then the bias and variance of θ̂ is de�ned to be

Bias(θ̂) = Eθ̂ − θ, Var(θ̂) = E(θ̂ − Eθ̂)2.

Conditioned on the event A that the nearest lifted image on f̂ (i) is identi�ed
for each i, which holds with probability at least 1 − 8N exp(−nσ4/M4), the
conditional bias of the estimator 1

N

∑
i f

(i)
0 is zero and the conditional variance

of this estimator is σ2/N because

E(
1

N

∑
i

f
(i)
0 |A) = f0, Var(

1

N

∑
i

f
(i)
0 |A) = σ2/N.

In summary, the algorithm has the following property in the synchronized case.

Proposition 4.4. With high probability, the smoothed coordinate of g0 is an
estimator for f0 with zero bias. Furthermore, the variance of such an estimator
can be reduced by a factor of N if we smooth the query trajectory g with respect
to N relevant traces.

In the above theoretic analysis of the algorithm, we assume that each trace
f (i) is synchronized with the query trajectory g. However, in real applications,
this is rarely true. By carrying out a similar analysis as in Lemma 4.2, we can
show the following:

RR n° 7754
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Theorem 4.5. Assume that there exist constants S1, S2 and B such that S1 ≥
Bσ2 for which the path fk satis�es

S1d
2n ≤

n∑
k=−n

‖f(k)− f(k + d)‖2 ≤ S2d
2n

for every d ≥ 1, where S1 and S2 further satis�es 2S1 ≥ S2. If n ≥M4/σ4, then
there exists a constant C which depends only on B, such that with probability
at least 1− 8 exp(−Cnσ4/M4), the lifted image on f̂ (i) centered at the index k
closest to 0 is one of the two nearest neighbors of (g−n, · · · , gn).

Proof. See Appendix A.

As we mentioned before,
∑n
k=−n ‖f(k)−f(k+d)‖2 is a stable measure of the

moving speed of the path. In the case where S1 and S2 are far apart, one can
still show that the lifted image on f̂ (i), whose delay coordinates are centered at
the index k closest to 0, is one of the l−nearest neighbors of g−n, · · · , gn, where
l depends on the di�erence between S1 and S2. In the asynchronized case, our
estimator is not unbiased, but still succeeds in reducing the variance.

4.2 Connection with Moving Average

Our approach can be viewed of as a generalization of standard moving average
techniques for smoothing trajectory data. Consider the case where a database of
traces does not exist, and we move each point in ĝ towards several of its nearest
neighbors as described in the second step of the smoothing framework. It is easy
to see that we are essentially performing a moving average operation where we
average the nearby coordinates of g to obtain a smoothed trajectory. More
generally, we can assign weights on di�erent dimensions in the lifted space, i.e.,
assigning weights w(r) on the rth dimension, we smooth gt as

∑n
r=−n w(r)gt+r.

We can further interpret the result of the moving average when a carefully
choosen weighted kernel w is used. For example, if we choose an exponentially
weighted kernel w(r) =

√
λ
2 e
−
√
λ|r|, then it is possible to interpret the moving

average result as an optimal solution which balances the geometry of the query
trajectory g and the velocity constant moving trend in a continuous sense. More
precisely, the moving average answers the following question:

Question 4.6. Given a noisy trajectory g : R → R. Can we generate a new
trajectory y : R → R such that at each time t ∈ R, y(t) is close to g(t), while
the speed y′(t) is also close to a constant S?

Here, we focus on the one dimensional case, but it is straightforward to
generalize the analysis to higher dimensions because di�erent dimensions are
smoothed independently in the moving average smoothing technique. We for-
mulate this question as an optimization problem on a continuous �nite interval
[0, 1]:

min
y

∫ 1

0

(y′(t)− S)2dt+ λ

∫ 1

0

(y(t)− g(t))2dt (1)

If boundary conditions on y(0) and y(1) are given and we restrict the search-
ing range of the trajectory y to the class of C2 continuous functions on [0, 1],
then using a calculus on variations approach we have the following lemma.
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Lemma 4.7. The optimal C2 continuous trajectory y for the optimization prob-
lem (1) is characterized by the di�erential equation

y′′(t)− λy(t) + λg(t) = 0 (2)

with given boundary conditions on y(0) and y(1).

