
HAL Id: inria-00631141
https://hal.inria.fr/inria-00631141

Submitted on 11 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Scalable, Accurate, and Usable Simulations of
Distributed Applications and Systems

Olivier Beaumont, Laurent Bobelin, Henri Casanova, Pierre-Nicolas Clauss,
Bruno Donassolo, Lionel Eyraud-Dubois, Stéphane Genaud, Sascha Hunold,

Arnaud Legrand, Martin Quinson, et al.

To cite this version:
Olivier Beaumont, Laurent Bobelin, Henri Casanova, Pierre-Nicolas Clauss, Bruno Donassolo, et
al.. Towards Scalable, Accurate, and Usable Simulations of Distributed Applications and Systems.
[Research Report] RR-7761, INRIA. 2011, pp.36. �inria-00631141�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49955137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00631141
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
7

6
1

--
F

R
+

E
N

G

Domaine 3

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Towards Scalable, Accurate, and Usable Simulations

of Distributed Applications and Systems

Olivier Beaumont, Laurent Bobelin, Henri Casanova, Pierre-Nicolas Clauss, Bruno Donassolo,

Lionel Eyraud-Dubois, Stéphane Genaud, Sascha Hunold, Arnaud Legrand, Martin Quinson,

Cristian Rosa, Lucas Mello Schnorr, Mark Stillwell, Frédéric Suter, Christophe Thiéry, Pedro

Velho, Jean-Marc Vincent, Young J. Won.

N° 7761

2011

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lès-Nancy
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

Towards Scalable, Accurate, and Usable Simulations of

Distributed Applications and Systems

Olivier Beaumont∗, Laurent Bobelin†, Henri Casanova‡, Pierre-Nicolas
Clauss§, Bruno Donassolo¶, Lionel Eyraud-Dubois∗, Stéphane Genaud‖,

Sascha Hunold†, Arnaud Legrand†, Martin Quinson§, Cristian Rosa§,
Lucas Mello Schnorr†, Mark Stillwell∗∗, Frédéric Suter††, Christophe

Thiéry§, Pedro Velho†, Jean-Marc Vincent†, Young J. Won∗.

Domaine : Réseaux, systèmes et services, calcul distribué
Équipe-Projet AlGorille

Rapport de recherche n° 7761 — 2011 — 36 pages

Abstract: The study of parallel and distributed applications and platforms, whether
in the cluster, grid, peer-to-peer, volunteer, or cloud computing domain, often man-
dates empirical evaluation of proposed algorithm and system solutions via simulation.
Unlike direct experimentation via an application deployment on a real-world testbed,
simulation enables fully repeatable and configurable experiments that can often be
conducted quickly for arbitrary hypothetical scenarios. In spite of these promises,
current simulation practice is often not conducive to obtaining scientifically sound
results. State-of-the-art simulators are often not validated and their accuracy is unknown.
Furthermore, due to the lack of accepted simulation frameworks and of transparent
simulation methodologies, published simulation results are rarely reproducible. We
highlight recent advances made in the context of the SIMGrid simulation framework
in a view to addressing this predicament across the aforementioned domains. These
advances, which pertain both to science and engineering, together lead to unprecedented
combinations of simulation accuracy and scalability, allowing the user to trade off one
for the other. They also enhance simulation usability and reusability so as to promote an
Open Science approach for simulation-based research in the field.

Key-words: Distributed computing simulation, validation, scalability, SIMGrid

∗ INRIA, Bordeaux University, France
† Grenoble University, France
‡ Dept. of Computer and Information Sciences, University of Hawai‘i at Manoa, U.S.A
§ Nancy University, LORIA, France
¶ Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
‖ University of Strasbourg, ICPS-LSIIT, Illkirch, France

∗∗ University of Lyon, LIP, INRIA, Lyon, France
†† IN2P3 Computing Center, CNRS/IN2P3, Lyon-Villeurbanne, France

Contributions à l’extensibilité, la précision et

l’utilisabilité des simulations de systèmes et applications

distribuées

Résumé : L’étude de systèmes et applications parallèles et distribués, qu’il s’agisse de
clusters, de grilles, de systèmes pair-à-pair de volunteer computing, ou de cloud, deman-
dent souvent l’évaluation empirique par simulation des algorithmes et solutions proposés.
Contrairement à l’expérimentation directe par déploiement d’applications sur des plates-
formes réelles, la simulation permet des expériences reproductibles pouvant être menée
rapidement sur n’importe quel scénario hypothétique. Malgré ces avantages théoriques,
les pratiques actuelles en matière de simulation ne permettent souvent pas d’obtenir
des résultats scientifiquement éprouvés. Les simulateurs classiques sont trop souvent
validés et leur réalisme n’est pas démontré. De plus, le manque d’environnements de
simulation communément acceptés et de méthodologies classiques de simulation font
que les résultats publiés grâce à cette approche sont rarement reproductibles par la
communauté. Nous présentons dans cet article les avancées récentes dans le contexte de
l’environnement SIMGrid pour répondre à ces difficultés. Ces avancées, comprenant à la
fois des aspects techniques et scientifiques, rendent possible une combinaison inégalée
de réalisme et précision de simulation et d’extensibilité. Cela permet aux utilisateurs de
choisir le grain des modèles utilisés pour ses simulations en fonction de ses besoins de
réalisme et d’extensibilité. Les travaux présentés ici améliorent également l’utilisabilité
et la réutilisabilité de façon à promouvoir l’approche d’Open Science pour les recherches
basées sur la simulation dans notre domaine.

Mots-clés : Simulation de systèmes distribués, validation, extensibilité, SIMGrid

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 3

1 Introduction

The use of parallel and distributed computing platforms is pervasive in a wide range of
contexts and for a wide range of applications. High Performance Computing (HPC) has
been a consumer of and driver for these platforms. In particular, commodity clusters
built from off-the-shelf computers interconnected with switches have been used for
applications in virtually all fields of science and engineering. Due to the advent of multi-
core architectures, as an answer to power and heat challenges, modern HPC systems can
comprise up to hundreds of thousands of cores. Exascale systems with billions of cores
are envisioned for the next decade. Platforms that aggregate multiple clusters over wide-
area networks, or grids, have also received a lot of attention in the HPC context over
the last decade with both specific software infrastructures and application deployments.
Beyond HPC, distributed applications and platforms have come to prominence in the
peer-to-peer and volunteer computing domains, enabled by the impressive capabilities
of personal computers and high-speed personal internet connections. Leveraging this
potential located at the edges of the network is an attractive proposition for many
applications (e.g., content sharing, volunteer computing, data storage and retrieval,
media streaming). Finally, cloud computing relies on the use of large-scale distributed
platforms that host virtualized resources leased to consumers of compute cycles and
storage space.

While (large-scale) production platforms have been deployed and used successfully
in all these various domains, many open issues must be addressed to push current uses
of these platforms further and to use them for new application domains. Relevant chal-
lenges include resource management, resource discovery and monitoring, application
scheduling, data management, decentralized algorithms, energy consumption reduc-
tion, resource economics, fault-tolerance and availability, scalability and performance.
Regardless of the specific context and of the research question at hand, studying and
understanding the behavior of distributed applications is difficult. The goal is to assess
the quality of competing algorithm and system designs with respect to precise objective
metrics. Three classical approaches are used in this view: theory, experimentation and
computer simulation. In most cases, pure theoretical analysis can be conducted at best
for stringent and ultimately unrealistic assumptions regarding the underlying platforms
and/or applications. Therefore, most research results are obtained using experimentation
or computer simulation.

Experimentation, or the direct execution of target applications on production plat-
forms or testbeds, seems an obvious approach for obtaining sound experimental results.
Unfortunately, it often proves infeasible. Real-world platforms may not be available
for the purpose of experiments, so as not to disrupt production usage. Moreover, ex-
periments can only be conducted for the platform configurations at hand, making it
difficult to explore “what if?" scenarios. Experiments may also be prohibitively time
consuming, especially if large numbers of them are needed to explore many scenarios
with reasonable statistical significance. Finally, conducting reproducible experiments
on real-world platforms often proves difficult because of the lack of control over ex-
perimental conditions, in particular for platforms subject to changing workload and
resource conditions. Even when direct experimentation is feasible and sufficient, power
consumption considerations must be taken into account: for large-scale platforms such
as large clusters or clouds, using the platform for extensive performance evaluation
experiments can be an unacceptable expense and a waste of natural resources.

Given these difficulties, it is not surprising that many published results in the field
are obtained through simulation, even though researchers often strive to obtain some

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 4

experimental results for (limited) real-world scenarios. Simulation offers an attractive
alternative to experimentation because simulation experiments are fully repeatable and

configurable. Furthermore, simulation is often less labor intensive, costly, and/or time
consuming than experimentation. Consequently, simulation has been used in several
areas of Computer Science for decades, e.g., for microprocessor and network protocol
design. Its use for distributed computing research is less developed. In this field,
although simulation holds many promises, current practices have given simulation a
“bad press," for good reasons.

In computer science, simulation amounts to implementing a model, i.e., a hypotheti-
cal description of the system (e.g., equations, state automata, Petri nets, programmatic
procedure). The question of how close the model is to the real world should be funda-
mental, especially because the model is often simplified to favor simulation speed (e.g.,
an analytical model based on equations is faster to evaluate than a complex event-driven
procedure). Simulation can thus introduce a large bias, or accuracy loss, with respect to
its real-world counterpart. Because quantifying this accuracy loss is painstaking and
time-consuming, very few authors have published extensive “simulation validation"
results in the literature. Consequently, countless published research results are obtained
via simulation methods whose accuracy is more or less unknown.

In experimental science the ability to reproduce published results is the necessary
foundation for obtaining universal and enduring knowledge, and part of the “Open
Science" approach widely adopted in fields such as physics or chemistry. In the field
of parallel and distributed computing, however, reproducing results is rarely seen as a
fundamental step (and arguably often seen as a waste of time since most authors focus
on novelty at all cost). Simulation experimental methodology is rarely documented in
sufficient details and the simulators, which are often ad-hoc and throw-away, are rarely
made available. For instance, in 2006, [51] point out that out of 141 surveyed papers
that use simulation for studying peer-to-peer systems, 30% use a custom simulator,
and 50% do not even report which simulator was used. This lack of acknowledged
simulation frameworks and transparent simulation methodologies means that most
published simulation results are impossible to reproduce by researchers other than the
authors. The irony is surely not lost on the reader here, given that simulations should be
repeatable by design!

We identify three related challenges for simulation frameworks in the field of
distributed computing:

1. Accuracy – obtaining simulation results (e.g., simulated application execution
time, simulated application throughput, simulated platform utilization) that match
results that would be obtained with real-world application executions, or that
introduce a quantifiable bias.

2. Scalability – simulating large-scale applications (e.g., large number of long-
running tasks, large amounts of transferred data) on large-scale platforms (e.g.,
large number of compute nodes, large number of network links and routers)
with low time complexity (e.g., simulation times orders of magnitude shorter
than simulated times) and low space complexity (e.g., simulating millions of
application and platform components using only a few GBytes of RAM).

3. Usability – providing users with ways to instantiate simulation models, to aug-
ment or develop simulation models, to implement simulations for various applica-
tion scenarios, to analyze/visualize simulation results, so as to enable repeatability
of simulation results by others.

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 5

In this work we focus on SIMGrid, a unified and open simulation framework for the
HPC, grid, peer-to-peer, volunteer, and cloud computing domains. More specifically, we
present relevant accomplishments in the last 3 years of the SIMGrid project. SIMGrid
has been referenced in survey articles about simulators of parallel and distributed
applications (SPDAs), and most recently in [25]. Most of these surveys do not account
for the aforementioned accomplishments, likely because these accomplishments are
described across distinct conference publications. Consequently, this article summarizes
all salient contributions to date, providing a unified view of how they together contribute
to addressing the above challenges. Note that these contributions pertain both to
“science" (e.g., novel simulation models) and “engineering" (e.g., use of efficient data
structures), and together contribute to furthering the state of the art of simulation in the
field.

This article is organized as follows. Section 2 discusses related work. Section 3
provides an overview of SIMGrid. Sections 4, 5 and 6 present recent developments in
SIMGrid that address the interrelated challenges of accuracy, scalability and usability,
respectively. Finally, Section 7 concludes with a summary of results and a broad
perspective on future challenges and developments.

