
HAL Id: inria-00632040
https://hal.inria.fr/inria-00632040

Submitted on 13 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resilin: Elastic MapReduce for Private and Community
Clouds

Pierre Riteau, Ancuta Iordache, Christine Morin

To cite this version:
Pierre Riteau, Ancuta Iordache, Christine Morin. Resilin: Elastic MapReduce for Private and Com-
munity Clouds. [Research Report] RR-7767, INRIA. 2011, pp.18. �inria-00632040�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49954336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00632040
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
77

67
--

FR
+E

N
G

Distributed and High Performance Computing

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Resilin: Elastic MapReduce for Private and
Community Clouds

Pierre Riteau — Ancuţa Iordache — Christine Morin

N° 7767

Octobre 2011

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

Resilin: Elastic MapReduce for Private and
Community Clouds

Pierre Riteau∗† , Ancuţa Iordache‡ , Christine Morin†

Theme : Distributed and High Performance Computing
Équipe-Projet Myriads

Rapport de recherche n° 7767 — Octobre 2011 — 18 pages

Abstract: The MapReduce programming model, introduced by Google, of-
fers a simple and efficient way of performing distributed computation over large
data sets. Although Google’s implementation is proprietary, MapReduce can
be leveraged by anyone using the free and open source Apache Hadoop frame-
work. To simplify the usage of Hadoop in the cloud, Amazon Web Services
offers Elastic MapReduce, a web service enabling users to run MapReduce jobs.
Elastic MapReduce takes care of resource provisioning, Hadoop configuration
and performance tuning, data staging, fault tolerance, etc. This service dras-
tically reduces the entry barrier to perform MapReduce computations in the
cloud, allowing users to concentrate on the problem to solve. However, Elastic
MapReduce is restricted to Amazon EC2 resources, and is provided at an addi-
tional cost. In this paper, we present Resilin, a system implementing the Elastic
MapReduce API with resources from other clouds than Amazon EC2, such as
private and community clouds. Furthermore, we explore a feature going be-
yond the current Amazon Elastic MapReduce offering: performing MapReduce
computations over multiple distributed clouds.

Key-words: Cloud computing, MapReduce, Elasticity, Hadoop, Execution
platforms

∗ Université de Rennes 1, IRISA, Rennes, France – Pierre.Riteau@irisa.fr
† INRIA Rennes – Bretagne Atlantique, Rennes, France – firstname.lastname@inria.fr
‡ West University of Timişoara, Timişoara, Romania – ancuta.iordache@info.uvt.ro

Resilin: Elastic MapReduce pour nuages
informatiques privés et communautaires

Résumé : Le modèle de programmation MapReduce, introduit par Google,
offre un moyen simple et efficace de réaliser des calculs distribués sur de large
quantités de données. Bien que la mise en œuvre de Google soit propriétaire,
MapReduce peut être utilisé librement en utilisant le framework Hadoop. Pour
simplifier l’utilisation de Hadoop dans les nuages informatiques, Amazon Web
Services offre Elastic MapReduce, un service web qui permet aux utilisateurs
d’exécuter des travaux MapReduce. Il prend en charge l’allocation de ressources,
la configuration et l’optimisation de Hadoop, la copie des données, la tolérance
aux fautes, etc. Ce service rend plus accessible l’exécution de calculs MapReduce
dans les nuages informatiques, permettant aux utilisateurs de se concentrer
sur la résolution de leur problème plutôt que sur la gestion de leur plate-
forme. Cependant, Elastic MapReduce est limité à l’utilisation de ressources
de Amazon EC2, et est proposé à un coût additionnel. Dans cet article, nous
présentons Resilin, un système mettant en œuvre l’API Elastic MapReduce
avec des ressources provenant d’autres nuages informatiques que Amazon EC2,
tels que les nuages privés ou communautaires. De plus, nous explorons une
fonctionnalité additionnelle comparé à Amazon Elastic MapReduce: l’exécution
de calculs MapReduce sur plusieurs nuages distribués.

