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Abstract

Coarse spaces are instrumental in obtaining scalability for domain decomposition methods. However, it is known
that most popular choices of coarse spaces perform rather weakly in presence of heterogeneities in the coefficients
in the partial differential equations, especially for systems. Here, we introduce in a variational setting a new
coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized
eigenvalue problems which isolate the terms responsible for slow convergence. We give a general theoretical result
and then some numerical examples on a heterogeneous elasticity problem.

To cite this article: , C. R. Acad. Sci. Paris, Ser. I +++++ (+++++).

Résumé

Un moyen efficace pour obtenir des méthodes de décomposition de domaine extensibles (� scalable� en anglais)
est l’utilisation d’une grille grossière. Cependant, lorsque les coefficients des équations présentent de grandes
hétérogénéités, les méthodes usuelles tombent en défaut, surtout dans le cas des systèmes. Nous introduisons ici,
au niveau variationnel, une grille grossière robuste même en présence de telles discontinuités. Pour cela, nous
résolvons des problèmes aux valeurs propres généralisés locaux qui isolent les composantes de la solution nuisant
à la convergence. Nous présentons un résultat théorique général puis quelques résultats numériques pour un
problème d’élasticité à coefficients discontinus.
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1. Version française abrégée

Ce travail s’intéresse à la résolution d’un système linéaire (3) issu de la discrétisation par éléments finis
(2) d’un problème aux limites elliptique donné sous forme variationnelle (1) où les coefficients peuvent
être discontinus. Afin d’obtenir des méthodes de décomposition de domaine extensibles (robustes vis à
vis du nombre de sous-domaines), nous considérons des méthodes à deux niveaux [2]. Ces méthodes sont
étroitement liées aux méthodes multigrilles et de déflation. Elles sont définies par deux ingrédients :
une grille grossière VH composée de m vecteurs avec m petit devant la taille du problème initial et
une formulation algébrique de la correction qui consistera ici en la méthode de Schwarz à deux niveaux
(4) que l’on utilise comme préconditionneur pour un solveur de type gradient conjugué. Ce choix nous
permet d’appliquer des résultats connus qui ramènent l’étude de la convergence de l’algorithme à celle du
conditionnement de l’opérateur préconditionné. La contribution clé de ce travail consiste en une définition
systématique de la grille grossière fondée sur les plus basses fréquences de problèmes spectraux généralisés
locaux (Définitions 3.3 et 3.4), voir aussi [7] et les références citées. Par rapport à [7], notre grille grossière
présente l’avantage d’être construite à partir de la matrice avant assemblage sans calculs supplémentaires
de contributions élémentaires. De plus, l’estimation ne dépend pas d’une hypothèse de stabilité d’un
interpolant éléments finis. Enfin, on fournit un critère de sélection optimal du nombre de vecteurs propres.
Cette approche étend au cas de systèmes et dans un cadre variationnel la méthode analysée et validée
par [5] et [6] dans le cas scalaire. En particulier, elle permet l’obtention d’une convergence efficace de
l’algorithme de Schwarz indépendamment des paramètres du problème, y compris des hétérogénéités. Le
résultat théorique (Théorème 3.5) démontre en effet l’existence d’une décomposition stable, au sens de
la Définition 3.1, de toute fonction discrète sur la grille grossière et les sous-espaces locaux. La section
4 constitue une première illustration de la méthode introduite sur un cas élémentaire mais fortement
hétérogène d’élasticité bidimensionnelle.

2. Introduction

This work is the extension to systems of PDEs of the coarse space introduced and validated in [5] and [6]
for the Darcy equation (scalar PDE). In that specific case, in order to define the coarse space, generalized
eigenvalue problems defined on the interfaces between subdomains were solved. The theoretical proof
used weighted Poincaré inequalities [4] to write inequalities between quantities defined on the interfaces
and ones defined in the whole overlapped regions. In order to be more general and avoid the need for
weighted Poincaré type inequalities, this time we will define the generalized eigenproblems directly in the
overlapped regions. We also bypass any stability assumption for the finite element interpolation. First we
define the framework in which we will introduce the new coarse space.

Given a Hilbert space V0, a symmetric and coercive bilinear form a : V0 × V0 → R and an element f in
the dual space V ′0 , we consider the abstract variational problem: Find u ∈ V0 such that

a(u, v) = 〈f, v〉 for all v ∈ V0. (1)

This variational problem is associated with an elliptic boundary value problem on a given polygonal
(polyhedral) domain Ω ⊂ Rd (d = 2 or 3) with suitable boundary conditions (possibly homogeneous
Dirichlet on part of the boundary), posed in a suitable space of functions V0 on Ω.

