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Abstract : Determining the number of relevant dimensions in the eigen-space of a 
graph Laplacian matrix is a central issue in many spectral graph-mining applications. 
We tackle here the sub-problem of finding the “right" dimensionality of Laplacian 
matrices, especially those often encountered in the domains of social or biological 
graphs: the ones underlying large, sparse, unoriented and unweighted graphs with a 
power-law degree distribution. We present here the application of a randomization 
test to this problem. We validate our approach first on an artificial sparse and power-
law type graph, with two intermingled clusters, then on two real-world social graphs 
(“Football-league”, “Mexican Politician Network”), where the actual, intrinsic 
dimensions appear to be 11 and 2 respectively ; we illustrate the optimality of the 
transformed dataspaces both visually, and numerically by means of a decision tree. 

Keywords : graph mining, dimensionality reduction, intrinsic dimension, randomization 
test, relevant eigen-subspace, graph, graph Laplacian, small-world graph. 

1. Introduction 

Spectral methods have been recently considered an important approach for 
extracting knowledge from graphs. For example, spectral graph clustering 
has been considered by many authors a most promising path to “better” 
clustering techniques (Von Luxburg, 2007). Or spectral characteristics have 
been considered relevant clues for finding out “graph motifs” in biological 
applications (Banerjee, 2008). Not to mention the scientific (and 
economic...) importance of spectral centrality indices such as PageRank 
(Brin & Page, 1998) for the study of social networks.  Two main questions 
arise when using graph spectral methods: 

What transformation of the dataspace is most relevant for this task? 
Though the case is far from closed, a consensus exists for considering the 
dominant eigenspace of one or another of the tightly related “graph 
Laplacian” matrices as the relevant one. 
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How many major dimensions must be considered in this transformed 
dataspace for conveniently observing features or performing graph mining 
operations? This last problem is the one we try to cope with in the present 
paper. Many answers have been proposed, mainly in the more general 
framework of rectangular datatables, but most of them rely on the empirical 
evidence of a “gap” in the scree-plot of the eigenvalue sequence, whether 
visual or based on numerical indices such as second differences 
(Cattell,1966), or on specific statistical models often untrue in the case of 
large and sparse graphs encountered in most of the social or biological 
application domains (Bouveyron et al., 2009). 

Whereas statistical comparisons with “null models”, i.e. randomized 
versions of a graph, attract a growing interest for tasks such as graph motifs 
discovery (Milo et al., 2002), no proposal has been advanced, to our 
knowledge, on the problem of delimiting by means of a rigorous statistical 
methodology the relevant eigen-subspace of a graph. We will limit here our 
investigations to the unoriented and unweighted graphs. 

 
In section 2 we will present a few related contributions. In section 3 we 

will describe our general TourneBool randomization test and specify it in 
the case of unoriented and unweighted graphs. In section 4 we will focus on 
eigenspace approaches in graph studies, and will briefly recall precursor 
contributions as well as state-of-the-art well-established results. Section 5 
will expose the use of the TourneBool test for finding out the relevant eigen-
subspace of a graph. Three applications will ensue: in section 6 we will 
describe our process for generating an artificial 2-cluster sparse graph with a 
major realistic feature, i.e. a power-law global distribution of the nodes 
degrees, and the one-dimensional eigen-space resulting from our test. The 
second and third applications in section 7 involve the well-known “football 
league” social graph (Girvan & Newman, 2002) first, where the TourneBool 
test delineates an eleven-dimensional relevant eigenspace, visually 
displaying the main 12-conference loosely intermingled structure as well as 
the deviations from this structure. A decision tree numerically confirms these 
nuanced results. And second, the “Mexican politicians network” appears to be 
strongly structured in a two-dimensional intrinsic embedding. As a 
conclusion, we will claim that the resultant eigenspace is a stable groundwork 
for building further representations, whatever data mining method is used. 

2. Related approaches 

The authors of contribution (Milo et al., 2002) compare an oriented graph 
to its randomized counterparts (same number of nodes and ingoing/outgoing 
degree distribution) in order to detect significant directed subgraphs termed 
“network motifs”. As their objective, far from ours, is mainly focused on 
detecting elementary building blocks in biological networks, they impose 
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further constraints on their randomized null models, such as embedding the 
same repartition of 3-motifs as in the original graph when extracting 4-
motifs. The authors of contribution (Banerjee, 2008) have other bio-inspired 
objectives, such as the discovery of motif joinings or duplications when 
comparing graphs. They show that the full spectra of the graph laplacians, 
and the resulting spectral plots, include characteristic traces of these events. 
They explore properties of the whole graph spectra, not properties of null 
models spectra, or of dominant parts of the spectrum. 