Mots-clés : Informatique en nuage, MapReduce, élasticité, Hadoop, plates-
formes d’exécution

Resilin: Elastic MapReduce for Private and Community Clouds 3

1 Introduction
The MapReduce programming model [15], proposed by Google in 2004, offers a
simple way of performing distributed computation over large data sets. Users
provide a map and a reduce function. The map function takes a set of input
key/value pairs, and produces intermediate key/value pairs. The reduce func-
tion merges intermediate key/value pairs together to produce the result of the
computation. This programming model became popular because it is simple
yet expressive enough to perform a large variety of computing tasks. It can
be applied to many fields, from data mining to scientific computing. This pro-
gramming model is backed by a proprietary framework developed by Google that
takes care of scheduling tasks to workers, sharing data through a distributed file
system, handling faults, etc.

The Apache Hadoop [1] project develops a free and open source implementa-
tion of the MapReduce framework. The Hadoop MapReduce framework works
with the Hadoop Distributed File System (HDFS) [32], designed to be highly-
reliable and to provide high throughput for large data sets used by applications.
Hadoop is heavily used by companies such as Yahoo!, Facebook and eBay to
perform thousands of computations per day over petabytes of data [35, 33].
However, managing a Hadoop cluster requires expertise, especially when scaling
to a large number of machines. Moreover, users who want to perform MapRe-
duce computations in cloud computing environments need to instantiate and
manage virtual resources, which further complicates the process.

To lower the entry barrier for performing MapReduce computations in the
cloud, Amazon Web Services provides Elastic MapReduce (EMR) [30]. Elastic
MapReduce is a web service to which users submit MapReduce jobs. The service
takes care of provisioning resources, configuring and tuning Hadoop, staging
data, monitoring job execution, instantiating new virtual machines in case of
failure, etc.

However, this service has a number of limitations. First, it is restricted to
Amazon EC2 resources. Users are not able to use Elastic MapReduce with
resources from other public clouds or from private clouds, which may be less
expensive or even free of charge. This is especially true for scientists who have
access to community clouds administrated by their institution and dedicated
to scientific computing [21, 27]. Moreover, Elastic MapReduce is provided for
an hourly fee, in addition to the cost of EC2 resources. This fee ranges from
17% to 21% of the price of on-demand EC2 resources. It is impossible to use
a different virtual machine image than the one provided by Amazon, which is
based on Debian Lenny 5.0.8. Finally, some users may have to comply with
data regulation rules, forbidding them from sharing data with external entities
like Amazon.

In this paper, we present Resilin, a system implementing the Elastic MapRe-
duce API with resources from other clouds than Amazon EC2, such as private
and community clouds. Resilin allows users to perform MapReduce computa-
tions on other infrastructures than Amazon EC2, and offers more flexibility:
users are free to select different types of virtual machines, different operating
systems or newer Hadoop versions. The goal of Resilin is not only to be compat-
ible with the Elastic MapReduce API. We also explore a feature going beyond
the current Amazon Elastic MapReduce offering: performing MapReduce com-
putations over multiple distributed clouds.

RR n° 7767

Resilin: Elastic MapReduce for Private and Community Clouds 4

This paper is organized as follows. Section 2 presents the Amazon Elas-
tic MapReduce service in more details. Section 3 covers the architecture and
implementation of Resilin. Section 4 presents our experiments and analyzes
their results. Section 5 reviews related work. Finally, Section 6 concludes and
discusses future work.

2 Amazon Elastic MapReduce
Amazon Elastic MapReduce [30] is one of the products of Amazon Web Services.
After signing up and providing a credit card number, users can submit MapRe-
duce jobs through the AWS management console (a web interface), through a
command line tool, or by directly calling the Elastic MapReduce API (libraries
to access this API are available for several programming languages, such as Java
and Python).

Users execute Hadoop jobs with Elastic MapReduce by submitting job flows,
which are sequences of Hadoop computations. Before starting the execution of
a job flow, Elastic MapReduce provisions a Hadoop cluster from Amazon EC2
instances. Each job flow is mapped to a dedicated Hadoop cluster: there is no
sharing of resources between job flows. A Hadoop cluster created by Elastic
MapReduce can be composed of three kinds of nodes:

• the master node, which is unique, acts as a meta data server for HDFS
(by running the NameNode service) and schedules MapReduce tasks on
other nodes (by running the JobTracker service),

• core nodes provide data storage to HDFS (by running the DataNode ser-
vice) and execute map and reduce tasks (by running the TaskTracker
service),

• task nodes execute map and reduce tasks but do not store any data.