2 Related Work

The simulation of parallel and distributed applications has received an enormous amount
of attention in the literature. Many SPDAs have been developed that employ a wide
range of simulation techniques. In what follows we discuss prominent SPDAs, loosely
categorized based on their objective: the simulation of distributed algorithms, of abstract
applications, or of legacy applications.

2.1 Simulation of Distributed Algorithms

Many SPDAs have been designed for simulating distributed algorithms on large-scale
platforms, e.g., peer-to-peer systems. These SPDAs often abstract away many systems
and hardware details and rely on simple simulation models. One of the key factors
that affect the algorithm performance is network latency, and it is common to evaluate
algorithms based on message counts (often not accounting for network bandwidth or
network contention). Simulator design is thus simplified, which makes it possible to
aim for extreme scalability up to systems with several millions of peers. PeerSim [39]
is likely the most widely used SPDA for theoretical peer-to-peer studies. It allows both
simulation in query-cycle and discrete event modes, and was reported to scale up to one
million peers when using the former mode. An advantage of PeerSim is that its simple
design allows users to modify and extend it. Its main limitation is its lack of realism
due to simplistic simulation models put in place for the sake of scalability. OverSim [6]
attempts to address this limitation by relying on the OMNet++[68] discrete event
simulation kernel. This kernel includes a packet-level network simulator comparable to
NS2 [47], but also extensions for modeling compute resources. OverSim, however, does
not use these extensions and only simulates communication between peers. OverSim was
reported to scale up to 100,000 peers (when replacing OMNeT++ by other mechanisms),
and it was never thoroughly validated against a real-world system. Such validation
is arguably difficult and often not a strong priority in that community. Over the last
decade, many other SPDAs have emerged, such as P2PSim [31] or PlanetSim [30].
These projects have been short-lived and are no longer maintained. It is thus difficult to

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 6

say whether more recent proposals, e.g., D-P2P-Sim [64], will perdure. The volatility of
simulation technology is a clear impediment to obtaining enduring research results. As
seen in Section 5, SIMGrid, which has been available and maintained for 12 years to date,
achieves high enough scalability for supporting large-scale simulation of distributed
algorithms while striving to maintain simulation accuracy.

2.2 Simulation of Abstract Applications

We use the term “abstract application" to denote a specification of an application as a
set of possibly dependent tasks and data volumes to be exchanged between these tasks.
Each task is specified by an execution cost (e.g., number of instructions, number of
floating point operations, execution time on a reference host). In the end, the application
implementation is completely abstracted and, in most cases, no such implementation
exists. Numerous SPDAs for abstract applications have been developed in the grid
computing community, most of them only intended for use by their own developers.
Several were made available to the community at large, but proved to be domain-
specific and short lived. For instance, ChicSim [58] and OptorSim [9] were designed
to study data replication issues in grid platforms but have since been discontinued. A
widely used SPDA is GridSim [14], which was initially intended for grid economy
studies but has evolved to be used in a broader grid computing context. To the best of
our knowledge, only two SPDAs target cloud simulation specifically. CloudSim [15]
builds on the same simulation internals as GridSim but exposes specific interfaces for
simulating systems that support cloud services. GroudSim [54] is a framework that
enables the simulation of both grid and cloud systems. Recently, NIST has announced
Koala [43], a cloud simulator that is not available at the time this article was written.
Several SPDAs have been developed specifically for simulating volunteer computing
systems, i.e., systems that consist of larger numbers of volatile hosts. BOINC is the
most popular volunteer computing infrastructure today. It supports the concurrent
execution of “projects" on large numbers of individually owned hosts, called clients.
It implements various policies to determine when each client performs work units
for which projects and to determine which project tasks the BOINC server should
send to which clients. Several BOINC SPDAs, often simulating only a subset of its
functionality, have been developed SimBA [66] models BOINC clients as finite-state
automata based on availability trace files and/or probabilistic models of availability, and
makes it possible to study server-side scheduling policy in simulation. The same authors
later developed EmBOINC [27]. Unlike SimBA, EmBOINC instead executes actual
BOINC production code to emulate the BOINC server, which makes it possible to tune
the code in simulation and integrate it back into BOINC. The actual application is still
completely abstract and work unit computation is implemented using simulated delays.
Because of these simple client models, these SPDAs do not allow interaction between
multiple servers. SimBOINC [41] goes further and simulates the full BOINC system,
thus allowing for multiple servers and for the simulation of client-side scheduling. It is
built with SIMGrid, and thus benefits from the features described in this work.

A common theme shared by these SPDAs is that they seek a good compromise
between simulation speed and simulation accuracy. However, they often err on one
side, opting for simplistic simulation models that can be computed quickly that that are
unrealistic. As far as compute resource simulation, most above SPDAs use macroscopic
CPU models: task execution times are computed by dividing a compute cost (e.g.,
number of instructions) by a compute speed (e.g., number of instructions per time unit),
with possibly a random component. This approach does not account for architecture-

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 7

specific features of the simulated compute resource, and is thus of questionable accuracy
when simulating diverse applications on heterogeneous platforms. It is however possible
to instantiate compute costs based on real-world benchmarks collected on a variety of
architectures.

The simulation of storage resources is often entirely ignored. Only OptorSim and
GridSim currently account for storage resources. The former merely simulates only a
notion of disk capacity, which is arguably straightforward to implement as part of all the
other SPDAs. GridSim does implement a disk performance model based on latency, seek
time, and maximum bandwidth, but does not model any file system effects, which are
known to drive disk performance. In fact, accurate analytical modeling of hard drives is
an extremely challenging proposition. One alternative would then be to employ discrete
event simulators of storage resources (e.g., [13]). These simulators typically model
the operation of the storage hardware precisely and could in principle serve as a basis
for implementing a storage system simulator that models other hardware components
(e.g., buses and networks) and software components (e.g., file systems). In most SPDAs,
however, such simulation is typically not attempted. An exception is the work in [53],
which targets fine-grain discrete-event simulation of a storage area network. The advent
of Solid State Drives (SSDs) and the possible departure from traditional hard drives may
allow the development of analytical, and yet accurate, performance models of storage
resources and I/O operations in the future.

The largest diversity of techniques employed in these SPDAs is for network sim-
ulation. The simplest models, used for instance in SimBA and EmBOINC, attach a
bandwidth value to each host which is used to compute data transfer times for uploads
or downloads given data size. A latency value may also be used, so as to obtain an affine
model. Going further in sophistication, ChicSim uses a simplistic analytical model of
flow data transfer rate that accounts for contention based on simple formulas. While
superior to the previous model, this model does not capture the contention behavior
of real-world networks. Part of the issue is that in real networks, communications are
fragmented into packets. Such fragmentation is simulated in GridSim, using a simple
wormhole routing strategy. Simulating fragmentation significantly increases simulation
time as, by contrast with the two previous models, many simulation events are required
to simulate a single network communication. In fact, the simulation time could become
as large as that seen when using accurate packet-level simulators used in the network re-
search community, e.g., NS2 [47]. Unfortunately, arbitrary packetization and wormhole
routing does not model network protocol effects such as TCP flow management, and
could thus be a poor alternative to full-fledge packet-level simulation. Another option
is to use analytical network models that are designed to represent data transfer rate
allocation as achieved by real network protocols such as TCP. The goal is to be orders of
magnitude faster than packet-level simulation, while remaining close to the behavior of
real-world networks. This approach is seen in OptorSim, GroudSim, and SIMGrid. In
these works, communications are represented as flows in pipes, and data transfer rates
are obtained with respect to a bandwidth sharing model [46]. Unfortunately, designing
accurate and correct such models is challenging. For instance, OptorSim uses a flawed
model that is acknowledged in the simulator’s documentation but not resolved at the
time this article is being written. Essentially, the bandwidth share that each flow receives
on a congested network link depends only on the number of flows using this link. This
computation, however, does not take into account the fact that some of these flows may
be limited by other links in their path, leading to wasted bandwidth in various links.
In real networks this wasted bandwidth would instead be shared between other (not
otherwise limited) flows. Similar issues are found in other simulators, e.g., GroudSim.

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 8

By contrast, as seen in Section 4, SIMGrid implements scalable and accurate (i.e.,
experimentally validated) analytical network simulation models.

2.3 Simulation of Legacy Applications

Rather than simulating abstractions of applications, another option is to simulate actual
implementations. This approach has been pursued actively in the context of parallel
message-passing applications implemented with MPI [33]. Two approaches are used:
off-line and on-line simulation. In off-line simulation, a time-stamped log of computation
and communication events is first obtained by running the application on a real-world
platform. A SPDA then replays the execution of the application as if it were running
on another platform with different hardware characteristics. This approach is very
popular, as shown by the number of off-line SPDAs described in the literature since as
recently as 2009 [36, 37, 53, 67, 72]. Off-line simulation face the difficulty that event
logs can be large, requiring creative solutions as seen for instance in the PSINS [67]
or PHANTOM [72] projects. Furthermore, event logs are tied to particular application
execution (e.g., number of processors, block size, data distribution schemes) so that a
new log must be obtained for each potential execution scenario, although extrapolation
may be feasible, as seen in [37, 53]. A way to side-step these difficulties altogether is
on-line simulation, in which actual application code, with no or marginal modifications,
is executed on a host platform that attempts to mimic the behavior of the target platform.
Part of the instruction stream is intercepted and passed to a SPDA. LAPSE is a well-
known on-line SPDA developed in the early 90’s [23]. In LAPSE, the parallel application
executes normally but communication delays are injected based on a simple model
of a hypothetical network. MPI-SIM [3] and the project in [60] add I/O subsystem
simulation in addition to network simulation. The BigSim project [73], unlike MPI-SIM,
allows the simulation of arbitrary computational delays on the target platform. Note
that extrapolating computation times measured on the host platform to computation
time to a platform with a different computer architecture is in general not possible, thus
precluding the accurate simulation of a heterogeneous platform. A way to address this
limitation, used in [44], is to use a cycle-accurate hardware simulator for determining
computation delays, which leads to a high ratio of simulation time to simulated time.

A challenge faced by all above SPDAs is the simulation of network communication.
Using a packet-level network simulation, as done in MPI-NetSim [55], is ultimately
unscalable. Instead, as seen in the case of SPDAs for abstract applications, most authors
adopt simplistic network models. These models typically ignore network contention and
use monolithic performance models for collective communications. Some authors have
attempted to capture contention by using probability distributions of communication
times [34]. SIMGrid can be used as a foundation for implementing off-line simulation of
legacy application, but also supports on-line simulation. Regardless, it enables fast and
scalable simulation of legacy applications via the use of accurate (i.e., experimentally
validated) analytical network models. For scalability reasons, many of the simulators
cited in this section run the simulation itself on a cluster platform. Instead, as seen in
Section 5.4, SIMGrid makes it possible to run simulations at scale on a single computer.

3 The SIMGrid Framework

SIMGrid is a 12-year old open source project whose domain of application has kept
growing since its inception. It was initiated in 1999 as a tool for studying scheduling

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 9

algorithms for heterogeneous platforms. SIMGrid v1 [17] made it easy to prototype
scheduling heuristics and to test them on a variety of abstract applications (expressed
as task graphs) and platforms. In 2003, SIMGrid v2 [18] extended the capabilities of
its predecessor in two major ways. First, the accuracy of the simulation models was
improved by transitioning the network model from a wormhole model to an analytical
fluid model. Second, an API was added to simulate generic Concurrent Sequential
Processes (CSP) scenarios. SIMGrid v3.0 was released in 2005, but major new features
appeared in version v3.3 in April 2009. These features include a complete rewrite of
the simulation core for better modularity, speed and scalability; the possibility to attach
traces to resources to simulate time-dependent performance characteristics as well as
failure events; and two new user interfaces.

The current software stack with its relevant components is depicted in Figure 1(a).
The four components on the top of the figure, SimDag, MSG, SMPI, and GRAS are user

interfaces. The two components below, SimIX and SURF, form the simulation core. A
last component, not shown in the figure but used throughout the software stack up to
user-space, is a general-purpose toolbox that implements classical data containers (e.g.,
FIFO, dynamic arrays, hash maps), logging and exception mechanisms, and support
mechanisms for configuration and portability. The following two sections describe the
user interfaces and the simulation core in detail.

SimIX

SURF

SimDag MSG SMPI GRAS

platform simulator

"POSIX-like" API on a simulated platform

{

{R
ea

l W
or

ld

Sim
ul
at

io
n

(a) SIMGrid components

APIs

SURF

SIMIX

USER
CODE

us
er
co
de

us
er
co
de

us
er
co
de

us
er
co
de

us
er
co
de

...