Proof. See Appendix B.

We can solve the di�erential equation (2) exactly using Laplace transforms:

Lemma 4.8. All the solutions to the di�erential equation (2) have the form

y(t) = c1e
−
√
λt + c2e

√
λt +

∫
R

√
λ

2
e−
√
λ|r−t|g(r)dr (3)

In particular,

y(t) =

∫
R

√
λ

2
e−
√
λ|r−t|g(r)dr (4)

is the unique solution to (2) with the particular boundary values

y(0) =

∫
R

√
λ

2
e−
√
λ|r|g(r)dr

y(1) =

∫
R

√
λ

2
e−
√
λ|r−1|g(r)dr.

Proof. See Appendix C.

When g is a noisy sample of the underlying path f , i.e., g(t) = f(t) + ε(t),
the moving average technique generally yields a biased estimator [36] except
for the case where the underlying trajectory f is linear. Speci�cally, when f is
linear, and ε is a mean zero continuous process, e.g., the generalized derivative
of a Wiener process, then using y(t) =

∫
R

√
λ
2 e
−
√
λ|r−t|g(r)dr as an estimator

for f(t) has zero bias because

E
(∫

R

√
λ

2
e−
√
λ|r−t|g(r)dr

)
= E

(∫
R

√
λ

2
e−
√
λ|r−t|f(r)dr

)
+ E

(∫
R

√
λ

2
e−
√
λ|r−t|ε(r)dr

)
= f(t)

In the above equation,
∫
R

√
λ
2 e
−
√
λ|r−t|f(r)dr = f(t) is only true for the case

where f is linear. Moreover, the variance for such an estimator is

Var
(∫

R

√
λ

2
e−
√
λ|r−t|g(r)dr

)
= E

(∫
R

√
λ

2
e−
√
λ|r−t|g(r)dr − f(t)

)2
= E

(∫
R

√
λ

2
e−
√
λ|r−t|w(r)dr

)2
=

∫
R

(√λ
2
e−
√
λ|r−t|

)2
dr

=

√
λ

4
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where the second to last equation follows from the properties of a Wiener pro-
cess [34]. Thus, when λ is large, we are essentially only using a few nearby
coordinates around to smooth g; such a smoothing technique still has large
variance which comes from the noises within g itself. When λ is small, however,
such a smoothing technique works quite well.

As a �nal remark, we note that the moving average can also be thought of as
smoothing the query trajectory with respect to a collection of traces that consists
of one single linear trace. To see this, consider the continuous formulation of
the Algorithm 1 in the one dimensional case: for each point t ∈ R, we consider a
small piece of g around t, e.g., the piece of g on [t−T/2, t+T/2]. The algorithm
can then be interpreted as �nding the piece of the standard trajectory f closest
to this piece of g in the L2 sense. Therefore we formulate a continuous version
of the algorithm as the following:

min
s

∫ T/2

−T/2
(g(t+ r)− f(s+ r))2dr (5)

or, more generally, we can consider a weighted L2 measure:

min
s

∫ T/2

−T/2
w(r)(g(t+ r)− f(s+ r))2dr (6)

If the standard trajectory f is linear, then without loss of generality we can
assume f(s) = s. The result of the above optimization problem is exactly the
moving average because the optimal solution s for the problem (6) satis�es

d

ds

∫ T/2

−T/2
w(r)(g(t+ r)− (s+ r))2dr = 0,

which implies that the output of the smoothed g(t) is∫ T/2
−T/2 w(r)g(t+ r)dr∫ T/2

−T/2 w(r)dr
(7)

which is a moving average operation on g, as long as the weights w(r) are

choosen to be a symmetric kernel, i.e.,
∫ T/2
−T/2 w(r)rdr = 0.

5 Variations and Heuristics

Our smoothing framework naturally leads to algorithms for various smoothing
objectives. One particular application we are interested in is to smooth an entire
collection of GPS traces within a certain area as a noise-removal preprocessing
step for algorithms that extract further information from the traces. To do this,
we run our algorithm once for each trace in the collection, each time picking that
trace as the query trajectory, and hence smooth all of traces in the collection.
We use the small example of noisy traces shown Figure 2 to illustrate the e�ect
of this application. Note that in this particular example, we are able to detect
inaccuracies in the map, such as the shape of the upper-left cloverleaf from the
collection of GPS traces.