In (Lelu & Cadot, 2010) we have compared word-text binary matrices to 
their randomized versions, in order to bring out valid links (and anti-links) 
in the two inter-texts and inter-words derived graphs. Though tightly related 
to our present method and tools, none of these approaches deals with the 
problem of finding out the “right” reduced representation space of a graph. 
The contribution (Gionis et al., 2007) deals, as we do, with the problem of 
finding out the number of relevant eigen-dimensions in a rectangular binary 
matrix, but presents a heuristic approach based on a unique randomized matrix. 

3. The Tournebool randomization test 

3.1 General case: testing any numerical property for any binary matrix 

TourneBool (Cadot, 2005) is a method for generating random versions of 
a binary datatable with prescribed margins, and the ensuing test for 
validating any statistics conducted on it. It is to be noted that the principles 
of generation of random matrices with prescribed margins seem to have 
been discovered independently several times, in various application 
domains: ecology (Connor E & Simberloff, 1979; Cobb & Chen, 2003), 
psychometrics (Snijders, 2004), combinatorics (Ryser, 1964), sociology 
(Roberts, 2000). The contribution (Cadot, 2006) legitimates the rigorous 
permutation algorithm based on rectangular “flip-flops”, and shows that any 
Boolean matrix can be converted into any other one with the same margins 
in a finite number of cascading flip-flops, i.e. compositions of elementary 
rectangular flip-flops: at the crossings of rows i1 and i2, and columns j1 and 
j2, a rectangular flip-flop keeping the margins unchanged is possible if the 
(i1,j1) and (i2,j2) values are 1 whereas the (i1,j2) et (i2,j1) values are 0. 

 
As is the case for all other randomization tests (Manly, 1997), the general 

idea comes from the exact Fisher test (Fisher, 1936), but it applies to the 
variables taken as a whole, and not pairwise. The flip-flops preserve the 
irreducible background structure of the datatable, but break up the 
meaningful links specific to a real-life data table. Consider for example a 
text vs. words incidence matrix: if some words appear in nearly all the texts, 
they will appear as such in all the simulated matrices too, and no link 



AGS 2011 

 

between these words will ensue. Now consider a few long texts 
systematically comprising none of these considered frequent words: the 
simulated matrices will not reproduce this interesting feature, which will 
only be brought to light by comparison to the original one. In this way, 
comparing with simulations allows one to depart the background structural 
part of a linkage out of the other part, the one we are interested in. The 
background structure depends on the application domain, and also on the 
distributions of the margins. For example, most of texts×words datatables 
have a power-law distribution of the words, and a binomial-like one for the 
number of unique words in the texts. This background structure induces our 
“statistical expectation” of no links conditionally to the type of corpus. Getting 
rid of the background structure enables this method to process any type of 
binary data, both (1) taking into account the marginal distributions, (2) doing 
this without any need to specify the statistical models of these distributions. 

 
When using this algorithm, one must fix the values of three parameters: 

the number of rectangular flip-flops for generating non-biased random 
matrices, the number of randomized matrices, the alpha risk. The two last 
parameters are fixed in accordance with the usual compromises: on the 
computer science side, the trade-off between speed and quality - the more 
simulated matrices, the higher the quality of estimation, but the longer the 
computation time, too... For large matrices, we use to ask for 100 or 200 
simulations. On the statistical side, the trade-off between the alpha and beta 
risks: the smaller the alpha value, the lesser the risk of extracting links due 
to the sole chance, but also the greater the beta risk of rejecting significant 
and meaningful links. Our experience is to fix the value to the usual 5% or 
1%. As for the first parameter (the number of elementary flip-flops), our rule 
of thumb is to start with four times the number of ones in the matrix, and 
adjust it, if necessary, considering the sequence of the computed Hamming 
distances. It is to be noted that the permutation tests, from which emanate the 
randomization tests, have been proven to be the most “powerful” ones, i.e. to 
minimize the beta risk for a given alpha risk (Droesbeke & Finne,  1996). 