Activities372
435

245
245

530
530

50
664work

remaining
variable

...

  

Constraints

                                  

Execution
Contexts

Actions

Variables

x1

x2

x2

x2 x3

x3

xn+ +...

+
< CL1
< CL2
< CL3
< CL4

< CP

...

Requests

Maestro

(b) Implementation of a SIMGrid simulation

Figure 1: The SIMGrid software

3.1 User Interfaces

SIMGrid provides four application programming interfaces (APIs). Two of these
APIs are designed for simulating the execution of applications based on an abstract
specification of the application. The SimDag API allows the simulation of parallel
applications structured as directed acyclic graphs (DAGs). Vertices denote (sequential or
parallel) tasks and edges denote task dependencies and optional data transfers between
tasks. A large literature is devoted to the study of DAG scheduling algorithms, and
SimDag provides the necessary abstractions to quickly implement and evaluate such
algorithms. The MSG API is intended for CSP simulation and provides classic CSP

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 10

abstractions (processes, mailboxes, channels, etc.). It is therefore generic and, to date, it
is the most widely used SIMGrid API, providing bindings for C, Java, Ruby and Lua.

The remaining two APIs are designed for simulating the execution of applications
based on actual application source code. The SMPI API [22] targets the on-line sim-
ulation of MPI applications. Actual application code is executed and MPI calls are
intercepted so that communication delays can be injected based on network simulation.
The GRAS API [56] makes it possible to use SIMGrid as a development framework for
implementing full-fledged distributed applications. It provides two back-ends, allowing
the same application source code to be executed either in simulation or deployed on a
real-world platform. GRAS can thus bypass the simulation core entirely, as depicted
in Figure 1(a). Consequently, application developers benefit from an enhanced devel-
opment cycle in which the application can be quickly tested over arbitrary simulation
scenarios as it is being developed.

3.2 Simulation Core

3.2.1 SURF and SimIX

The component that implements all simulation models available in SIMGrid is called
SURF. It provides an abstract interface to these models that exposes them as resources

(i.e. network links, workstations) and activities that can consume these resources. For
convenience, an additional layer is provided, called SimIX. It provides POSIX-like
services including processes, IPC, locks, and actions. SimIX processes correspond to
execution contexts (e.g., threads) for the simulated application, that run code written by
the SIMGrid user using one of the provided APIs. All APIs but SimDag are written using
SimIX. This exception is because SimDag only allows the user to simulate centralized
algorithms without independent processes, removing the need for the SimIX layer.

SimIX acts as a virtual operating system that provides a system call interface through
which processes place requests. These requests are used for all interaction between
the user program and the simulated platform. SimIX actions connect the requests from
the user programs (expressed through the APIs) and the activities on the simulated
resources in SURF. These activities are used by SURF to compute the delays incurred
by the user actions (e.g., computations and communication operations). Each activity
is represented by a data structure that stores the total amount of “work" to be done
(e.g., number of bytes to transfer, number of compute operations to perform) and the
amount of work remaining. A process blocks on a request until it is answered when
the delay corresponding to all the activities currently performed by the process have
expired. Simply put, if a process issues a request that would initiate an activity that
should take x time units, this process blocks on the request until SimIX answers it,
i.e., once the simulated clock has advanced by x time units. This scheme is depicted
in Figure 1(b). For instance, the third activity depicted in the figure corresponds to a
total amount of work of 664 units, and 50 of these units remain until completion of the
activity. When the activity completes, the request depicted above the action associated
to the activity is answered, allowing the corresponding process to continue execution.
SIMGrid is designed so that the simulation state can only be updated in the SimIX layer.
Furthermore, as depicted in the figure, updates are all performed by a unique execution
context, e.g., a thread, which we call the maestro. When a process places a request to
the maestro it is blocked until the maestro has serviced the request. The rational for
using a maestro is explained in Section 5.2.

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 11

Algorithm 1 Main simulation loop
1: readyset← all processes
2: while readyset 6= ∅ do

3: requests← run_processes(readyset)
4: handle_requests(requests)
5: (t1, activities)← compute_next_activity_completions()
6: t2 ← compute_next_resource_state_change()
7: t← min(t1, t2)
8: update_simulation_state(t)
9: readyset← answer_requests(activities)

10: end while

3.2.2 The Main Simulation Loop

SimIX implements a “simulation loop" through which the simulation makes progress, as
shown in pseudo-code in Algorithm 1. The algorithm maintains a set of ready processes,
i.e., new processes or those processes whose requests have been answered. The loop
executes the processes in the ready set each in turn, and ends when there are no such
processes in the ready set (which is either the end of the simulation or a detected
deadlock). At the beginning of each iteration, SimIX lets all ready processes execute
(line 3). By default, all processes are run in mutual exclusion and in round-robin fashion.
Each process runs until completion or until it issues a request. Next, the SimIX maestro
handles the set of requests issued by the processes, possibly creating or canceling
activities (line 4). These requests are processed in deterministic order based on process
IDs to ensure simulation repeatability. For each simulated resource with at least one
pending activity, SURF determines when each pending activity will complete (note that
an activity may use more than one resource). The minimum of these completion dates is
then computed and the set of activities that complete at that minimum date is determined
(line 5). SIMGrid allows users to attach “traces" to simulated resources. These traces
are time-stamped lists of resource states. They are used for instance to simulate time-
dependent resource availability for an out-of-band workload that causes fluctuations in
the performance delivered by the resources. SURF computes the earliest resource state
change date (line 6), and then the minimum of this date and of the minimum activity
completion date (line 7). The state of the simulation is then advanced to this date,
updating activity states and resource states (line 8). Finally, based on those activities that
have completed, the corresponding requests are answered thus unblocking the relevant
processes and updating the ready set(line 9).

3.2.3 Simulation Model Formalization and Implementation

During the main simulation loop, SURF determines execution rates and completion
times of activities on resources. This determination is based on the various simulation
models implemented in SIMGrid, several of which are discussed in upcoming sections.
It turns out that most of these models can be formalized in a unified manner as a multi-
variate optimization problem subject to linear constraints. As depicted at the bottom
of Figure 1(b), a variable is associated to each activity that quantifies the activity’s
execution rate. SIMGrid implements an efficient sparse representation of the set of
linear constraints, and solves the optimization problem with time complexity linear in the
number of activity variables and the number of resources. In principle this computation

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 12

has to be performed at each iteration of the main simulation loop. However, Section 5.1
describes ways to reduce the involved computational cost.

4 Simulation Accuracy

The simulation of parallel and distributed applications typically entails simulating three
types of resources and of activities on these resources: (i) storage resources and I/O
operations; (ii) compute resources and computations; and (iii) network resources and
data transfers. For each resource type, as seen in Section 2, a common theme is found:
the alternative to simple, quick-to-compute, but inaccurate models, if any, is the use
of fine-grain discrete-event techniques acknowledged to be accurate but leading to
simulation times prohibitively high for a vast number of relevant use cases. Bridging the
gap between these two extremes, whenever possible, is one of the main objectives of the
SIMGrid project. To date, major advances have been made on the network simulation
front, i.e., the development of analytical network models that are drastically more
accurate than state-of-the-art analytical models used by SPDAs. Relevant contributions
are highlighted in the next two sections.

4.1 TCP Network Models in WANs

To the best of our knowledge, SIMGrid was the first SPDA to propose and implement
an analytical network model that goes beyond the naïve latency and bandwidth affine
models or the wormhole routing models described in Section 2. More specifically,
SIMGrid implements a flow model, by which the bandwidth allocated to each network
flow is computed based on the underlying network topology and a bandwidth sharing
model. The goal is to use a model that closely approximates the bandwidth sharing that
emerges from the use of standard network protocols such as TCP. A popular and simple
bandwidth sharing model is Max-Min fairness [10], by which the bandwidth allocation
is such that increasing the allocation of a flow would necessarily require decreasing the
allocation of another. Unfortunately, it is known that TCP does not implement Max-Min
fairness [20], in part because flow bandwidth is limited by the TCP congestion window
and the flow’s round-trip time (RTT). Based on these considerations, the following flow
model was initially implemented in SIMGrid [19]:

MAXIMIZE mini RTTi.ρi,
UNDER CONSTRAINTS
{

∀Lk,
∑

i|Fi uses Lk
ρi 6 Bk

∀Fi, ρi 6
W

RTTi

(1)

where Lk denotes a network link with bandwidth capacity Bk, Fi denotes a network
flow with assigned bandwidth ρi and RTT RTTi, and W denotes the TCP congestion
window size. This model is superior to the aforementioned simpler models (as easily
demonstrated with simple network topologies and flow sets), and can be computed
orders of magnitude faster than full-fledge packet-level simulation. SIMGrid also
provides a transparent interface to the GTNetS [61] and ns-3 [52] packet-level simulators,
intended for users who can tolerate the loss of simulation speed for the benefit of more
realistic network simulation. It is thus straightforward to use SIMGrid to compare
the above model to packet-level simulation, and a first such comparison is presented
in [28]. Results therein revealed two limitations of the model: (i) unlike in packet-level

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 13

simulation TCP’s slow-start behavior is not captured, which makes the model inaccurate
for data transfer sizes under around 10MBytes; and (ii) bandwidth sharing becomes
inaccurate in highly congested scenarios.

In [69], we conducted a new set of validation experiments in a view to identifying
and remedying the above limitations. There is no hope for a flow model to capture
TCP’s slow start behavior perfectly. However, it turns out that an empirical model can
be derived that gives a more accurate expression for the data transfer time T for a flow
with round-trip time RTT and congestion window W , which is is allocated bandwidth
B by the bandwidth sharing model. In the original model, the expression for T was:

T original = L+
S

min(B, W
RTT

)
. (2)

The new model, with two additional parameters computed empirically to minimize
model error with respect to packet-level simulation results obtained on a set of bench-
mark configurations, is:

T improved = 10.4× L+
S

min(0.92×B, W
RTT

)
. (3)

Comparisons with GTNetS show that the new model is accurate for data sizes as low as
100KBytes, i.e., about two orders of magnitude smaller than previously achieved. For
data sizes smaller than 100KBytes, the flow model produces shorter transfer times than
what would happen in a real network. We suspect that below this limit, the assumption
that the transfer time is as a linear function of the data size breaks down because data
gets exchanged as discrete network packets. (This effect is crucial for simulating HPC
application over LAN networks, and Section 4.2 presents a solution in such settings.) At
any rate, users wanting to simulate small-size data transfers over wide area networks are
reduced to two options: either configure SIMGrid to use costly packet-level simulation
or account for optimistic simulated transfer times when drawing conclusions from
simulation results.

Packet-level experiments with a dumbbell network topology have shown that as
network contention increases, bandwidth sharing is no longer solely affected by flow
RTTs but also by physical link bandwidths. These results lead to the following proposal
for an improved bandwidth sharing model:

MAXIMIZE mini wi.ρi,
UNDER CONSTRAINTS










∀Lk,
∑

i|Fi uses Lk
ρi 6 0.92×Bk

∀Fi, ρi 6
W
wi

wi =
∑

k|Fi uses Lk
(Lk + σ

Bk

)

(4)

where σ is a constant to be determined. Note the 0.92 factor that bounds the achievable
bandwidth on a link. It turns out that this factor, which was determined experimentally,
corresponds to the communication’s payload, i.e., the fraction of the transferred bytes
that contain actual data. The effect of latency on bandwidth sharing is capture by the
additional σ/Bk terms. For a set of benchmark experiments, we empirically found that
σ = 8775.0 minimizes model error.

While the above model holds for simple network topologies, one may wonder how it
fares in general, in particular because it is instantiated based on a finite set of benchmark
experiments. To answer this questions we generated random network topologies with 50

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 14

−3

−2

−1

 0

 1

 2

 3

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

R
a
ti
o

Experiment

 0

 0.5

 1

M
e
a
n
 E

rr
o
r

Maxmin

Improved

Figure 2: Simulation error comparison between the original and the improved network
flow model used in SIMGrid.

and 200 nodes, using both the Waxman model [70] and the BRITE generator [48], with
various latency and bandwidth distributions. In each experiment, such a topology is
selected and 150 flows are created each between two random end-points. Figure 4 shows
a set of results from 160 such experiments. It depicts, for each experiment, the mean
error (with respect to packet-level simulation) with the original MaxMin model and with
the improved model. The top graph shows actual error while the bottom graph shows
error ratio. The conclusion, supported by other results in [69], is that this improved
analytical network model is much close to the accuracy of packet-level simulation, thus
further bridging the gap between the two approaches. The improved model has now
replaced the original model in the current SIMGrid version.