RR n° 7754



Data-Driven Trajectory Smoothing 14

Figure 2: Noisy Traces.

Figure 3: E�ect of unmodi�ed algorithm.

5.1 Adapting the Smoothing Framework for Many Under-

lying Paths

Unlike in the analysis and in the synthetic example, the GPS traces are usually
noisy samples, not of a single underlying path, but of many di�erent underlying
paths derived by the road map and local tra�c laws. If we blindly apply the
original algorithm, the result would be curves that appear smooth, but because
traces far away from the query trajectory also a�ect it, the shape of the curves
are sometimes distorted to a degree where the curve no longer follows the road
network, see Figure 3. Note that in particular, near the bottom of the �gure,
one of the traces is moved to a region that is roughly in the middle of two roads.
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Figure 4: E�ect of thresholded algorithm.

This is because the nearest neighbors chosen by this particular trace include
several from di�erent roads.

Nevertheless, we are able to adapt the algorithm by only selecting nearest
neighbors within a certain distance threshold to ensure that they are not from
traces sampling a di�erent path, see Figure 4. To analyze the e�ect of this
thresholding, we have the following theorem:

Theorem 5.1. Let ‖ε‖ ≤M and ‖η(i)‖ ≤M . Assume that the query trajectory
g is sampled from f with gk = fk + εk and h(i) = h + η(i) is another trace
in the database where the lifted image f̂ and ĥ have distance at least D, i.e.,∑n
k=−n ‖fk − hk‖2 ≥ D. Then, with probability at least 1 − exp(−D/128M2),

the distance between the lifted image ĥ(i) and ĝ is greater than D/2.

Proof. See Appendix D.

Thus, if the lifted images of two points from two di�erent trajectories are
su�ciently far apart, the thresholding ensures that their samples will not a�ect
each other's smoothing results with high probability. Note that it is often pos-
sible to achieve the necessary separation between two road sections in the lifted
space by simply increasing the parameter n.

Note that with the smoothed traces, it becomes much easier to distinguish
di�erent lanes and directions of travel than from the raw data, while the general
shape of the curves is much better preserved than in Figure 3, in particular in
the elongated cloverleaf pattern near the bottom of the page. This e�ect of the
thresholding process is consistent throughout the entire data set.

5.2 Reparameterizing Data

We have noticed that the smoothing algorithm sometimes forms tiny loops or
cusps � these are a result of a vehicle slowing down dramatically and hence
resulting in a point in the lifted space that is much further than it appears in
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Figure 5: E�ect of thresholded algorithm after reparameterizing data.

the original space. Such features can be used to detect such anomalies in vehicle
speed and direction that would have been less apparent in the original space.

If we are not interested in di�erentiating traces with di�erent speed � as
in the case of road network generation, we can reparameterize the input curves
for constant speed, see Figure 5. Here, we see that the smoothed traces appear
to have even less variance than the result in Figure 4. This can be attributed
to the fact that without reparameterization, traces that appear to be close may
have very di�erent speeds, and hence their delay embedded points fall outside
the threshold for inclusion into the smoothing algorithm.

5.3 Iterative Heuristic

In the event that we are smoothing an entire collection of traces, we can apply
an iterative heuristic in which after we perform the smoothing step as analyzed
in our framework, we iterate over the smoothed trajectories to further reduce
error. That is, after we smooth each trajectory in the collection of traces, we
use the smoothed trajectories as the new collection of traces to smooth. The
e�ect of this smoothing approach is discussed in Section 6.4.