By default, a Hadoop cluster created by Elastic MapReduce is composed
of one master node and several core nodes1. At any time during the compu-
tation, a Hadoop cluster can be resized. New core nodes can be added to the
cluster, but core nodes cannot be removed from a running job flow, since re-
moving them could lead to HDFS data loss. Task nodes can be added at any
time, and removed without risk of losing data: only the progress of MapReduce
tasks running on the terminated task nodes will be lost, and the fault tolerance
capabilities of Hadoop will trigger their re-execution on other alive nodes.

After the Hadoop cluster has booted, the service executes bootstrap actions,
which are scripts specified by users. These actions allow users to customize
an Elastic MapReduce cluster to some extent. Amazon provides several pre-
defined bootstrap actions, to modify settings such as the JVM heap size and
garbage collection behavior, the number of map and reduce tasks to execute in
parallel on each node, etc. Users can also provide custom bootstrap actions by
writing scripts and uploading them in S3. Once a Hadoop cluster is ready for
computation, Elastic MapReduce starts executing the associated job flow. A job
flow contains a sequence of steps, which are executed in order. Internally, each

1If a user requests a Hadoop cluster composed of only one node, the same virtual machine
performs the roles of master node and core node.

RR n° 7767

Resilin: Elastic MapReduce for Private and Community Clouds 5

step corresponds to the execution of a Hadoop program (which can itself spawn
multiple Hadoop jobs). After all steps are executed, the cluster is normally
shut down. Users can ask for the cluster to be kept alive, which is useful for
debugging job flows, or for adding new steps in a job flow without waiting for
cluster provisioning and paying extra usage (in Amazon EC2, instance cost is
rounded up to the hour, which means a 1-minute and a 59-minute job flow cost
the same price).

Typically, input data is fetched from Amazon S3, a highly scalable and
durable storage system provided by Amazon. Intermediate data is stored in
HDFS, the Hadoop Distributed File System. Output data is also saved in
Amazon S3, since the termination of a Hadoop cluster causes its HDFS file
system to be destroyed and all the data it contains to become unavailable.

3 Architecture and Implementation
Like the Amazon Elastic MapReduce service, Resilin provides a web service
acting as an abstraction layer between users and Infrastructure as a Service
(IaaS) clouds. Figure 1 presents how Resilin interacts with other components
of a cloud infrastructure. Users execute client programs supporting the Elastic
MapReduce API to interact with Resilin (for instance, a Python script using
the boto [2] library). Resilin receives Elastic MapReduce requests and translates
them in two types of actions:

• interactions with an IaaS cloud using the EC2 API, to create and terminate
virtual machine instances,

• remote connections to virtual machines using SSH, to configure Hadoop
clusters and execute Hadoop programs.

To retrieve input data and store output data, Hadoop clusters interact with a
cloud storage repository through the S3 API.

Resilin implements most actions supported by the Amazon Elastic MapRe-
duce API. Users are able to execute the following actions:

RunJobFlow Submits a job flow.

DescribeJobFlows Queries job flow statuses.

AddJobFlowSteps Adds new steps to an existing job flow.

AddInstanceGroups/ModifyInstanceGroups Change the number of re-
sources by adding or modifying instances groups.

TerminateJobFlows Terminates job flows.

However, only JAR-based and streaming Hadoop jobs are currently avail-
able. Job flows written using Hive and Pig, two SQL-like languages for data
analysis, are not yet supported by Resilin.

We now describe how each type of Elastic MapReduce action is handled.
When a new job flow request (RunJobFlow) is received by Resilin, its param-
eters are validated, and the service contacts an EC2-compatible IaaS cloud on
behalf of the user to provision a Hadoop cluster. By leveraging the EC2 API,

RR n° 7767

Resilin: Elastic MapReduce for Private and Community Clouds 6

Resilin

EMR API

Storage

VM VM

VMVM

EC2 API

Hadoop cluster

S3 API

EMR client program

SSH

IaaS cloud

Figure 1: Overview of Resilin and its interactions with other cloud components

Resilin can make use of resources from clouds managed by open source toolk-
its supporting the EC2 API, such as Nimbus [7, 19], OpenNebula [8, 34], and
Eucalyptus [3, 26].