3.2 Application to graphs 

As it is, the TourneBool test is akin to be applied to adjacency matrices of 
bipartite, unoriented, unweighted graphs, as the non-zero elements of such 
matrices include two symmetric rectangular binary matrices, and this 
structure is akin to be reproduced when generating random versions as 
described above. For generating randomized versions of the adjacency 
matrix of an unoriented, unweighted graph, further constraints have to be 
imposed at the step of enabling or not a rectangular flip-flop: the square 
matrix must be kept symmetric and its diagonal empty.  
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4. Eigen-spaces for graph mining 

To the best of our knowledge, the first application of eigen-analysis to 
graphs dates back to (Benzécri, 1973), when Correspondence Analysis 
(C.A.) was applied to adjacency matrices. Let us recall that C.A. (Lebart et 
al., 1984; Greenacre, 2007) relies on the eigen-analysis of a matrix Q issued 
from any two-way correspondence matrix X (in the case of a undirected and 
unweighted graph, X is binary and symmetric; Q is symmetric, too): 

 Q   = Dr
-1/2 X Dc

-1/2 (1) 
where Dr  and Dc are the diagonal matrices of the row and column totals. 

The eigen-decomposition of Q writes: 
 Q   = U ΛΛΛΛ V’  (2) 

where ΛΛΛΛ is the diagonal matrix of the eigenvalues (λ1... λL = 1, L being 
the number of connected components; 1 > λL+1 >... > λR > 0, R being the 
rank of X). U and V are the eigenvector matrices for the rows and columns 
respectively.  The C.A. factors F and G ensue, by means of products by 
diagonal matrices: 

F   = x..
1/2 Dr

-1/2 U ΛΛΛΛ  G   = x..
1/2 Dc

-1/2 V ΛΛΛΛ (3) 
where x.. is the grand total of X. In (Benzécri, 1973) Benzécri has shown 

analytical solutions for simple graphs such as rings or meshes. In (Lebart, 
1984) Lebart has generalized to contiguity analysis, and illustrated by 
showing that the (F2, F3) factor plane representation of the contiguity graph 
between French counties reconstitutes the appearance of the France map.  

An independent research track starting with (Chung, 1997) has defined two 
“normalized graph Laplacians”, namely the symmetric Laplacian (I – Q), 
where I  is the identity matrix, and λ1... λL = 0, L being the number of 
connected components;    0< λL+1<...< λR, R being the rank of X, and the 
“random walk” variant I - Dr

-1 X. Note that the dominant eigenvector of 
(Dr -1 X)’ (more precisely of α (Dr

-1 X)’  + (1/N)(1- α)11’ for the sake of 
“imposing” the presence of one sole connected component) is the PageRank 
centrality index (Brin & Page, 1998). 

Spectral graph clustering consists of grouping the nodes in a K-
dimensional major eigen-subspace – for a review see (Von Luxburg, 2007) – 
and is an increasingly active research line. To our knowledge and up to now, 
the problem of determining the number K, when the distribution of degrees 
is non-Gaussian, has not received more satisfactory answers than the scree-
plot visual or second-difference heuristics (Cattell,1966), visually prominent 
in the case of small graphs, but difficult to put into practice in the case of 
large ones. 

5. Determining the relevant eigen-subspace of a graph with Tournebool 

A well-established result in data analysis states that the relevant, noise-
filtered information lies in the dominant eigen-elements of a data matrix 
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(Chung, 1997). In the case of the Q matrix, Benzécri, Chung and many 
others have shown that the value of its first eigenvalue, of multiplicity L (L 
being the number of connected components), is one. The same is true of the 
Dr

-1 X matrix the representation space of which seems to be preferred by 
many authors. Thus our test sets apart the case of this dominant eigenvalue, 
of value one in the randomized versions of Q or Dr

-1 X too, and answers to 
the sequence of questions: does the (L+1)th, (L+2)th, ... eigenvalues 
significantly exceed their randomized equivalents ? Our test then writes: 

• Generate a sufficient sample ( X1, X2, ... Xp) of randomized versions 
of the original matrix X0 (e.g. 200 matrices). 

• Extract the full sequence of singular values of Q0 or Dr-1  X0, in 
decreasing order. 

• For each k-order eigen-space, starting from k = L +1, compare the k-th 
singular value of Q0 or Dr-1  X0 to the set of corresponding k-th singular 
values in the sample: if the current singular value  λk is greater than or 
equal to the randomized one located at the signific ance threshold (e.g. than 
the third one at the 99% threshold, here), it is de emed significantly 
diverging from randomness, and the algorithm goes o n with k = k + 1. 

 

When the algorithm stops, the value k-L-1 is the dimension number of 
the relevant eigenspace. 

6. Validation: artificial graph adjacency matrix 

We will focus on trying to reproduce two characteristics that stand out 
from the general experience of real-world social or biological graphs: 1) a 
power-law distribution of their degrees; 2) cluster structures which are by no 
way all-or-none phenomena: they rather amount to progressive, fuzzy 
memberships around dense data-cores. In other words, clusters are generally 
intricate, entangled, and by no way orthogonal.  