6 Experiments and Evaluation

The smoothing step of the algorithms relies heavily on algorithms for the nearest
neighbor (NN) problem: Given a set of P points, one would like to preprocess
P into a data structure such that given query point q, one could e�ciently
�nd the closest point in P to q. This is a classical problem in computational
geometry [39, 17], but in high dimensions, theoretical results that improve on
brute force search remain elusive. However if query answers are allowed to be
approximate, there exist e�cient solutions when the underlying space is Eu-
clidean [27, 20, 37, 4]. For more general metric spaces, there are algorithms for
nearest neighbor search with a logarithmic query time, albeit with a constant
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that depends exponentially on the intrinsic dimension of the data [6]. In prac-
tice, e�cient C++ libraries exist, such as the ANN Library by David Mount
and Sunil Arya [32], which we use in our implementations. Our experiments
were done in the context of smoothing an entire collection of trajectories, as
this allows us to see the e�ects of the iterative heuristic. When the embedding
dimension is low, our algorithm is fast in practice: On a 2.33GHz Macbook Pro
with 3GB of RAM, we can smooth 7145 traces from the Taxicab dataset with a
total of 54510 points using a lifted space of dimension 9 in several seconds. The
result of this is shown in Figures 10 and 13. The smoothing of the synthetic
data set also took several seconds. For the Moscow dataset, we used a much
higher embedding dimension and number of nearest neighbors, so the smooth-
ing procedure took several hours. When the embedding dimension is high, a
brute force nearest neighbor searching technique in lieu of the ANN library will
most likely perform better. We note however, that the algorithm is fairly robust
to parameter selection, and we can achieve results that are similar to the ones
shown in Figures 9 and 12 in much less time.

6.1 Data Sets

To test the e�cacy of the algorithm, we used two data sets: a synthetic collection
of noisy and partial samples of a circular arc, and two real world data sets: One
of 1331 GPS traces tagged �Moscow� from OpenStreetMap [2], and another of
7145 taxicab traces in an unindenti�ed major city.

Synthetic Data Set To generate the synthetic data set, we discretized the
circular arc from θ = 0 to 3π on the unit circle into a sequence of 100 points.
Then, to generate a individual trace, we selected a interval of this sequence
uniformly at random, and then added an independent Gaussian noise with mean
0 and standard deviation of 0.1 to each point in this sequence. We repeated this
process 100 times to generate 100 noisy and partial samples of the circular arc.
This data set is depicted in Figure 6.

Moscow Data Set To evaluate the performance of the algorithm on real
world data sets, we used a set of 1331 GPS traces downloaded from Open-
StreetMap, as shown in Figure 8. This set of GPS traces was obtained by
cutting a larger collection of GPS traces in Moscow to the window between
55.74 ◦ and 55.76 ◦ latitude and 37.58 ◦ and 37.62 ◦ longitude. Our visualiza-
tion was implemented using the QGraphicsScene framework of Qt, which would
not display our traces until we scaled them up. We chose to scale longitude
by a factor of 3486 and latitude by a factor of 24855, which also resulted in
a reasonable projection for the Moscow area. The following discussion in this
section will be using these scaled units when referring to the Moscow data set.
We then reparameterize the traces by sampling the original trajectories so that
consecutive sample points are one units away from one another. A closeup of
the data set can be seen in Figure 8, where it is evident that the traces are very
noisy and have large variations in sampling error and density.

Taxicab Data Set A third data set we used to evaluate the algorithm is a set
of 7145 traces obtained by cutting a larger of collection of Taxicab GPS traces
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Figure 6: Synthetic data: The original trajectories are in red while the trajectories smoothed

using the algorithm are in dark red.
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Figure 7: Moscow Data Set.

Figure 8: Taxicab Data Set.
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from an unidenti�ed major city to a window of height 0.01612 ◦ latitude and
width 0.01662 ◦ longitude. The taxicab traces were of varying sampling density
and we only retained the sub-traces where consecutive sample points are less
than 5 seconds apart and of distance less than 1000 meters apart. The latitude
and longitude were both scaled by a factor of 1000, and consecutive samples
were then taken every 0.1 units to reparameterize the traces.