Once a Hadoop cluster is provisioned, Resilin connects to the virtual ma-
chines, using SSH, to execute bootstrap actions specified by the user, configure
the Hadoop cluster (specifying the HDFS NameNode address, the MapReduce
JobTracker address, etc.), and start the Hadoop daemons.

After Hadoop has been configured, the associated job flow is started and
each step in the job flow is executed by invoking the hadoop command on the
master node. Each step specifies the locations of its input and output data.
These references can be S3 URLs: Hadoop support reading and writing directly
to Amazon S3. It would be technically possible to configure the Hadoop clusters
created by Resilin to access input data from Amazon S3, like in Amazon Elas-
tic MapReduce. However, this is ineffective for two reasons. First, bandwidth
limitations between Amazon S3 and the private or community IaaS cloud run-
ning the Hadoop cluster drastically limit performance. Second, outgoing traffic
from Amazon S3 is charged to customers, which would incur a high cost when
performing MapReduce computations on large data sets.

We assume that clouds used by Resilin will have a storage service avail-
able. Both Nimbus and Eucalyptus provide their own S3-compatible cloud
storage (respectively called Cumulus [11] and Walrus [6]). Furthermore, Cumu-
lus can be installed as a standalone system, making it available for any cloud
deployment. Resilin can use this kind of repository to provide Hadoop with
input data and to store output data. To make it possible, we extended the
S3 protocol support of Hadoop 0.20.2. In addition to being able to specify
URLs in the form of s3n://bucket/key, users can also provide URLs such as
cumulus://bucket.host:port/key. When such URLs are detected, the library
used by Hadoop to interact with S3 (JetS3t) is set up to contact the Cumulus
server running on host:port. Additionally, we had to implement support for

RR n° 7767

Resilin: Elastic MapReduce for Private and Community Clouds 7

partial GET requests (HTTP Range header) in Cumulus. Hadoop uses this
type of HTTP request to download subsets of input files on each node.

Two types of steps are supported by Resilin. The first type, a custom JAR,
is simply the location of a JAR and its required arguments. When executed,
this JAR submits jobs to Hadoop. The JAR URL can be a S3 or Cumulus
location. In this case, Resilin first downloads the JAR to the master node,
using the hadoop fs -copyToLocal command, as Hadoop does not support
directly executing a JAR from a remote location. The second type, streaming
jobs, is defined by a mapper program, a reducer program, and the locations of
input and output data. Both programs can be stored in S3 or Cumulus, and
can be written in any programming language (Java, Ruby, Python, etc.): they
apply their computation on data coming from standard input and stream their
result to standard output. To run a streaming step, the Hadoop command is
invoked with the hadoop-streaming JAR included in the Hadoop MapReduce
framework. We determined that Amazon made modifications to Hadoop to
be able to fetch the mapper and reducer programs from S3 and add them to
the Hadoop distributed cache (in order to provide them to all nodes). We did
not make such modifications to the Hadoop source code, and currently rely on
bootstrap actions to download the mapper and reducer programs to the master
node.

Resilin monitors the execution of the Hadoop computation. When the exe-
cution of a step is finished, the status of the job flow is updated, and the next
step starts running. When all steps have been executed, the job flow is finished,
which triggers termination of the cluster (unless the user requested the cluster
to be kept alive).

Resilin is implemented in Python. It uses the Twisted [10] framework for
receiving and replying to HTTP requests, the boto [2] library to interact with
clouds using the EC2 API, and the paramiko [9] library for executing commands
on virtual machines using SSH.

3.1 Multi-Cloud Job Flows
Besides targeting compatibility with the Amazon Elastic MapReduce API, we
are experimenting with an additional feature in Resilin: the ability to execute
job flows with resources originating from multiple clouds. With Amazon Elas-
tic MapReduce, executing MapReduce computations across multiple Amazon
EC2 regions does not present a lot of interest. The large number of resources
available in each region makes it possible to deploy large Hadoop clusters in a
single data center2. However, in the usage context of Resilin, many users would
have access to several moderately sized private or community clouds. For ex-
ample, the FutureGrid [4] project, a distributed, high-performance testbed in
the USA, contains 4 scientific clouds based on Nimbus, each having from 120 to
328 processor cores. Federating computing power from several such clouds to
create large scale execution platforms has been proposed as the sky computing
approach [20].