4.2 TCP Network Models in Clusters

Many SPDA users wish to simulate application execution on cluster platforms, targeting
either abstract or legacy applications from the HPC domain. As seen in Section 3,
SIMGrid provides interfaces for both types of simulations. Regardless of the type of
simulation, there is a need for an accurate network model that is representative of cluster
interconnects. The model presented in the previous section proves accurate, within
certain limits, for simulating network flows on a WAN. However, it fails to capture
some of the fundamental aspects of the behavior of real-world cluster interconnects
using TCP and popular MPI implementations, e.g., OpenMPI [29] or MPICH2 [32]
over a Gigabit Ethernet switch. For instance, a message under 1 KiB fits within an IP
frame, in which case the achieved data transfer rate is higher than for larger messages.
More importantly, implementations for MPI_Send typically switch from buffered to
synchronous mode above a certain message size. The former case involves an extra
data copy performed by the MPI implementation, with the goal to avoid copying large
amounts of data. This feature is seen both in OpenMPI or MPICH2. The combination
of such effects is that instead of being an affine function of message size, as in Eq 3,
communication time is piece-wise linear. The difference between affine and piece-wise
linear in terms of accuracy proves to be large enough to cause large inaccuracies when
simulating applications that perform many communications on clusters. In [22] we have
described an enhancement to the network model in SIMGrid presented in the previous
section. This enhancement makes it possible to model communication time with a
piece-wise linear model using an arbitrary number of linear segments.

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 15

One challenge when using this model is its instantiation. Based on experiments
conducted on several production clusters, we found that it is sufficient to use 3 linear
segments in practice, which at first glance requires 8 model parameters (2 for defining
the boundaries of the 3 segments, and one latency and bandwidth parameter for each
segment). Some of these parameters, however, depend on each other thus making
the model fully defined by 6 parameters. At any rate, the number of parameters is
much higher than when using the simplistic affine model. We opt for an empirical
approach, by which the model is instantiated based on a set of real measurements using
linear regression. The number of segments and the segment boundaries are chosen
such that the product of the correlation coefficients between the model and the actual
measurements is maximized.

SKaMPI
Default Affine Model
Best-Fit Affine Model
Piece-Wise Linear Model

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06 1e+07

C
om

m
un

ic
at

io
n

T
im

e
(i

n
µ

s)

Message Size (in Bytes)

Figure 3: Comparison between a real execution (using SKaMPI over OpenMPI) and
simulation models (default affine, best-fit affine, and piece-wise linear models) for a
ping-pong communication between two nodes of the cluster used for instantiating the
simulation models.

Figure 3 presents results obtained with the ping-pong benchmark provided as part
of the SKaMPI [59] MPI benchmarking framework. The figure plots benchmark times
vs. message size in bytes, using a logarithmic scale for both axes. Results are presented
for a real execution of the benchmark on a production cluster, and for simulation of
the benchmark using three different simulation models. These simulation models were
instantiated based on experiments conducted on the same cluster. The “Default Affine"
simulation model correspond to the standard model used in most state-of-the-art SPDAs
that use only two parameters: latency and bandwidth. The latency is instantiated based
on the time to send a 1-byte message on the cluster, and the bandwidth based on the
maximum achievable bandwidth using TCP/IP, which is approximately 92% of the peak
bandwidth, as seen in the previous section. The “Best-Fit Affine" model, which cannot
be instantiated in practice in general, corresponds to those choices for the latency and
bandwidth parameters that minimize model error with respect to the SKaMPI results.
Finally, the “Piece-wise Linear" model is the model described earlier, whose segments
are depicted in the figure via vertical lines.

The main observation is that the piece-wise linear model matches the real-world
results well (at most a 8.63% average error overall, with worst error at 27%). By
contrast, both affine models fail to capture the entire real-world behavior. The Default
Affine model is accurate for small and big messages, but inaccurate in between (for
a 32.1% average error overall, with worst case at 127%). The Best-Fit Affine model
performs better for medium-sized messages, but overestimates communication time
for big messages (for a 18.5% average error overall, with worst case at 62.6%). An

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 16

affine model is thus inherently less accurate than a piece-wise model. This is expected,
but it is important to note that the decrease in accuracy is large. Further results in [22]
show that the instantiation of the piece-wise linear model is robust. The instantiation
computed on one cluster can be reused accurately for modeling other clusters with
similar interconnect technology but different compute nodes. While these results
are for two machines connected to the same switch, other results also show that this
approach remains reasonably accurate when applied to a sequence of switches. This is
an important point because large compute clusters are often organized as networks of
switches.

The piece-wise linear model of point-to-point communication described in this
section, when combined with the bandwidth sharing model described in the previ-
ous section, leads to an immediate simulation model for collective communication
operations. Just like in any MPI implementation, collective communications are imple-
mented in SMPI as sets of point-to-point communications that may experience network
contention among themselves. This is to be contrasted with monolithic modeling of
collective communications, as done in [67] for instance. These monolithic models rely
on coarse approximations to model contention and/or on extensive calibration experi-
ments that must be performed for each type of collective operation. Results in [22] show
that SMPI simulates collective communications effectively. For instance, an all-to-all
operation for 4MBytes of data involving 16 MPI processes is shown to be simulated
with less than 1% relative error when compared to OpenMPI, which is comparable to
the relative difference between OpenMPI and MPICH2.

5 Simulation Scalability

As described in Section 2, some SPDAs are not necessarily designed with scalability in
mind while others have aggressively pursued it at the expense of accuracy. One objective
of SIMGrid is to afford good simulation scalability across a range of domains, including
simulation of peer-to-peer applications and of volunteer computing applications, while
achieving simulation accuracy superior to that achieved by state-of-the-art simulators
in these domains. In this section we highlight recent advances that each enhance the
scalability of SIMGrid simulations using different but complementary approaches.

5.1 Optimized Simulation Loop

The main simulation loop described in Section 3.2 turns out to hinder simulation
scalability. In [26] we have proposed two simple modifications that improve scalability
by orders of magnitude for entire classes of simulation scenarios: lazy activity updates
and trace integration.

SIMGrid was first intended for the simulation of abstract applications with many
communicating tasks on nodes connected by hierarchical networks. In this setting
most events regarding simulated activities and resources (e.g., starting a new activity,
completion of an activity, resource status change) can have an impact on most simulated
activities and resources. For instance, when executing a tightly coupled application on
compute nodes interconnected via a hierarchical network, the completion of one com-
munication can immediately impact the data transfer rates achieved by all other pending
communications. Consequently, the compute_next_activity_completions (Algorithm 1,
line 5) and update_simulation_state (Algorithm 1, line 8) functions loop over all activi-
ties, recomputing completion dates and updating remaining work amounts. However,

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 17

when simulating large-scale platforms such as those used for peer-to-peer or volunteer
computing applications, many activities are independent of each other. For such sim-
ulations, the above functions prove to be scalability bottlenecks because they always
consider all activities while many could simply be ignored most of the time. Our first
proposed improvement consists in avoiding having compute_next_activity_completions
recompute all activity completion dates at every iteration of the simulation loop. In-
stead, activities are stored in a heap based on their completion dates. When a re-
source share is modified, all corresponding activities are removed from this heap in
update_simulation_state, their completion dates are updated and, and they are re-inserted
into the heap, while other activities are simply not considered. update_simulation_state
also removes completed activities from the aforementioned heap. Removing and in-
serting into a heap has time complexity O(log n), where n is the number of activities.
Importantly, because retrieving the minimum element from a heap has complexity O(1),
compute_next_activity_completions can compute the minimum completion date and
retrieve the completed tasks at that date in constant time. Note that in a simulation in
which most activity completion dates need to be updated at each iteration, the above
“lazy update" scheme would slightly increase time complexity compared to the original
implementation. For this reason, lazy updates can be deactivated by the user.

Our second scalability improvement targets the management of changing resource
states (Algorithm 1, lines 6 and 7). If t1 is larger than t2, then multiple resource
state changes may occur before any activity completes. For instance, let us consider a
situation in which the next 100 resource state changes pertain to fluctuating performance
levels as specified in a user-provided trace. Furthermore, let us assume that pending
activities still have large remaining work amounts so that the earliest activity completion
occurs after the 100th resource state change. In this case, it is possible to aggregate 100
iterations of the main loop into one iteration. More formally, given current remaining
work amounts, one can compute the next activity completion date given all future
resource states before this date. This computation can be performed efficiently using
“trace integration." Essentially, instead of storing a trace as performance rate values,
one stores its integral. Finding the last resource state change before the next activity
completion can then be performed using a binary search, i.e., with logarithmic time
complexity.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 10

 20

 40

 80

 160

 320

 640

 1280

 2560

 5120

 10240

s
im

u
la

ti
o
n
 t
im

e
 (

s
)

 number of simulated hosts

Initial design

Lazy Activity Management

Trace Integration

Figure 4: Simulation scalability for a volunteer computing simulation using the ini-
tial SURF design, when adding lazy activity management, and when adding trace
integration.

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 18

To demonstrate the benefit afforded by these two modifications, consider a volunteer
computing scenario with N hosts. Each host computes sequentially P tasks, and the
compute rate of each host changes T times before completion of the simulation. With
the original design, the time complexity of this simulation is O(N2(P + T)). With lazy
activity management it becomes O(N(P + T) logN), and O(NP (log(N) + log(T)))
when adding trace integration. We have implemented such a simulation, using traces
of MFlop/sec rates for SETI@home hosts available from [42]. Compute tasks have
uniformly distributed random compute costs in MFlop between 0 and 8.1012 (i.e., up
to roughly one day for a median host). Note that such simulation scenarios are com-
monplace when studying volunteer computing, and in fact this particular scenario was
suggested to us by the authors of [35] to highlight scalability issues in previous versions
of SIMGrid. Figure 4 shows simulation time measured on a 2.2GHz AMD Opteron
processor vs. N for the initial design, the addition of of lazy activity management, and
the addition of trace integration, using a logarithmic scale on the vertical axis. Results
make it plain that both proposed improvements increase simulation scalability signifi-
cantly. For instance, bounding simulation time to 10 seconds, the initial design scales
up to 160 hosts. The use of lazy activity management scales up to over 600 hosts. The
use of trace integration pushes this number beyond 2,600 hosts, or a more than 16-fold
improvement in scalability when compared to the original design. A comparison with
the state-of-the-art SimBA simulator [66], based on timing results published therein and
the use of a similar benchmark machine, shows that, with our improvements, SIMGrid
achieves simulation times more than 25 times faster. This is an impressive result given
that the simulation with SIMGrid is more accurate than that with SimBA (e.g., the
network and the behavior of the clients are simulated).

5.2 Simulation Core Parallelization to Support Millions of Simu-

lated Contexts

The enhancements described in the previous section may not be sufficient to achieve
desired levels of scalability, especially for scaling up to millions of nodes as often
needed for realistic simulation of peer-to-peer systems. In the end, scaling up the
simulation simply requires “throwing more hardware resources at it." SIMGrid has been
implemented in a memory-conscious manner but a given simulation has an inherent
memory footprint that mandates a certain memory capacity. Scaling up a memory-bound
simulation requires adding physical memory capacity. If the simulation is CPU-bound,
then scaling the simulation can be achieved by exploiting multiple cores. Unfortunately,
the main simulation loop (Algorithm 1) is sequential. We present hereafter our first
attempt at parallelizing this loop so that SIMGrid simulations can take advantage of
multi-core processors.

We first need to identify the parallelization opportunities in Algorithm 1. As ex-
plained in Section 5.1, the functions invoked at lines 5 and 6 have been re-engineered
to achieve logarithmic complexity for large-scale simulation. Similarly, the han-
dle_requests and answer_requests functions invoked at line 4 and 9 amounts for a
small fraction of the simulation time. Parallelizing these functions would thus not lead
to a significant speedup. Parallelizing the update_simulation_state function invoked at
line 8 would entail parallelizing the resolution of the constrained optimization problem
described in Section 3.2.3. Since this parallelization is possible but challenging, we
have focused our efforts on the run_processes function instead, which does provide
clear parallelization opportunities. Recall that this function executes user code or, more

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 19

precisely, user code fragments in between calls to the SimIX layer via user-level APIs.
with SimIX, updates to the (shared) simulation states are sequentialized in a single
thread, called the maestro (see Section 3.2.1). Consequently, it is possible to execute
user code fragments concurrently without facing concurrency issues that arise when
sharing memory among multiple threads (mutual exclusion, race conditions, deadlocks).