6.2 Parameter Selection and Evaluation

We evaluated the results using both visual inspection and average distance to
the underlying route. We selected parameters to produce reasonable results for
both methods of evaluation. For visual inspection, we compared the smoothed
traces to the underlying road network and veri�ed that roads are not signi�-
cantly distorted, pulled apart from each other, or contracted. To compute the
average distance to the underlying route, we used the approximate Fréchet map
matching algorithm in [10]. This algorithm �nds a (1 + ε)-approximate closest
path in the map with respect to the Fréchet distance. For two given curves
π1 : [0, p1]→ Rd and π2 : [0, p2]→ Rd, the Fréchet distance is de�ned as

dF (π1, π2) := inf
α:[0,1]→[0,p1]

β:[0,1]→[0,p2]

max
t∈[0,1]

‖π1(α(t))− π2(β(t))‖2

Intuitively, one can think of the Fréchet distance as the shortest leash possible for
a man and a dog to walk on two curves, allowing their speeds to vary, but never
walking backwards. For the ground truth map, we used maps downloaded from
CloudMade [1] and we set ε = 0.1. We note that the map matching is performed
on the original trajectories and show that are smoothed trajectories are even
closer to the matched routes than the original ones, even though the algorithm
knows nothing about the underlying map. We measure distance to matched
routes by using the average distance of the projection to the matched route.

The parameters we selected for the synthetic data set were n = 21 and 728
nearest neighbors while we selected n = 64 and 4096 nearest neighbors for the
Moscow data set and n = 9 and 495 nearest neighbors for the Taxicab data set.
We did not need to select a threshold for the synthetic data set, while we used a
threshold of 64 units for the Moscow data set and 2 units for the Taxicab data
set.

6.3 Results

Visually, our results can be see in Figures 6, 9 and 10. We note that in the
synthetic data set, our smoothing method produces traces along a smooth circle
without contracting or otherwise shifting the centerline of the unit circle. We
also note that in the Moscow and Taxicab data sets, error is reduced without
distorting the curvature of individual roads. For the Moscow data set, we can
now di�erentiate di�erent directions of travel, but they are not arti�cially shifted
apart. The Taxicab data set had much shorter traces, along with higher noise,
so this e�ect was not as apparent with the parameters we selected. The results
of the numerical performance metrics can be seen in Table 1. We note that for
the Moscow and Taxicab data sets, on average, the traces were already very
close to the map, and given that the map we used may not be entirely accurate,
our results present a reasonable reduction in error.
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Figure 9: Smoothed Moscow Data Set.

Synthetic Moscow Taxicab

Mean Dist 0.0795 0.000143 0.000196
Orig < 15.9m
Mean Dist 0.00553 0.000114 0.000156
Smoothed < 12.7m
Mean Dist 0.00461 0.000111 0.000174
Iter Smoothed < 12.3m

Table 1: Fréchet distance to routes obtained using map matching on the original
trajectories. The distances for the Moscow and Taxicab data sets are using
longitude/latitude coordinates. Approximate upper bounds in meters for the
Moscow data set are shown.
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Figure 10: Smoothed Taxicab Data Set.

6.4 Iterative Heuristic

We also tested the iterative heuristic by running the smoothing algorithm
through four iterations, using the same parameters as before. The results are
shown in Table 1 and Figures 11, 12, and 13. Interestingly, although the Taxi-
cab data set appears much smoother after the iterative heuristic, the average
distance to the matched route actually increased slightly. Possible reasons for
this phenomenon include drift in the iterative smoothing process, inaccurate
maps, or biased sampling from the original data set. Nevertheless, the itera-
tively smoothed collection of traces appears much cleaner, which can be useful
for many applications.

7 Conclusion

We have presented a simple and practical algorithmic framework for smooth-
ing a query trajectory with respect to a collection of traces. Under natural
assumptions, our method can be proven to reduce variance among a noisy col-
lection of traces. Our framework can also be viewed of as a generalization of
the classical moving average technique, and we show additional connections to
that method as well. Experimentally, we show that the algorithm works well
on both synthetic data, and on two di�erent collections of GPS traces. We also
explore variations in the algorithm, and demonstrate how they result in di�er-
ent smoothing behavior. There are several directions for future work � these
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Figure 11: Synthetic data after 4 smoothing iterations.
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Figure 12: Moscow data set after 4 smoothing iterations.