We consider a discretization of the variational problem (1) with finite elements (FE). To define the FE
spaces and the approximate solution, we assume that we have a mesh Th of Ω: Ω =

⋃
τ∈Th τ .
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The corresponding space of finite element functions w.r.t Th is then denoted by Vh, and the subspace
of functions from Vh that fulfill the homogeneous Dirichlet boundary conditions by Vh,0 = Vh ∩ V0.
In the case where a is a bilinear form derived from a system of PDEs, Vh is a space of vector functions.
In our analysis, we will also need restrictions of FE functions into subdomains D ⊂ Ω that are resolved
by Th. The space of restrictions of the functions in Vh to D is denoted by Vh(D). Similarly, the space of
restrictions of functions from Vh,0 which vanish on Ω \D is denoted by Vh,0(D).

The finite element discretization of (1) is: Find uh ∈ Vh,0 such that

a(uh, vh) = (f, vh) for all vh ∈ Vh,0. (2)

Let {φi}ni=1 be a basis for Vh,0 with n := dim(Vh,0), then (2) can be compactly written as

Au = f , (3)

where Ai,j := a(φj , φi), fi = 〈f, φi〉, i, j = 1, . . . , n and u is the vector of coefficients corresponding to the
unknown FE function uh in (2).

In order to automatically construct robust two-level Schwarz type methods for (2) we first partition our
domain Ω into a set of non-overlapping subdomains {Ω′j}Nj=1 using for example a graph partitioner such
as METIS or SCOTCH. Each subdomain Ω′j is then extended to a domain Ωj by adding one or several

layers of fine grid elements, thus creating an overlapping decomposition {Ωj}Nj=1 of Ω. Let us suppose that

the domains {Ωj}Nj=1 are large enough so that for every k (1 ≤ k ≤ n) there is a subdomain j (1 ≤ j ≤ N)

such that supp(φk) ⊂ Ω̄j . Having defined overlapping subdomains we now introduce restriction operators
Rj . For 1 ≤ j ≤ N , Rj is a mapping between the dual of Vh,0 and the dual of Vh,0(Ωj) – it restricts
residuals. The adjoint RTj of Rj extends functions from Vh,0(Ωj) to Vh,0 by zero. The corresponding

matrix (also denoted by RTj for simplicity) takes a local vector and makes a global vector by inserting
zeros. Finally, let us assume that we have a subspace VH ⊂ Vh,0 (the so called coarse space) and an
extension operator RTH from VH to Vh,0, then the two level preconditioner that we use is defined as

M−1
AS,2 = RTHA

−1
H RH +

N∑
j=1

RTj A
−1
j Rj , AH := RHAR

T
H and Aj := RjAR

T
j . (4)

The paper is organized as follows, in Section 3 we finish introducing the method by specifying our
choice for the coarse space and give the theoretical bound for the condition number of the preconditioned
operator; in Section 4 we give numerical results for the case where the two dimensional elasticity equations
with heterogeneous coefficients are considered.

3. An automatic coarse space construction

Let us first define some notation. Since the bilinear form a originates from a second order elliptic partial
differential equation in Ω, it has the following property: there exists a family of bilinear forms {aD}D
indexed by all subsets D ⊂ Ω such that for any D ⊂ Ω, D′ ⊂ Ω verifying D ∩D′ = ∅, the following holds

aD∪D′(u|D∪D′ , v|D∪D′) = aD(u|D, v|D) + aD′(u|D′ , v|D′) ∀u, v ∈ Vh,0.

In addition for any D ⊂ Ω and any v ∈ Vh(D), let ‖v‖2a,D = aD(v, v). This is usually referred to as the
energy seminorm on Vh(D), which defines a full norm on Vh,0(D).

Since both the preconditioner and the matrix A of the problem that we want to solve are symmet-
ric and positive definite it is well known that the rate of convergence of the preconditioned conjugate
gradient method depends only on the condition number of M−1

AS,2A. In turn, a bound for this condition
number relies on the existence of a stable decomposition of the solution onto the coarse space and the
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local subspaces (see [2] or [1] and the references therein). Next, we give the definition of such a stable
decomposition.
Definition 3.1 Given a coarse space VH ⊂ Vh,0, the local subspaces {Vh,0(Ωj)}1≤j≤N and a constant
C0, a C0-stable decomposition of u ∈ Vh,0 is a family of functions {zj}0≤j≤N such that z0 ∈ VH ,

zj ∈ Vh,0(Ωj) for all 1 ≤ j ≤ N and u =
∑N
j=0 zj, which verifies

‖z0‖2a +

N∑
j=1

‖zj‖2a,Ωj
≤ C2

0 ‖u‖
2
a .