  
Figure 2 – At left : The two-cluster M0 random adjacency matrix with minimum degree 4, and a 

power-law degree distribution. At right : The “scree-plot” of the 50 first eigenvalues derived from 
M0 (solid red line) compared to the variation intervals of its randomized counterparts. By 
construction, the first eigenvalue of any diag(d°)-1 M  stochastic matrix is 1. 
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6.1 Data generation:  

We will first build such intertwined clusters in the simplest case of two 
clusters, by generating a one-cluster table, e.g. appending a full (750, 800) 
“ones" matrix and a full (750, 660) “zeros" one, then creating another (750, 
1460) matrix by randomly permuting the columns, and eventually stacking 
the two matrices into a (1500, 1466) one. The second step consists in 
“morphing" this matrix so as to fit to some prescribed relative column and 
row sum profiles (e.g. a power-law distribution for the column sums, and a 
binomial one for the row sums): the process of alternating a global 
stretching or expanding for each column vector so as to fit to the 
corresponding prescribed sum profile, then doing the same for the row 
vectors, lets the transformed datatable converge to a real positive matrix 
embedding a (distorted) memory of the initial structure. The third step 
consists in turning this table binary, first by normalizing it (i.e. dividing by its 
maximum value), then by considering each value proportional to a probability 
for drawing a value “one”; the resulting (1500, 1460) table comprises many 
empty columns, or columns summing to 1 or 2; in a final cleansing process, we 
remove these columns in order to prevent side effects, and we now yield a 
(1500, 836) binary matrix X0 with a power-law distribution of the column sums. 
The last phase consists in building a symmetric power-law binary adjacency 
matrix starting from the symmetric (836, 836) matrix Z0 = X0’ X0, on the 
same principles: morphing and pruning Z0 into a symmetric power-law real 
matrix with an empty diagonal, then “binarize” it by means of the above-
described probabilistic process.  

  
Figure 3 – At left:  The 2-cluster intertwined structure in matrix M0, highlighted by sorting the 

rows and columns along the U2 values. At right:  The 828 nodes in the (U2, U3) plane. 

The final result is a M0 (828, 828) adjacency matrix with minimum degree 
4 (see Figure 2, left) and a power-law degree distribution. 

6.2 Results  

Eigenspace test: Figure 2 (right) shows the “scree-plot” of the 50 first 
eigenvalues of Q0, compared to the plot of the 99% confidence interval of 
its 200 randomized counterparts generated by Tournebool. As jumps out 



AGS 2011 

 

from the figure, the only “first” (i.e. second) singular value dominates their 
confidence intervals, emphasizing the 2-cluster intertwined structure, 
visually evident when sorting the rows and columns along the U2 values 
(figure 3, left).  

7. RELEVANT EIGEN-SUBSPACE OF REAL-WORLD SOCIAL 
GRAPHS  

 7.1 The Football-league graph 

The graph of the regular-season Division I college football game for the 
year 2000 (GIRVAN &  NEWMAN, 2002) is an interesting small real-life test 
social network in that it includes the “theoretical” social structure made of 
12 regional “conferences”, in addition to the unsupervised structure 
emanating from the 115-node graph. The TourneBool test with 200 
randomized adjacency matrices, at the 99% confidence threshold results in 
the scree-plot shown in Figure 4: the eleven “first” eigenvalues (N°2 to 
N°12, as there is a single connected component in the graph) of the original 
Dr

-1 M0 matrix clearly dominate the confidence “corridor” of its 200 
randomized counterparts. 

 0 20 40 60 80 100 120
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

λ12

 
Figure 4 – The scree-plot of the singular values for the Football-league social graph (solid line in 

red). The dotted lines delimit the 99% confidence interval, the solid blue ones delimit the minimum to 
maximum observed variation interval. By construction, the first eigenvalue of any diag(d°)-1 M 
stochastic matrix is 1. 

Figures 5 and 6 display the (U2, U3) and (U11, U12) planes in which 
conferences appear with different colors. Eye-catching evidence in these 
example plots show that all-or-none clustering results, as well as nuanced 
remarks about deviations out of the theoretical structure, depending on the 
conference, may be pulled out from this representation. In contrast, the U13 
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to U15 factors display no outstanding evidence of interpretable structures. 
An important remark is that this dataspace “normalizes” the group 
phenomena, whatever the number of concerned individuals: small striking 
phenomena are highlighted in the same way as large trends. 
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Figure 5.  The (U2, U3) plane. Each conference has its own color, and a line with this color 

connects its teams, from the first one to the last one. 
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Figure 6 – The (U11, U12) plane. Each conference has its own color, and a line with this color 

connects its teams, from the first one to the last one. 