An engineering challenge here is the choice of the technology for implementing
user processes. While standard threads could be employed, hard limits on their number
imposed by operating systems (in the order of thousands) would preclude running the
millions of processes needed for simulating large-scale peer-to-peer systems. Even if
this limit is not reached, thread context-switching overhead would likely be prohibitive.
Many existing SPDAs use standard threads, e.g., [14], and thus suffer from these
scalability limitations. Instead, we implement each user process as a ucontext, as
provided as part of the POSIX standard. While ucontexts were initially designed as
evolutions of setjmp/longjmp functions, we can use them to execute user processes.
We then run multiple ucontexts in a thread pool, since running multiple threads makes
it possible to utilize multiple cores. The threads in the thread pool are synchronized
with a barrier, which can be implemented easily using thread synchronization primitives.
On Linux systems, we have implemented a more efficient barrier with a combination
of operating system primitives and hardware atomic operations such as Compare-And-
Swap.

0.6

1

1.4

0 500000 1e+06 1.5e+06 2e+06

R
at

io

Number of nodes

0

10000

20000

30000

40000

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Precise network, sequential
Precise network, parallel

Oversim (simple underlay)

Figure 5: Simulation scalability for a Chord simulation using OverSim, the sequential
implementation of run_process, and the parallel implementation of run_process.

The main question is whether the benefit of our parallelization offsets its overhead,
i.e., the use of a single maestro and the barrier synchronization at each iteration. If
user processes spend a large amount of time in user code, parallelization should be
beneficial. If instead the simulation consists of processes that do little other than placing
SimIX calls via API calls, then the overhead likely dominates. To answer this question
in a practical context, we have implemented a simulation of the Chord [65] Distributed
Hash Table protocol. This famous protocol was designed for scalable content indexing
and retrieval on peer-to-peer platforms with significant churn. Peers are organized in
a logical ring with additional cross-cutting connections, using routing tables with a
number of entries logarithmic in the total number of peers. Chord is representative of a
large body of algorithms in the peer-to-peer community, which is why we chose it for
our simulation. Also, it is a difficult test for parallelization since user processes perform
little computation in between calls to SimIX to implement the Chord protocol.

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 20

We perform an experiment similar to that reported in [6] with the OverSim simulator,
on a machine with two 12-core 1.7GHz AMD CPUs and 48GB of RAM. Three sets of
results are presented in Figure 5, showing simulation time vs. the number of simulated
peers. The first set is obtained with OverSim using a simple constant delay model. The
second set is obtained with SIMGrid, using the realistic model described in Section 4.1
and the sequential implementation of run_processes. The this set is obtained using the
parallelized implementation of run_processes. The first observation is that SIMGrid
affords dramatically better scalability than OverSim. For instance, SIMGrid makes
it possible to simulate up to 2 millions of peers in about 8 hours using a realistic
model, while OverSim simulates only 250,000 in the same amount of time. The second
observation is that the parallelization of run_processes brings some benefit. The bottom
part of the graph plots the parallel speedup, which reaches values above 1.2. While this
is poor parallel efficiency given the total number of cores, it nevertheless represents
an appreciable time saving for the user. Expectedly, other results obtained when using
SIMGrid with a fixed delay model, identical to that used by OverSim, shows a higher
speedup (up to 40%). Recall that Chord is a difficult test case for our parallelization
because user processes perform very little computation in between calls to SimIX.
Higher speedups are thus to be expected for many relevant simulated applications.

5.3 Highly Scalable “Last Mile" Network Model

One of the goals of SIMGrid is to provide users with a range of simulation models for
the network that each corresponds to a different compromise between accuracy and
scalability. The highest accuracy is achieved via packet-level simulation (with GTNeTS
or ns-3), which is also the least scalable method. The default network model, with
enhancements described in Section 4, leads to comparable albeit reduced accuracy,
and is orders of magnitude more scalable. Finally, in the previous section, we have
mentioned the use of a fixed delay network model. This model is not accurate, but
because it provides high scalability, it is often used in the peer-to-peer community. The
gap between the default model and the fixed delay model in terms of scalability is
significant. For instance, when using the default model for a realistic internet topology,
the scalability of the Chord simulation presented in the previous section is drastically
reduced. While with the fixed delay model one can simulate 2 million peers in under 6
hours, with the default model fewer than 300,000 peers can be simulated in that amount
of time. Note that this is still 50% more than what can be done with OverSim, which
uses the fixed delay model. One interesting question is whether there is a model that
provides yet another accuracy/scalability trade-off that falls between the fixed delay and
the default model.

An approach for developing an intermediate model is to account for bandwidth
at the edge of the network, while ignoring network topology. This would represent a
compromise between the fixed delay model, which does not model bandwidth effects,
and the default model, which models a complex topology with multi-hop network
paths. Previous research on the properties of the Internet has shown that bandwidth
at the edges of the network reflects the bandwidth available on full end-to-end paths.
In other words, bandwidth bottlenecks are located within only a few hops of Internet
end-points. For instance, Hu et al. [38] show that 60% of wide-area end-to-end paths hit
a bandwidth bottleneck in the first or second hop. Similar findings have been reported
for broadband access networks [24]. In [7] we have analyzed a dataset obtained on the
PlanetLab platform [21], and also found that most end-to-end paths seem to be limited
by bandwidth at the end-points. These observations suggest a network model, which

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 21

we term the “last mile" model, in which each host x is described by two bandwidths:
an upload bandwidth βout

x and a download bandwidth βin
x . A communication from a

host x to a host y is then allocated bandwidth βxy = min(βout
x , βin

y). Note that this
model does not capture the fact that two end-points may be on the same local network,
in which case the bandwidth available between these two end-points would be orders of
magnitude larger than βxy as computed above.

In [7] we have developed a decentralized algorithm that can be used to instantiate the
last mile model based on end-to-end bandwidth measurements on a real-world platform.
Using a 308-host PlanetLab dataset for which full end-to-end bandwidth measurements
are available, we have shown that this model achieves good accuracy using a small
number of measurements (each host only performs bandwidth measurements with 16
other hosts). This model is thus simple and instantiable, leads to reasonable results for
simulating wide-area network topologies, and is dramatically more accurate than the
fixed delay model. It is also scalable since the bandwidth assignment for a communi-
cation can be computed in constant time. This last mile model was unified with the
network model described in Section 4.1, without requiring a separate implementation in
SURF. It is thus now possible to integrate in the same simulated platform both accurate
descriptions of interconnection networks such as the ones used in grids or clusters and
less detailed ones using the last mile model, which are well-suited to peer-to-peer and
volunteer computing scenarios. This flexibility could be invaluable for simulating cloud
computing platforms, for instance, which can combine both types of scenarios.

5.4 Scalable On-line Simulation of Legacy HPC Applications

SMPI allows SIMGrid users to conduct on-line simulations of legacy parallel applica-
tions implemented with MPI. As reviewed in Section 2.3, several SPDAs have been
proposed and developed with this objective. The advantage of SMPI is that it builds
on the advances made in the SIMGrid project, many of which are highlighted in this
article. One well known challenge for on-line simulation of legacy parallel applications
is, however, scalability. Most SPDAs reviewed in Section 2.3 address this challenge
by running the simulation on a cluster. Essentially, the simulated application executes
at scale, but certain operations are intercepted by a simulation component that injects
a simulated delay into the application execution. For instance, MPI-NetSim [55] ex-
ecutes the application on a cluster, and uses one additional compute node to perform
packet-level simulation for computing simulated communication delays. The scale of
the simulation is thus limited by the scale of platforms at hand, thereby precluding large-
scale simulations for the majority of users. Instead, via SMPI, SIMGrid attempts to run
such simulations on a single computer, i.e., with orders of magnitude less CPU power
and RAM capacity than needed for an actual application execution. This may seem an
unachievable goal given that actual application code must be executed. However, as
described hereafter, SMPI implements two techniques by which the application code is
modified to achieve scalable simulation on a single computer, which we call the host. In
the current release of SIMGrid, some of these modifications are handled automatically
by a preprocessor, i.e., smpicc, while some still require user intervention to insert
macros in the application source code. An ongoing development goal of SMPI is to
automate this process entirely.

Reducing CPU consumption – The amount of time needed to execute the computa-
tional portions of the application’s code, or CPU bursts, on a single node is proportional
to the number of nodes of the simulated platform. A popular approach, used for instance
in [73, 34], is to replace CPU bursts by simulated delays whenever possible. The hope is

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 22

that the simulation time becomes orders of magnitude shorter than the real execution. In
this view, SMPI executes the first n occurrences of each burst, and then uses the average
burst execution time computed over these n samples as the delay in the simulation for
all future occurrences, skipping the corresponding code in the application’s execution.
Alternatively, rather than computing n samples, the user can specify a confidence inter-
val length and the number of samples is determined so that 95% confidence is achieved.
While the current implementation uses the sample average as the simulated delay, it
would be straightforward to draw this delay from an empirical distribution determined
based on the obtained samples. Regardless of the sampling methodology in use, the user
can specify a factor by which delays are scaled to simulate compute nodes faster/slower
than the host. Unfortunately, the time to execute each CPU burst n times is proportional
to the number of simulated nodes, since each process executes each CPU burst n times.
The simulation time is thus linear in the number of simulated nodes, which could make
it prohibitively long. Many parallel applications, however, consist of tasks that execute
similar CPU bursts (e.g., applications that follow the Single Program Multiple Data
paradigm). Therefore, SMPI allows for the measurement of the execution times of the
first n occurrence of each CPU burst, regardless of the MPI process. Simulation time
is then independent of the number of simulated nodes. Note that for applications with
data-dependent performance, all CPU bursts may need to be executed. This precludes
simulation on a single host and, instead, the user must run the simulation on a cluster
using one the SPDAs mentioned in Section 2.3. For non-data-dependent applications,
experiments in [22] conducted for the EP NAS Parallel Benchmark show that the above
technique can reduce simulation time dramatically while having negligible impact on
simulation accuracy.

Reducing RAM consumption – In general, the host cannot accommodate the memory
footprint of the simulated application. In an SMPI simulation all MPI processes run
as threads that share the same address space. This is enabled by an automatic source-
to-source translation performed by a preprocessor integrated with SMPI. Having all
processes run as threads (or as ucontexts) allows SMPI to use a technique initially
proposed in [1] for removing large array references. Essentially, references to private
arrays are replaced by references to a single shared array. If the MPI application has
m processes that each uses an array of size s, then the RAM requirement is reduced
from m× s to s. This leads to incorrect application execution, and likely to many race
conditions, but the hope is that the performance behavior of the original application is
preserved. Because it corrupts application data, this technique cannot lead to accurate
simulation results if the application exhibits data-dependent performance. As for the
CPU consumption reduction technique described earlier, for such applications the user
must resort to running to simulation on a cluster that can provide the necessary memory
capacity. Experiments in [22] show that, for a simulation of various classes of the DT
NAS Parallel Benchmark, memory footprint of the simulation is reduced on average by
more than a factor 10 and up to a factor 40, without significant accuracy losses.

6 Simulation Usability

An impediment to obtaining scientifically sound results with SPDAs is the lack of
available, open and maintained simulation framework. Our goal is for SIMGrid to
be recognized as such a framework. Another impediment is the lack of transparent
simulation methodologies in the literature, making it impossible to reproduce simulation
results obtained by others. Figure 6 depicts the components of a simulation execution.

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 23

The central components are the simulated application and the simulation framework,
with which the application interacts via one of several APIs in the case of SIMGrid. The
application is instantiated based on application-specific configuration parameters. Its
execution is simulated based on a description of the simulated platform with compute
nodes, network links and topology, as well as optional time-varying resource availabili-
ties and time-varying performance levels delivered by these resources due to out-of-band
workloads. The simulation framework produces output in the shape of time-stamped
event logs and statistics. Given the size of these logs and the information lost when com-
piling statistics, visualization capabilities are a useful feature to explore and gain deeper
understanding of simulation results, but also to debug the simulation. In this article so
far we have focused on the central components in Figure 6. But a simulation framework
should be a whole “ecosystem" of tools that ease the entire simulation process, from
instantiation to visualization. The SIMGrid project has made several advances in this
context, three of which are highlighted in the next sections.

Simulated

Application

Simulation

Framework

Logs / Stats

Visualization

Platform

Description

Application

Configuration

Figure 6: Components of a classical simulation environment.