What we aim to achieve is to define the coarse space in such a way that there is a constant C0 for

which any u ∈ Vh,0 admits a C0-stable decomposition and C0 depends only on the ratio
diam(Ωj)

δj
between

the sizes of the subdomains (diam(Ωj)) and the width of the overlap (δj). In particular C0 will remain
independent of the decomposition into subdomains and the heterogeneities defined by the bilinear form a.
First, we introduce a partition of unity operator.
Definition 3.2 (i) For each k, 1 ≤ k ≤ n define Nk = {j; 1 ≤ j ≤ N and supp(φk) ⊂ Ω̄j}.

(ii) For each j, 1 ≤ j ≤ N define Mj = {k; 1 ≤ k ≤ n and supp(φk) ⊂ Ω̄j}.

(iii) Then, for each j, 1 ≤ j ≤ N , let Ξj : Vh → Vh be defined by: Ξj(u) =
∑
k∈Mj

1

#(Nk)
uk φk(x),

where φk are the vector shape functions and u(x) =
∑n
k=1 uk φk(x).

Notice that
∑N
j=1 Ξj(u) = u and supp(Ξju) ⊂ Ω̄j . Now, let Ω◦j = {x ∈ Ωj ; ∃j′ 6= j such that x ∈ Ωj′}

denote the boundary layer of Ωj that is overlapped by neighbouring domains, and let δj denote the width
of Ω◦j at the narrowest place. It can be shown that (Ξj(u))|Ωj\Ω◦j = u|Ωj\Ω◦j .

Then the following eigenproblems enable us to ensure the stability of the decomposition by isolating
the terms which slow down convergence:
Definition 3.3 For any given j, 1 ≤ j ≤ N , let (λjk, p

j
k)1≤k≤dim(Vh(Ω◦

j
)) be defined as the solutions of:

Find the eigenpairs (λjk, p
j
k) ∈ (IR+ × Vh(Ωj)) of the generalized eigenproblem

λjk aΩ◦
j
(Ξj(p

j
k),Ξj(v)) = aΩj

(pjk, v) ∀ v ∈ Vh(Ωj), (5)

normalize them in the ‖ · ‖a norm and order them in increasing eigenvalue order.
These eigenproblems have a clear relationship with but are different from those introduced in [7]. Here

we no longer need to make any assumption on a stability result for the finite element interpolant, this
simplifies matters greatly: all assumptions hold also in a discrete setting so our theory actually covers
the implemented method. Moreover, implementing (5) does not require any additional elementary matrix
computations. In addition, we provide here a practical criterion to optimally select the number of vectors
to be included in the coarse space.

Definition 3.4 For a given positive real number Kj, define mj(Kj) = min

{
k |λjk ≥

1

Kj

}
− 1.

After choosing Kj , we prove the following result for the new preconditioner.
Theorem 3.5 Assume that each point in Ω belongs to at most k0 subdomains and the coarse space is
constructed as follows: for each 1 ≤ j ≤ N , solve the generalized eigenproblem given in Definition 3.3,

then select the mj first eigenvectors according to the strategy given in Definition 3.4 for Kj =
diam(Ωj)

δj
,

and set VH to

VH = span
1≤j≤N,1≤k≤mj

{
Ξj(p

j
k)
}
. (6)

Then for any u ∈ Vh,0 there exists a C0-stable decomposition with
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C2
0 =

[
2 + 4 k0 (2k0 + 1)

(
1 + max

1≤j≤N

diam(Ωj)

δj

)]
. (7)

We insist on the fact that, thanks to the choice of Kj , C0 depends only on k0 and on the proportion of

overlap in each subdomain
diam(Ωj)

δj
. From this, a bound on the condition number of the preconditioned

operator and thus on the convergence rate of the preconditioned conjugate gradient method can be
derived immediately using standard domain decomposition theorems (again, see [2] or [1]). These bounds

will depend on the same quantities (k0 and
diam(Ωj)

δj
) leading to a method that should be scalable and

robust with regard to high heterogeneities in the coefficients. The particular choice Kj =
diam(Ωj)

δj
is made

to match the well known estimate in the constant coefficient case.