Figure 13: Taxicab data set after 4 smoothing iterations.
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include inferring a reasonable number of delay coordinates and threshold value
from the data itself without the use of a ground truth map, as well as exam-
ining special structure in the lifted images that might facilitate faster nearest
neighbor queries.
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A Proof of Theorem 4.5

Proof. When the sampled time points on f (i) are not synchronized with that
on g. Let k be the time points on f (i) which is closest to 0. We consider two
cases: either |x| < 1/4 or |x| ≥ 1/4. We will show that in any of the two cases,
the lifted image on f̂ (i) whose delay coordinates centered at k will be one of the
two nearest neighbors of g−n, · · · , gn.
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Generally, we consider the probability that the lifted image g−n, · · · , gn is
closer to f (i)k−n, f

(i)
k−n+1, · · · , f

(i)
k+n than f (i)k+d−n, · · · , f

(i)
k+d+n. Then we have

P
( n∑
j=−n

‖gj − f (i)k+j‖
2 ≥

n∑
j=−n

‖gj − f (i)k+j+d‖
2
)

= P
( n∑
j=−n

‖fj + ηj − fk+j − ε(i)k+j‖
2

≥
n∑

j=−n
‖fj + ηj − fk+j+d − ε(i)k+j+d‖

2
)

= P
( n∑
j=−n

2(ηj − ε(i)k+j)
T (fj − fk+j)

+

n∑
j=−n

2(ηj − ε(i)k+j+d)
T (fk+j+d − fj)

+

n∑
j=−n

(ε
(i)
k+j+d − ε

(i)
k+j)

T (2ηj − ε(i)k+j − ε
(i)
k+j+d)

≥
n∑

j=−n
‖fj − fk+j+d‖2 −

n∑
j=−n

‖fj − fk+j‖2
)

Denote
∑n
j=−n ‖fj − fk+j+d‖2 −

∑n
j=−n ‖fj − fk+j‖2 by t, then we have the

above probability is bounded by

P
( n∑
j=−n

2(ηj − ε(i)k+j)
T (fj − fk+j) ≥

t

3

)
+ P

( n∑
j=−n

2(ηj − ε(i)k+j+d)
T (fk+j+d − fj) ≥

t

3

)
+ P

( n∑
j=−n

(ε
(i)
k+j+d − ε

(i)
k+j)

T (2ηj − ε(i)k+j − ε
(i)
k+j+d) ≥

t

3

)

Since 2(ηj − ε(i)k+j)(fj − fk+j) are mean zero independent random variables and
they are bounded by 2M‖fj−fk+j‖, by concentration inequality, we know that

P
( n∑
j=−n

2(ηj − ε(i)k+j)
T (fj − fk+j) ≥

t

3

)

≤ exp

(
− t2

96
∑n
j=−nM

2(fj − fk+j)2

)
(8)
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For the same reason, we have

P
( n∑
j=−n

2(ηj − ε(i)k+j+d)
T (fk+j+d − fj) ≥

t

3

)

≤ exp

(
− t2

96
∑n
j=−nM

2(fj − fk+j+d)2

)
(9)

Note that

P
( n∑
j=−n

(ε
(i)
k+j+d − ε

(i)
k+j)

T (2ηj − ε(i)k+j − ε
(i)
k+j+d) ≥

t

3

)
≤ P

( n∑
j=−n

2‖ηj‖2 + 2‖εk+j‖2 ≥
t

3

)
(10)

Now we consider the two cases:

1. The nearest time point k to 0 satis�es |k| < 1/4. In such a case, let |d| ≥ 1,
then under the assumption that 2S1 ≥ S2 we can easily verify that

t =

n∑
j=−n

‖fj − fk+j+d‖2 −
n∑

j=−n
‖fj − fk+j‖2

≥ S1(k + d)2 − S2k
2 ≥ 1

2
S1d

2

Thus, using concentration inequality we know (8) and (9) are both
bounded by exp(−C1S1d

2n/M2) where C1 is a constant. (10) can also
be bounded by exp(−C2σ

4dn/M4) for the same reason as in the proof
of Lemma 4.2. By summing up the tails, we know that with probability
at least 1 − 8 exp(−Cσ4n/M4), the lifted image whose delay coordinates
centered at x on f (i) is the nearest neighbor of g−n, · · · , gn.