6.1 Platform Description Instantiation

When using a SPDA, a question faced by all users is that of which platform to simulate,
i.e., what platform configuration description should be constructed and provided to
the SPDA. The content of this description varies depending on the target domain. For
instance, researchers in the peer-to-peer community focus on network topology and
network distance between peers, while often ignoring hardware characteristics of the
peers themselves save for their availability. By contrast, volunteer computing simulations
often ignore network topology issues and solely focus on end-point characteristics, such
as compute speed, availability, and network card bandwidth. Platform descriptions used
in simulations for HPC computing on cluster and grid platforms strike somewhat of a
compromise, with information on both the network and the end-points, even though the
network topology is either inherently simpler or intentionally simplified when compared
to peer-to-peer simulations.

One option is to instantiate a simulated platform description that reflects a particular
real-world platform. Even assuming that it is possible to discover full configuration
information, only a limited number of real-world platforms are available. And yet, in
most cases, users wish to run large numbers of simulations for large numbers of platform
configurations to reduce the risk of idiosyncrasies biasing the study. Furthermore, it is
typically interesting to study how simulation results vary when fundamental platform
characteristics evolve. While simulating various subsets of a real-world platform can be
done, a preferred approach is to synthesize platform descriptions with characteristics
that are representative of (classes of) real-world platform configurations. Consequently,
platform synthesis tools have been developed in various communities. For instance,
several generators of synthetic internet topologies are available, such as Tiers [16] or
BRITE [48]. In the area of cluster computing, the work in [40] proposes a synthetic

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 24

method to instantiate representative cluster configurations (number of compute nodes,
number of cores per node, memory size and cache size per node, clock frequency, etc.)
based on a pool of real-world production clusters. No single synthesizer meets user
needs across multiple research communities, but they each provide important pieces
that can be combined together. The GridG synthesizer [45] is one attempt toward such a
combined solution for synthesizing grid platforms.

Partially
Annotated
Platform

Network
Graph

Topology
Model

Annotated
Platform

Fully
Platform
Subset

XML

Visualization
graph

generation
vertex

annotation
edge

annotation
vertex

selection

Figure 7: Platform synthesis with SIMULACRUM.

As part of the SIMGrid project we have developed a platform synthesizer called
SIMULACRUM [57], which combines the above approaches and attempts to provide
a solution applicable across various domains. This solution consists of multiple steps,
as depicted in Figure 7, and the user can be involved at each step to provide domain-
specific directives. The user goes through all these steps while interacting with the
SIMULACRUM graphical user interface. The first step consists in generating a network
graph. SIMULACRUM allows the user to choose among multiple topology models.
Beyond classical topologies (star, clique, etc.), it implements those popular models
that spread vertices over a unit square and connect two vertices u and v via an edge
with probability P (u, v). This probability can be based on the uniform or exponential
distributions, or on well-known distributions used in [70] and [71]. SIMULACRUM also
implements models based on node degree, such as the one proposed in [5], that match the
power laws observed in real internet topologies. In its current version, SIMULACRUM
does not implement explicitly hierarchical models such as that used in the Tiers [16]
synthesizer.

Once an abstract network graph has been constructed, vertices are annotated with
qualitative information stating for each vertex whether it is a router, a host, or a cluster.
Initially all vertices are considered to be routers. Consider a user who desires a scenario
in which half of the one-degree vertices are personal computers, the other half of
these vertices are homogeneous compute clusters, vertices with degree between 2 and
4 are powerful servers, and vertices with degree higher than 4 are network routers.
The difficulty consists in providing abstractions and mechanisms by which users can
easily guide the synthesis to achieve such objectives. To this end SIMULACRUM
uses a promoter abstraction. A promoter is essentially a guarded decision rule that
applies a qualitative annotation to a vertex that is currently not annotated. A set of
default promoters is provided (e.g., host, server, homogeneous cluster), but user-defined
annotations are also supported. In fact, the user can easily define annotations that assign
arbitrary (key,value) pairs to a vertex. The guard, or filter, is a conditional expression
that specifies under which conditions the rule should be applied. Filters are written as
Boolean expressions involving vertex properties (e.g., degree) and platform property
(e.g., annotation counts). By defining a sequence of promoters, the user can implements
complex scenarios with little effort. For instance, the above example would be obtained
with the following promoters:

Promoter 0: AND(node is leaf, probability 0.5) ⇒ personal
computer
Promoter 1: node is leaf ⇒ homogeneous cluster
Promoter 2: degree∈ [2, 4] ⇒ server

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 25

Finally, for each annotation, a resource synthesizer can be used to generate resource
characteristics (e.g., fixed values, random values sampled from simple distributions,
real-world values picked from a set of production resources, values obtained using other
synthesizers such as [40]). The third step of the platform synthesis, edge annotation,
uses the same promoter mechanism to assign latency and bandwidth values to each
network edge.

After the first three steps, SIMULACRUM has generated a full platform description
that can be used to drive a simulation. At this point, the platform may still not possessed
all the properties desired by the user. For this reason, SIMULACRUM makes it possible
to extract simulation scenarios, each defined by a subset of the full platform. This
filtering of vertices and edges can be done manually by the user. After each such
modification, the user is notified about the impact on overall platform statistics. Because
manuals modification are labor-intensive, SIMULACRUM also provides automated
subset selection based on user-provided users. Many default filters are available, e.g., the
total number of vertices, the network diameter, the fraction of vertices with a particular
annotation. Several filters are provided that pertain to the compute speed of those
vertices that are annotated as compute resources. These filters can be used to ensure that
the subset contain only resources with compute speeds in a certain range, with a given
first (mean), second (variance), third (skewness), and/or fourth (kurtosis) statistical
moment of these compute speeds. Users can define their own subset filters by providing
short Java classes (typically about 25 lines of code without counting the actual filtering
code). SIMULACRUM implements several techniques to quickly identify matching
clusters among the 2n possible subsets in an n-vertex platform. As a last step, the user
can export the generated platform to an XML representation. This representation can
be passed as is to any simulation built with the SIMGrid framework. It can also be
visualized using the standard graph drawing tool dot.

By using custom combinations of filters, users can use SIMULACRUM to conve-
niently synthesize platform descriptions that are relevant across all domains of applica-
tion of SIMGrid.

6.2 Simulation Visualization

Exploring simulation results in depth, whether to better understand the behavior of the
simulated application or to identify bugs in its implementation, is often only tractable
using visualization capabilities. Visualization of application events throughout time,
based on a trace collected during application execution, is commonplace in the parallel
computing community. An advantage of executing the application in simulation is that
execution traces can contain precise information on all simulated resources, without
changing the natural behavior of the application or introducing probe effects and bugs
(so-called Heisenbugs). These traces thus lend themselves to visualization that goes
beyond what can be achieved with traces obtained from real-world application execution.
The challenge is for visualization to be both informative and scalable. The standard
visual representation of application execution is the zoomable timeline view termed
“Gantt chart," for instance as seen in traditional performance analysis tools for visualizing
the execution of message passing applications [50, 8]. While it is straightforward to use
such tools for visualizing traces generated by a SIMGrid simulation, in what follows we
describe two more scalable and informative visual representations. These techniques
are implemented as part of the Triva [63] toolkit that is developed in part to provide
visualization capabilities to SIMGrid simulators.

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 26

6.2.1 Squarified Treemaps

A squarified treemap [12] is a space-filling diagram used to represent a tree whose
vertices are annotated by numerical values. The visual representation is built by dividing
screen space among the children of a vertex recursively, starting with the root vertex.
Each vertex is associated a rectangle region with an area proportional to the vertex
annotation. This region can be subdivided into multiple rectangular sub-regions, based
on secondary vertex annotations. The user can navigate the hierarchy to explore various
levels of details (e.g., viewing a whole multi-cluster platform as a single region, viewing
each cluster as a region whose size is proportional to the cluster’s compute power,
viewing each compute node as a region proportional to the node’s compute power).

Project A > 70%

Project B > Project A

Project A
~52.30 %

Project B
~47.70 %

Global View

start end
whole simulated time

time frame

Figure 8: Squarified treemap representation example.

To illustrate the use of squarified treemaps, we present a case study for a volunteer
computing simulation similar to that described in Section 5.1. A team of researchers
was in the process of developing a simulation of a BOINC [2] system. The goal of
this simulation was to explore new work sharing policies and study their impact on
overall system throughput and responsiveness. In the early development stages of the
simulator, squarified treemaps were used to explore how simulated hosts performed
work units. Such a treemap is shown in Figure 8, for a small-scale experiment with
65 hosts and two competing projects named Project A and Project B. Each region of
the treemap corresponds to a simulated host, and its area is proportional to the host’s
delivered compute power. Each host region is subdivided into two sub-regions, one
for each project. The size of each project sub-region is proportional to the fraction
of work units performed by the host for the corresponding project (dark-colored for
Project A and light-colored for Project B). In the top-left corner of the figure is shown a
top-level view with a single region for the whole platform. The simulated work sharing
policy in this experiment is fair sharing. The global view shows that 52.3% of the
work units performed by the platform are for project Project A. While this may seem
like a small departure from a fair share policy, examining the treemap representation
shows that several “small" hosts, i.e., those with low delivered compute power, perform
significantly more Project A work units than Project B work units (more than 70%).
The origin of the problem was then quickly identified as a bug in the algorithm for
measuring the project-specific compute time for the simulated hosts. Identifying a
correlation between low host availability and unfair work unit execution without the

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 27

treemap visualization would have been at best difficult, and yet it was immediate based
on Figure 8.

6.2.2 Topology-based Visualization

Triva implements a novel visualization capability, called topology-based visualization,
that can help the user pin-point resource contention and understand its effect on ap-
plication execution. In this visualization, depicted in Figure 9, hosts are represented
by squares and network links by diamonds. Sizes are proportional to CPU power or
network bandwidth, and resource utilization is shown with a gray fill. Utilization is
computed as an average over a configurable time slice, which is depicted as a fraction
of the overall execution time in the top-left corner of the view.

hostA hostB

link

link utilization

time slice

Figure 9: Topological representation example.

To demonstrate how such visualization can be used to reveal performance issues
for simulated application, we present an example for an on-line simulation of the DT
NAS Parallel benchmark (class A, using the White Hole algorithm) [4]. The execution
is simulated on two clusters connected via a few routers and network links, as depicted
in Figure 10. The main view corresponds to utilization computed as an average over
the entire application execution, while the three small views at the bottom of the figure
are for smaller time slices at different stages of the execution. With such visualization,
is is straightforward to see that the links interconnecting clusters are the performance
bottleneck and that they are saturated during the whole execution. It turns out that, in
this execution, application processes are mapped to compute nodes taken in an arbitrary
order (i.e., the order in which they are listed in a configuration file). Instead, processes
should be mapped to compute nodes judiciously so as to promote communication
locality. For the DT NAS benchmark with the White Hole algorithm, communication
locality is easily achieved by placing so-called forwarder processes close to data sources,
thereby shortening communication paths and avoiding communication between the
two clusters unless absolutely necessary. Simulating the application again with a thus
modified list of compute nodes leads to a view in which the inter-cluster network links
have low contention, i.e., mostly white, while intra-cluster links carry most of the
communication workload. Although this is a known example of a communication
bottleneck, we contend that such visualization can be used effectively for performance
debugging of applications with complex communication patterns running on complex
platform topologies. Particularly useful is the feature that allows to tune the width of
the time slice and to slide it along the time axis.

6.3 Formal Verification

One advantage of simulation is that it allows for deterministic (and reproducible)
execution paths of the simulated application. Consequently, debugging the application

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 28

time slice

time slice time slicetime slice

Figure 10: Topology-based views for a simulated execution of the DT NAS Parallel
Benchmark (class A, White Hole) on two clusters, for an arbitrary mapping of processes
to compute nodes.

is much easier in simulation than via real-world experiments that often cause non-
deterministic executions. Nevertheless, simulation solves only part of the distributed
application debugging challenge: the developer still has to determine which set of
simulation experiments is sufficient to cover all relevant situations that may expose
bugs. Because simulation is not exhaustive with respect to all possible interleavings
of communication events, a program that behaves correctly in simulation can still fail
when deployed in real life due to execution paths that were “missed” in simulation.