4. Numerical Results

The purpose of this section is to illustrate the behaviour of our new preconditioner on the two di-
mensional linear elasticity equations with heterogeneities. We have used FreeFem++ [3] to define the
test cases and build all the finite element data and Matlab for the actual solver. The equations are the
following:

−div(σ(u)) = f , where u = (u1, u2)T,

and the stress tensor σ(u), the Lamé coefficients λ and µ and the right hand side are
σij(u) = 2µεij(u) + λδijdiv(u), εij(u) =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, f = (0, g)T = (0, 10)T ,

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
.

(8)

Here E and ν denote respectively Young’s modulus and Poisson’s ratio and are discontinuous. The test
case is as follows (see Figure 1): we take a bar of height 1 and length N made up of 21 × (N × 20 + 1)
nodes and divided into N subdomains which we extend by two nodes to form the overlapping partition.
The coefficient distribution consists of four horizontal layers. We impose Dirichlet conditions u = 0 on
the left hand side boundary denoted by ∂ΩD, and Neumann conditions σ(u) · n = 0 on the remaining
boundaries. The spaces are: V0 = {v ∈ H1(Ω)2; v|∂ΩD

= 0}, Vh = (P1(Ω))2 (piecewise linear with respect
to τh). Throughout this section we compare three methods. The first one is the one level additive Schwarz

method (referred to as AS), defined by the preconditioner M−1
AS,1 =

∑N
j=1R

T
j A
−1
j Rj . The second one is

the standard two level method (referred to as RBM), given by (4) with the coarse space which consists
of all rigid body modes (so three in 2D) simply weighted by partition of unity functions. The third one is

the new two level method (referred to as NEW). As a stopping criterion we use ‖u−ū‖∞‖ū‖∞ < 10−7 where ū

is the solution of (2) obtained via a direct solver on the global problem. Every time we give an iteration
count for the NEW method we add in brackets the size of the coarse space compared to the total number
of d.o.f.s in the overlaps. Table 1 gives the number of iterations that are needed to reach convergence for
different decompositions and a coefficient distribution which mimics layers of steel and rubber (without
dealing with incompressibility): (E1, ν1) = (2 · 1011, 0.3) and (E2, ν2) = (2 · 107, 0.45). The new method is
a lot more efficient and it is also more robust with regard to the number of subdomains. Table 2 gives the
number of iterations that are needed to reach convergence for different jumps in the coefficients which
are indexed by different values of (E2, ν2). We use a regular decomposition into N = 8 subdomains and
(E1, ν1) = (2 · 1011, 0.3). When (E1, ν1) = (E2, ν2) (last line) we are looking at a homogeneous steel
domain. As expected the method selects the three rigid body modes and only the three rigid body modes
in all floating subdomains (plus two in the remaining subdomain).
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Figure 1. Decomposition into N = 8 subdomains: regular (left), with METIS (middle) and Coefficient distribution (right)

Décomposition en N = 8 sous-domaines: régulière (gauche), avec METIS (milieu) et Choix des coefficients
(droite)

Regular Metis

AS RBM NEW (VH) AS RBM NEW (VH)

4 sub 51 55 28 (22/1008) 56 59 24 (29/1040)

8 sub 108 115 35 (46/2352) 121 124 31 (66/2410)

16 sub 282 207 53 (94/5040) 260 239 36 (131/5146)

32 sub 747 442 66 (190/10416) > 1000 537 41 (268/10706)

Table 1
Iteration count vs. number of subdomains

Nombre d’itérations en fonction du nombre de sous-domaines

(E2, ν2) AS RBM NEW (VH)

(2 · 107, 0.49) 152 97 36 (60/2352)

(2 · 108, 0.45) 97 86 35 (45/2352)

(2 · 109, 0.4) 79 68 33 (45/2352)

(2 · 1010, 0.35) 87 42 30 (30/2352)

(2 · 1011, 0.3) 50 33 31 (23/2352)

Table 2
Iteration count vs. jump in the coefficients

Nombre d’itérations en fonction du saut dans les

coefficients

5. Conclusion

We have constructed a coarse space for a two-level overlapping Schwarz method that is robust with
regard to jumps in the coefficients in the equation. This coarse space is computed locally and automati-
cally. It is suitable for parallel implementation. We have a theoretical proof for the bound on the condition
number and the numerical tests for two dimensional elasticity are in agreement with theoretical conclu-
sions. Since the method is constructed at the variational level, numerical experiments could be conducted
for any other second order elliptic system of equations.
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