2. The nearest time point k to 0 lies outside of [−1/4, 1/4]. In such a case,
without loss of generality, we can assume k < 0. When d < −1 or d > 2,
we have

t =

n∑
j=−n

‖fj − fk+j+d‖2 −
n∑

j=−n
‖fj − fk+j‖2

≥ S1(k + d)2 − S2k
2 ≥ 1

2
S1d

2

Thus, for any d < −1 or d > 2, (8) and (9) are bounded by
exp(−C1S1d

2n/M2); (10) is bounded by exp(−C2σ
4dn/M4) for certain

constants C1 and C2, by summing up of the tails, we know that with
at least 1 − 8 exp(−Cσ4n/M4), the lifted image whose delay coordinates
centered at x on f (i) will be one among the two nearest neighbor of
g−n, · · · , gn.
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B Proof of Lemma 4.7

Proof. Denote the functional∫ 1

0

(y′(t)− S)2dt+ λ

∫ 1

0

(y(t)− g(t))2dt

as A(y). Suppose η : [0, 1]→ R is a C2 function and vanishes at the end points
0 and 1. Then we must have:

A(y) ≤ A(y + εη)

for any value ε close to 0. Therefore the derivative of A(y + εη) with respect to
ε must vanish at ε = 0. So

dA

dε
|ε=0 =

∫ 1

0

d

dε
(y′(t) + εη′(t)− S)2|ε=0dt

+ λ

∫ 1

0

d

dε
(y(t) + εη(t)− g(t))2|ε=0dt

=

∫ 1

0

η′(t)(y′(t)− S)dt+ λ

∫ 1

0

η(t)(y(t)− g(t))dt

= η(t)(y′(t)− S)|10 −
∫ 1

0

η(t)y′′(t)dt

+ λ

∫ 1

0

η(t)(y(t)− g(t))dt

=

∫ 1

0

η(t)(λy(t)− λg(t)− y′′(t))dt

Thus, ∫ 1

0

η(t)(λy(t)− λg(t)− y′′(t))dt = 0

for any twice di�erentiable function η that vanishes at the endpoints.
We can now apply the fundamental lemma of calculus of variations: If∫ b

a

η(t)H(t)dt = 0

for any su�ciently di�erentiable function η(t) within the integration range that
vanishes at the endpoints of the interval, then it follows that H(t) is identically
zero on its domain. Hence

λy(t)− λg(t)− y′′(t) = 0.

C Proof of Lemma 4.8

Proof. The general solution to the di�erential equation (2) is given by y(t) =
yp(t)+yh(t) where yp(t) is a particular solution of the nonhomogeneous equation
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(2) and yh(t) is the general solution of the associated homogeneous equation

y′′(t)− λy(t) = 0.

The solution to the homogeneous equation is given by c1e
−
√
λt + c2e

√
λt.

Now we verify that yp(t) =
∫
R

√
λ
2 e
−
√
λ|r−t|g(r)dr is a particular solution to (2).

To show this, we note that

yp(t) =

√
λ

2
e−
√
λt

∫ t

−∞
e
√
λrg(r)dr

+

√
λ

2
e
√
λt

∫ ∞
t

e−
√
λrg(r)dr

which implies that

y′p(t) = −λ
2
e−
√
λt

∫ t

−∞
e
√
λrg(r)dr

+
λ

2
e
√
λt

∫ ∞
t

e−
√
λrg(r)dr

and

y′′p (t) =
λ3/2

2
e−
√
λt

∫ t

−∞
e
√
λrg(r)dr

+
λ3/2

2
e
√
λt

∫ ∞
t

e−
√
λrg(r)dr − λg(t).

The last identity is equivalent to

y′′p (t) = λy(t)− λg(t).
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D Proof of Theorem 5.1

Proof. We consider the probability that (g−n, · · · , gn) and (h
(i)
−n, · · · , h

(i)
n ) is less

than D:

P
( n∑
k=−n

‖gk − h(i)k ‖
2 ≤ D/2

)
= P

( n∑
k=−n

‖η(i)k − εk‖
2 + ‖fk − hk‖2

+ 2(εk − η(i)k )(fk − hk) ≤ D/2
)

≤ P
( n∑
k=−n

2(εk − η(i)k )(fk − hk) ≤ D/2−D
)

≤ exp
(
− 2(D/2−D)2/

n∑
k=−n

64M2‖fk − hk‖2
)

= exp
(
− (D/2−D)2/32M2D

)
= exp

(
−D/128M2

)
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