To address this problem, SIMGrid allows for formal verification through model

checking, which can be used with any simulation written in C with the SIMGrid APIs,
without any source code modifications [49]. Conceptually, a basic model checker for
safety properties (i.e., local assertions) explores the state space of the model looking
for invalid states that do not meet the specification. The search continues until a state
is found that violates some correctness property, the whole state space is explored, or
the model checker runs out of resources. If an invalid state is found, the model checker
returns a counter-example in the form of an execution trace. Model checking is often
more effective at discovering bugs than traditional testing due to its exhaustive nature,
meaning that it considers “corner cases” that might otherwise be overlooked. From a
simulation point of view, model checking is equivalent to the simulation of the target
application on all possible platform configurations.

In SIMGrid, if model checking is enabled, the main simulation loop is replaced with
a state space exploration algorithm that systematically executes all relevant interleavings
of the communication actions of the simulated processes. The simulated application
is annotated with assertions that are evaluated for every state. In the case an assertion
is violated, the exploration is terminated and the user is provided with the trace of
communication events that produced the violation. Because the number of possible
interleavings grows exponentially with the number of processes, SIMGrid implements a
state space reduction technique based on Dynamic partial-order reduction. Essentially,
this technique exploits existing symmetries in the state space of the application, based on
the semantics of the communication operations [62]. Thanks to this feature, we were able
to identify (and fix) bugs in non trivial simulated programs such as an implementation
of Chord [65]. These bugs appeared only sporadically in large-scale simulations, and

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 29

visual inspection of the complex execution traces for these simulations did not make it
possible to identify the root causes of the problem.

7 Conclusion

In this article we have given an overview of the SIMGrid project and have highlighted
recent scientific and engineering advances in the context of this project. These advances
improve the accuracy, the scalability, and/or the usability of simulations, with the overall
goal of advancing the state of the art of parallel and distributed application simulators.
One of the salient aspects of SIMGrid is that it targets multiple domains, including
large-scale simulations of peer-to-peer and volunteer computing systems, simulation of
abstract parallel and distributed applications, and simulation of legacy applications on
clusters. We have described how the aforementioned advances contribute to providing
multiple accuracy/scalability trade-offs, which compare favorably with and often are
orders of magnitude better than trade-offs achieved by extent domain-specific simulators
used by researchers in the field. The SIMGrid user can then pick an appropriate trade-off
for a particular simulation domain. More specifically, the user can experimentally
maximize simulation accuracy while remaining within scalability constraints. She can
then empirically quantify the corresponding loss of accuracy by conducting smaller-scale
experiments using the most accurate, but least scalable, simulation models.

The SIMGrid development team will tackle several research directions in the upcom-
ing years. An important one consists in developing new scalable and accurate simulation
models including models for (i) memory hierarchies, which have a large impact on the
performance of HPC applications; (ii) storage resources, which are often a performance
bottleneck in HPC and cloud environments; and (iii) power consumption of the simu-
lated application/platform, which is an overriding concern for all large-scale platforms
be they cloud infrastructures or peta/exa-scale HPC platforms. A second direction is
to enhance the ecosystem of tools surrounding SIMGrid. Consider for instance our
simulation visualization framework. Although simulation allows for deterministic com-
parison of competing algorithms, the complexity and scale of the simulation often makes
it difficult to truly understand why one algorithm is better than the other. Providing
not only execution trace visualization but also scalable trace comparison visualization
will prove invaluable for drawing conclusions from simulation results. Finally, a third
direction relates to the design and analysis of simulation experiments. In many fields,
conducting experiments to acquire sample data is expensive (e.g., industrial processes).
Given the relatively low number of samples, practitioners must rely on sound statistical
techniques. By contrast, because simulation experiments are cheap, most computer
scientists acquires large numbers of samples via thousands of simulation experiments
with the informal rationale that statistical significance is achieved by large numbers. As
a result, although a broad generalization is likely unfair, computer scientists often seem
to use poor statistical techniques. Our own recent use of solid statistical techniques has,
unsurprisingly, proved extremely beneficial both in terms of result confidence and of
simulation times. Popularizing the use of these techniques, by providing a simulation
design and analysis framework as part of SIMGrid, would represent a major step toward
better scientific practice in this field.

To date, most simulation results in the parallel and distributed computing literature
are obtained with simulators that are ad-hoc, unavailable, and/or no longer maintained.
Furthermore, simulation methodology is rarely transparent or well documented. There
is thus a strong need for recognized simulation frameworks that foster “Open Science”

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 30

by which simulation results can be reproduced and further analyzed. Our goal if for
SIMGrid to fill this need, relying both on the accomplishment described in this article
and on the future accomplishments highlighted above. The SIMGrid software welcomes
contributors and is publicly available at http://simgrid.gforge.inria.fr.

8 Acknowledgments

This work has been supported by ANR (French National Agency for Research) through
project references ANR 08 SEGI 022 (USS SimGrid) and ANR 07 JCJC 0049 (DOCCA),
by CNRS (French National Center for Scientific Research) through PICS 5473 grant,
and by INRIA through an ADT (software and technological development actions) and
internship programs. The authors would like to thank CNPq (Brazilian National Counsel
of Technological and Scientific Development) for funding the PhD thesis of Pedro Velho.
The authors would like to thank the Grid5000 [11] project that has provided platforms
for conducting experiments.

References

[1] V. S. Adve, R. Bagrodia, E. Deelman, and R. Sakellariou. Compiler-Optimized
Simulation of Large-Scale Applications on High Performance Architectures. Jour-

nal of Parallel and Distributed Computing, 62(3):393–426, 2002.

[2] D. P. Anderson. BOINC: a System for Public-Resource Computing and Storage.
In Proc. of the 5th IEEE/ACM Intl. Workshop on Grid Computing, pages 4–10,
2004.

[3] Rajive Bagrodia, Ewa Deelman, and Thomas Phan. Parallel Simulation of Large-
Scale Parallel Applications. Intl. Journal of High Performance Computing Appli-

cations, 15(1):3–12, 2001.

[4] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R. L. Carter, L. Dagum,
R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, H.D. Simon,
V. Venkatakrishnan, and S.K. Weeratunga. The Nas Parallel Benchmarks. Intl.

Journal of High Performance Computing Applications, 5(3):63–73, Sep 1991.

[5] Albert-Lázló Barabási and Réka Albert. Emergence of Scaling in Random Net-
works. Science, 286:509–512, October 1999.

[6] Ingmar Baumgart, Bernhard Heep, and Stephan Krause. OverSim: A Flexible
Overlay Network Simulation Framework. In Proc. of the 10th IEEE Global

Internet Symp. (GI), pages 79–84. IEEE, May 2007.

[7] Olivier Beaumont, Lionel Eyraud-Dubois, and Young Joon Won. Using the Last-
mile Model as a Distributed Scheme for Available Bandwidth Prediction. In
Proc. of the 17th Intl. European Conf. on Parallel and Distributed Computing

(EuroPar), volume 6852 of Lecture Notes in Computer Science, pages 103–116.
Springer-Verlag, August 2011.

[8] R. Bell, A.D. Malony, and S. Shende. ParaProf: A Portable, Extensible, and
Scalable Tool for Parallel Performance Profile Analysis. In Proc. of the 9th Intl.

Euro-Par Conf. on Parallel Processing, volume 2790 of Lecture Notes in Computer

Science, pages 17–26. Springer, 2003.

RR n° 7761

http://simgrid.gforge.inria.fr

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 31

[9] William H. Bell, David G. Cameron, Luigi Capozza, A. Paul Millar, Kurt
Stockinger, and Floriano Zini. OptorSim - A Grid Simulator for Studying Dy-
namic Data Replication Strategies. Intl. Journal of High Performance Computing

Applications, 17(4):404–416, 2003.

[10] Dimitri P. Bertsekas and Robert G. Gallager. Data Networks. Prenctice Hall,
second edition, 1996.

[11] Raphaël Bolze, Franck Cappello, Eddy Caron, Michel Daydé, Frédéric Desprez,
Emmanuel Jeannot, Yvon Jégou, Stephane Lanteri, Julien Leduc, Noredine Melab,
Guillaume Mornet, Raymond Namyst, Pascale Primet, Benjamin Quetier, Olivier
Richard, El-Ghazali Talbi, and Iréa Touche. Grid’5000: A Large Scale And Highly
Reconfigurable Experimental Grid Testbed. Intl. Journal of High Performance

Computing Applications, 20(4):481–494, 2006.

[12] Mark Bruls, Kees Huizing, and Jarke van Wijk. Squarified Treemaps. In Proc.

of the Joint Eurographics and IEEE TCVG Symp. on Visualization, pages 32–42,
2000.

[13] John S. Bucy, Jiri Schindler, Steven W. Schlosser, Gregory R. Ganger, and Con-
tributors. The DiskSim Simulation Environment Version 4.0 Reference Manual.
Technical Report CMU-PDL-08-101, Carnegie Mellon University, Parallel Data
Lab, 2008.

[14] Rajkumar Buyya and Manzur Murshed. GridSim: A Toolkit for the Modeling
and Simulation of Distributed Resource Management and Scheduling for Grid
Computing. Concurrency and Computation: Practice and Experience, 14(13-
15):1175–1220, December 2002.

[15] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose, and
Rajkumar Buyya. CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning Algorithms.
Software: Practice and Experience, 41(1):23–50, January 2011.

[16] Kenneth Calvert, Matthew Doar, and Ellen Zegura. Modeling Internet Topology.
IEEE Communications Magazine, 35(6):160–168, June 1997.

[17] Henri Casanova. Simgrid: A Toolkit for the Simulation of Application Scheduling.
In Proc. of the first IEEE Intl. Symp. on Cluster Computing and the Grid (CCGrid),
pages 430–437. IEEE Computer Society, May 2001.

[18] Henri Casanova, Arnaud Legrand, and Loris Marchal. Scheduling Distributed
Applications: the SimGrid Simulation Framework. In Proc. of the third IEEE

Intl. Symp. on Cluster Computing and the Grid (CCGrid), pages 138–145. IEEE
Computer Society, May 2003.

[19] Henri Casanova and Loris Marchal. A Network Model for Simulation of Grid
Application. Technical Report 2002-40, École Normale Supérieure de Lyon, LIP,
2002.

[20] Dah-Ming Chiu. Some Observations on Fairness of Bandwidth Sharing. In
Proceeding of the 5th IEEE Symp. on Computers and Communications (ISCC),
pages 125–131, Antibes, France, July 2000. IEEE Computer Society.

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 32

[21] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike
Wawrzoniak, and Mic Bowman. PlanetLab: an Overlay Testbed for Broad-
Coverage Services. ACM SIGCOMM Computer Communication Review, 33(3):3–
12, 2003.

[22] Pierre-Nicolas Clauss, Mark Stillwell, Stéphane Genaud, Frédéric Suter, Henri
Casanova, and Martin Quinson. Single Node On-Line Simulation of MPI Ap-
plications with SMPI. In Proc. of the 25th IEEE Intl. Parallel and Distributed

Processing Symp (IPDPS), pages 661–672. IEEE, May 2011.

[23] Phillip Dickens, Philip Heidelberger, and David Nicol. Parallelized Direct Exe-
cution Simulation of Message-Passing Parallel Programs. IEEE Transactions on

Parallel and Distributed Systems, 7(10):1090–1105, 1996.

[24] Marcel Dischinger, Andreas Haeberlen, P. Krishna Gummadi, and Stefan Saroiu.
Characterizing Residential Broadband Networks. In Proc. of the 7th ACM SIG-

COMM Conf. on Internet Measurement, pages 43–56. ACM, October 2007.

[25] C. Dobre, F. Pop, and V. Cristea. New Trends in Large Scale Distributed Systems
Simulation. Journal of Algorithms & Computational Technology, 5(2):221–257,
2011.

[26] Bruno Donassolo, Henri Casanova, Arnaud Legrand, and Pedro Velho. Fast and
Scalable Simulation of Volunteer Computing Systems Using SimGrid. In Proc.

of the Second Workshop on Large-Scale System and Application Performance

(LSAP), pages 605–612, June 2010.

[27] Trilce Estrada, Michela Taufer, Kevin Reed, and David P. Anderson. EmBOINC:
An Emulator for Performance Analysis of BOINC Projects. In Proc. of the 3rd

Workshop on Desktop Grids and Volunteer Computing Systems (PCGrid), 2009.

[28] Kayo Fujiwara and Henri Casanova. Speed and Accuracy of Network Simulation
in the SIMGrid Framework. In Proc. of the First Intl. Workshop on Network

Simulation Tools (NSTools). ACM, 2007.

[29] E. Gabriel, G. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J. Squyres, V. Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, R. Castain, D. Daniel, R. Graham, and
T. Woodall. Open MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation. In Proc. of the 11th European PVM/MPI Users’ Group Meeting,
volume 3241 of Lecture Notes in Computer Science, pages 97–104. Springer,
September 2004.