 

We have quantitatively tested this remark, performing a grid-optimized 
decision tree in the 11-dimensional eigen-subspace: Table 1 shows which 
conferences may be accurately, if not perfectly, reconstructed, starting from 
the eigen-subspace, and which may not (e.g. the “Independents” or “Sun 
Belt” conferences).  
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TABLE I .  RULES ISSUED FROM A DECISION TREE IN THE 11-D RELEVANT EIGEN-
SUBSPACE U2:U12 FOR RECONSTITUTING THE 12 FOOTBALL-
CONFERENCES (T,TP,FP stand for True, True Positive, True Negative respectively). 

Conferences Rules 
Number of 

T TP FP F-score 

0-Atlantic Coast 
1-Big East 
2-Big Ten 
3-Big Twelve 
4-Conference USA 
5-Independents 
6-Mid-American 
7-Mountain West 
8-Pacific Ten 
9-Southeastern 
10-Sun Belt 
11-Western Athletic 

U5<-0.146 
U10<-0.136 
U6>0.1 & U3>0.05 
U4>0.115 
U7<-0.1 & U10>0.1 
U11<-0,01& U12>0.12 
U2>0.05 &  U3>0.1 
U9>0.16 
U2<-0.132 
U3<-0.131 
3.U11+2.U12>0.7 
U6>0.06 & U7<-0,1 

9 
8 

11 
12 
10 
5 

13 
8 

10 
12 
7 

10 

9 
8 

11 
12 
9 
2 

13 
8 

10 
12 
7 
8 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
3 
1 

1 
1 
1 
1 

0.95 
0.57 

1 
1 
1 
1 

0,82 
0,84 

 

7.2 The Mexican politicians network 

The social graph « Mexican Politician Network » (http://vlado.fmf.uni-
lj.si/pub/networks/data/esna/Mexican.htm) linking 35 Mexican politicians at 
the end of the 20th century, has been studied by (de Nooy et al., 2004) and is 
available online. Some of them are belong to the army: it is interesting to 
investigate whether this belonging is, or is not, a structuring feature of the 
global network of the political power in this country.  

 
Figure 9 – At left:  The scree-plot of the singular values for the Mexican politicians social graph 

(solid line in red). The black dotted lines delimit the 99% confidence interval; the pale green ones 
delimit the minimum to maximum observed variation interval. At right:  The (U2, U3) plane. In red: 
Army officers; Boxes: a decision tree solution maximizing the Augmented Rand Index when 
comparing to the Army/civilian partitioning. 

Figure 9 (left) ensues from the TourneBool test, at the confidence threshold 
of 99%, on 2000 randomized adjacency matrices: the two « major » 
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eigenvalues (N°2 and N°3, as this graph comprises a unique connected 
component) of the Q = D-1/2 M0 D-1/2 matrix are clearly dominating the 
« confidence corridor » issued from the 2000 corresponding matrices. Figure 
9 (right) shows the projection of the 35 politicians in the (U2, U3) plane 
which constitutes the entire intrinsic space of this graph. Army officers 
appear in red: a three-pole organization appears visually, one pole is dense, 
mainly including army officers, except two (central) civilian politicians (F. 
Madero, E. Portes Gil), and the two others mainly comprise civilians.  

8. Conclusions, perspectives 

We have shown that the TourneBool randomization test succeeded in 
finding out the most relevant reduced dataspace for graphs of known 
structure: an artificially generated 828 nodes graph endowed with a 2-cluster 
structure and a power-law degree distribution gave rise to a one-dimensional 
relevant eigen-subspace; the real-life example of “Football league” social 
network with 12 categories gave rise to an eleven-dimensional relevant 
eigen-subspace. Another social graph (“Mexican politicians”) with three 
structuring poles gave rise to a two-dimensional relevant eigen-subspace. 

Having a robust estimate of the “right dimensionality” of a graph opens 
many perspectives: 

• It provides a lower bound for the “real number” of possible clusters, 
which is a precious help for many graph clustering methods. 

• It gives a stable base for deriving the “best possible reconstitution” 
of the adjacency matrix, in order to identify fortuitous links akin to be 
filtered and potential links particularly consistent with the logics at work in 
the studied network - a useful feature for recommender systems. 

It opens the way to coping with other long-time pending problems, such 
as: are there real distinct clusters in large, Zipfian graphs, or progressive 
gradients, or multi-scale structures, or a mix of these elements? How many 
of them, in what proportions? Our current research line is dealing with these 
yet unsolved problems. 
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