[30] Pedro García, Carles Pairot, Rubén Mondéjar, Jordi Pujol, Helio Tejedor, and
Robert Rallo. PlanetSim: A New Overlay Network Simulation Framework. In
Proc. of the 4th Intl. Workshop on Software Engineering and Middleware (SEM),
volume 3437 of Lecture Notes in Computer Science, pages 123–137, September
2004.

[31] Thomer M. Gil, Frans Kaashoek, Jinyang Li, Robert Morris, and Jeremy Stribling.
P2PSim, a Simulator for Peer-to-Peer Protocols. Available at http://pdos.
csail.mit.edu/p2psim/, 2005.

RR n° 7761

http://pdos.csail.mit.edu/p2psim/
http://pdos.csail.mit.edu/p2psim/

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 33

[32] William Gropp. MPICH2: A new start for MPI implementations. In Recent Ad-

vances in Parallel Virtual Machine and Message Passing Interface, 9th European

PVM/MPI Users’ Group Meeting, volume 2474 of Lecture Notes in Computer

Science. Springer, October 2002.

[33] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel

Programming with the Message Passing Interface. Scientific And Engineering
Computation Series. MIT Press, 2nd edition, 1999.

[34] Duncan Grove and Paul Coddington. Communication Benchmarking and Per-
formance Modelling of MPI Programs on Cluster Computers. The Journal of

Supercomputing, 34(2):201–217, 2005.

[35] Erik Heien, Noriyuki Fujimoto, and Kenishi Hagihara. Computing Low Latency
Batches with Unreliable Workers in Volunteer Computing Environments. In Proc.

of the Second Workshop on Large-Scale, Volatile Desktop Grids, April 2008.

[36] Marc-André Hermanns, Markus Geimer, Felix Wolf, and Brian Wylie. Verifying
Causality between Distant Performance Phenomena in Large-Scale MPI Appli-
cations. In Proc. of the 17th Euromicro Intl. Conf. on Parallel, Distributed and

Network-based Processing (Euro-PDP), pages 78–84, February 2009.

[37] Torsten Hoefler, Christian Siebert, and Andrew Lumsdaine. LogGOPSim - Sim-
ulating Large-Scale Applications in the LogGOPS Model. In Proc. of the ACM

Workshop on Large-Scale System and Application Performance, pages 597–604,
June 2010.

[38] ningNing. Hu, Li. Li, Zhuoquing Mao, Peter Steenkiste, and Jia Wang. A Mea-
surement Study of Internet Bottlenecks. In Proc. of the 24th Annual Joint Conf. of

the IEEE Computer and Communications Societies (INFOCOM). IEEE, March
2005.

[39] Márk Jelasity, Alberto Montresor, Gian Paolo Jesi, and Spyros Voulgaris. PeerSim.
Available at http://peersim.sourceforge.net/.

[40] Yang-Suk Kee, Henri Casanova, and Andrew Chien. Realistic Modeling and
Synthesis of Resources for Computational Grids. In Proc. of ACM/IEEE Super-

Computing 2004 (SC’04), November 2004.

[41] Derrick Kondo. SimBOINC: A Simulator for Desktop Grids and Volunteer Com-
puting Systems. Available at http://simboinc.gforge.inria.fr/,
2007.

[42] Derrick Kondo, Bahman Javadi, Alexandru Iosup, and Dick Epema. The Failure
Trace Archive: Enabling Comparative Analysis of Failures in Diverse Distributed
Systems. In Proceeding of the 10th IEEE/ACM Intl. Symp. on Cluster, Cloud and

Grid Computing (CCGrid), pages 398–407. IEEE, May 2010.

[43] Dawn Leaf. NIST Cloud Computing Program Overview. Available at http://
www.nist.gov/itl/cloud/upload/Leaf-CCW-II-2.pdf, Novem-
ber 2010.

[44] Edgar León, Rolf Riesen, and Arthur Maccabe. Instruction-Level Simulation of a
Cluster at Scale. In Proc. of the Intl. Conf. for High Performance Computing and

Communications (SC), November 2009.

RR n° 7761

http://peersim.sourceforge.net/
http://simboinc.gforge.inria.fr/
http://www.nist.gov/itl/cloud/upload/Leaf-CCW-II-2.pdf
http://www.nist.gov/itl/cloud/upload/Leaf-CCW-II-2.pdf

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 34

[45] Dong Lu and Peter Dinda. Synthesizing Realistic Computational Grids. In Proc.

of the ACM/IEEE SC2003 Conf. on High Performance Networking and Computing

(SC), November 2003.

[46] Laurent Massoulié and James Roberts. Bandwidth Sharing: Objectives and Algo-
rithms. In Proc. of the Eighteenth Annual Joint Conf. of the IEEE Computer and

Communications Societies on Computer Communications (INFOCOM), volume 3,
pages 1395–1403, March 1999.

[47] S. Mccanne, S. Floyd, and K. Fall. The Network Simulator (s2). Available at
http://nsnam.isi.edu/nsnam.

[48] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE: An
Approach to Universal Topology Generation. In Proc. of the Intl. Workshop on

Modeling, Analysis and Simulation of Computer and Telecommunications Systems

(MASCOTS), August 2001.

[49] Stephan Merz, Martin Quinson, and Cristian Rosa. Simgrid MC: Verification
Support for a Multi-API Simulation Platform. In Proc. of the 31th Formal Tech-

niques for Networked and Distributed Systems – FORTE 2011, pages 274–288,
June 2011.

[50] M.S. Muller, A. Knupfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix, and W. E. Nagel.
Developing Scalable Applications with Vampir, VampirServer and VampirTrace.
Parallel Computing: Architectures, Algorithms and Applications, 38:637–644,
2007.

[51] Stephen Naicken, Anirban Basu, Barnaby Livingston, and Sethalat Rodhetbhai.
Towards Yet Another Peer-to-Peer Simulator. In Proc. of the Fourth Intl. Working

Conf. Performance Modelling and Evaluation of Heterogeneous Networks (HET-

NETs), September 2006.

[52] The ns-3 Network Simulator. http://www.nsnam.org.

[53] Alberto Núñez, Javier Fernández, José Daniel García, Félix García, and Jesús
Carretero. New Techniques for Simulating High Performance MPI Applications
on Large Storage Networks. Journal of Supercomputing, 51(1):40–57, 2010.

[54] Simon Ostermann, Radu Prodan, and Thomas Fahringer. Dynamic Cloud Provi-
sioning for Scientific Grid Workflows. In Proc. of the 11th ACM/IEEE Intl. Conf.

on Grid Computing (Grid), October 2010.

[55] Brad Penoff, Alan Wagner, Michael Tüxen, and Irene Rüngeler. MPI-NetSim: A
Network Simulation Module for MPI. In Proc. of the 15th Intl. Conf. on Parallel

and Distributed Systems (ICPADS), pages 464–471, December 2009.

[56] Martin Quinson. GRAS: a Research and Development Framework for Grid and
P2P Infrastructures. In Proc. of the IASTED Intl. Conf. on Parallel and Distributed

Computing and Systems. Acta Press, 2006.

[57] Martin Quinson, Laurent Bobelin, and Frédéric Suter. Synthesizing Generic
Experimental Environments for Simulation. In Proc. of the 5th Intl. Conf. on

P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pages 222–229,
November 2010.

RR n° 7761

http://nsnam.isi.edu/nsnam
http://www.nsnam.org

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 35

[58] Kavitha Ranganathan and Ian Foster. Decoupling Computation and Data Schedul-
ing in Distributed Data-Intensive Applications. In Proc. of the 11th IEEE Intl.

Symp. on High Performance Distributed Computing (HPDC). IEEE Computer
Society, 2002.

[59] Ralf Reussner, Peter Sanders, and Jesper Larsson Träff. SKaMPI: a Comprehensive
Benchmark for Public Benchmarking of MPI. Scientific Programming, 10(1):55–
65, 2002.

[60] Rolf Riesen. A Hybrid MPI Simulator. In Proc. of the IEEE Intl. Conf. on Cluster

Computing, September 2006.

[61] George F. Riley. The Georgia Tech Network Simulator. In Proc. of the ACM

SIGCOMM workshop on Models, Methods and Tools for Reproducible Network

Research, pages 5–12. ACM, 2003.

[62] Cristian Rosa, Stephan Merz, and Martin Quinson. A Simple Model of Commu-
nication APIs – Application to Dynamic Partial-order Reduction. In Proc. of the

10th Intl. Workshop on Automated Verification of Critical Systems – AVOCS 2010,
pages 137–151, September 2010.

[63] L. M. Schnorr, G. Huard, and P. O. A. Navaux. Triva: Interactive 3D Visualization
for Performance Analysis of Parallel Applications. Future Generation Computer

Systems Journal, 26(3):348–358, 2010.

[64] Spyros Sioutas, George Papaloukopoulos, Evangelos Sakkopoulos, Kostas Tsich-
las, and Yannis Manolopoulos. A Novel Distributed P2P Simulator Architecture:
D-P2P-Sim. In Proc. of the 18th ACM Conf. on Information and Knowledge

Management (CIKM), pages 2069–2070, November 2009.

[65] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger, M. Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan. Chord: a Scalable Peer-to-Peer Lookup
Protocol for Internet Applications. IEEE/ACM Trans. on Networking, 11(1):17–32,
2003.

[66] Michela Taufer, Andre Kerstens, Trilce Estrada, David Flores, and Patricia J. Teller.
SimBA: A Discrete Event Simulator for Performance Prediction of Volunteer
Computing Projects. In Proc. of the 21st Intl. Workshop on Principles of Advanced

and Distributed Simulation (PADS), pages 189–197. IEEE Computer Society,
2007.

[67] Mustafa Tikir, Michael Laurenzano, Laura Carrington, and Allan Snavely. PSINS:
An Open Source Event Tracer and Execution Simulator for MPI Applications. In
Proc. of the 15th Intl. Euro-Par Conf. on Parallel Processing, number 5704 in
Lecture Notes in Computer Science, pages 135–148. Springer, August 2009.

[68] András Varga. The OMNeT++ Discrete Event Simulation System. In Proc. of the

15th European Simulation Multiconference (ESM), June 2001.

[69] Pedro Velho and Arnaud Legrand. Accuracy Study and Improvement of Net-
work Simulation in the SimGrid Framework. In Proc. of the 2nd International

Conference on Simulation Tools and Techniques (SIMUTools’09), March 2009.

RR n° 7761

Towards Scalable, Accurate, and Usable Simulations of Distributed Systems 36

[70] Bernard Waxman. Routing of Multipoint Connections. IEEE Journal on Selected

Areas in Communications, 6(9):1617–1622, December 1988.

[71] Ellen Zegura, Kenneth Calvert, and Michael Donahoo. A Quantitative Compari-
son of Graph-based Models for Internet Topology. IEEE/ACM Transactions on

Networking, 5(6):770–783, December 1997.

[72] Jidong Zhai, Wenguang Chen, and Weimin Zheng. PHANTOM: Predicting
Performance of Parallel Applications on Large-Scale Parallel Machines Using
a Single Node. In Proc. of the 15th ACM SIGPLAN Symp. on Principles and

Practice of Parallel Programming (PPOPP), pages 305–314, January 2010.

[73] Gengbin Zheng, Gunavardhan Kakulapati, and Laxmikant Kale. BigSim: A Paral-
lel Simulator for Performance Prediction of Extremely Large Parallel Machines.
In Proc. of the 18th Intl. Parallel and Distributed Processing Symp. (IPDPS), April
2004.

RR n° 7761

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Related Work
	Simulation of Distributed Algorithms
	Simulation of Abstract Applications
	Simulation of Legacy Applications

	The SimGrid Framework
	User Interfaces
	Simulation Core
	SURF and SimIX
	The Main Simulation Loop
	Simulation Model Formalization and Implementation

	Simulation Accuracy
	TCP Network Models in WANs
	TCP Network Models in Clusters

	Simulation Scalability
	Optimized Simulation Loop
	Simulation Core Parallelization to Support Millions of Simulated Contexts
	Highly Scalable ``Last Mile" Network Model
	Scalable On-line Simulation of Legacy HPC Applications

	Simulation Usability
	Platform Description Instantiation
	Simulation Visualization
	Squarified Treemaps
	Topology-based Visualization

	Formal Verification

	Conclusion
	Acknowledgments