2When scaling to very large clusters, Amazon EC2 can start running out of resources. In
March 2011, the Cycle Computing company published details about how they provisioned a
4096-core cluster in the Amazon EC2 US East region [14]. When they scaled up the number
of resources, 3 out of the 4 availability zones of the region reported Out of Capacity errors.

RR n° 7767

Resilin: Elastic MapReduce for Private and Community Clouds 8

Although creating MapReduce clusters distributed over several clouds may
not be efficient because of the large amounts of wide area data transfer that it
generates [12], it is interesting for some types of MapReduce jobs. For example,
Matsunaga et al. [24] have shown that multi-cloud BLAST computations with
MapReduce can scale almost linearly.

Resilin supports multi-cloud job flows by allowing users to dynamically add
new resources from different clouds to a running job flow. As an example, let us
assume that a user has access to two different clouds, Cloud A and Cloud B, and
that Cloud A is her default choice. After a job flow has been started on Cloud
A, Resilin will accept requests for adding new instances (AddInstanceGroup)
with an instance type also specifying the cloud to use: instead of m1.small,
the instance type of the request would be m1.small@CloudB. After new virtual
machines are provisioned from Cloud B, they are configured to become resources
of the cluster running in Cloud A. This addition is managed seamlessly by
Hadoop. When Hadoop daemons are started in the newly provisioned virtual
machines of Cloud B, they contact the master node in Cloud A to join the cluster
and start receiving MapReduce tasks to execute.

4 Evaluation
For validating our implementation, we compare executions of the same job flows
on Amazon Elastic MapReduce, using Amazon EC2 resources, and on Resilin,
using resources provisioned from a cloud deployed on the Grid’5000 experimental
testbed with Nimbus Infrastructure version 2.8.

In Amazon EC2, we used High-CPU Medium instances (c1.medium) from
the US East (Northern Virginia) region. These instances are supplied with 2
virtual cores whose speed is equivalent to 2.5 EC2 Compute Units each (one
EC2 Compute Unit corresponds to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor), 1.7 GB of memory, 350 GB of instance storage, and are running 32-
bit operating systems. As mentioned in other performance studies of Amazon
EC2 [17], the same type of instances can be hosted on physical machines with
different processors. By examining the content of /proc/cpuinfo, we deter-
mined that the physical processors of our c1.medium instances were either Intel
Xeon E5410 running at 2.33 GHz or Intel Xeon E5506 running at 2.13 GHz.

On Grid’5000, we used physical machines part of the genepi cluster in Greno-
ble. These machines have 2 Intel Xeon E5420 QC processors (each with 4 cores
running at 2.5 GHz), 8 GB of memory, and a Gigabit Ethernet connectivity.
They were running a 64-bit Debian Lenny 5.0.4 operating system with a Linux
2.6.32 kernel, and were using QEMU/KVM version 0.12.5 as hypervisor. The
virtual machines created on these physical machines were dual-core virtual ma-
chines, with 2 GB of memory, and were running a 32-bit Debian Squeeze 6.0.1
with a Linux 2.6.32 kernel.

We evaluated the respective performance of each virtual machine type by
running the benchmark tests of mprime [5]. Table 1 reports the mean, standard
deviation, minimum and maximum of the average time required for computing
a single thread 8192K FFT on each type of virtual machine. The results were
obtained by running 5 iterations of the mprime benchmark on 3 instances of
each virtual machine type, for a total of 30 runs. In the case of the c1.medium

RR n° 7767

Resilin: Elastic MapReduce for Private and Community Clouds 9

Instance type c1.medium Nimbus VM
Mean (ms) 206.587 177.241 (14.2% faster)

Standard deviation 6.247 0.181
Minimum (ms) 197.998 176.821 (10.7% faster)
Maximum (ms) 220.829 177.55 (19.6% faster)

Table 1: CPU performance of the virtual machine types used in our experiments,
measured with mprime (single-thread 8192K FFT)

virtual machines, 2 instances had a 2.33 GHz processor and 1 had a 2.13 GHz
processor.

These measurements show the lack of performance predictability of Ama-
zon EC2 instances, already reported in other studies [17]. Not only did we
observed different performance between instances of the same type, but we also
experienced substantial performance variability within the same instance. For
example, one instance performed 2 consecutive runs of mprime with the follow-
ing results for the 8192K FFT: 220.829 ms and 199.572 ms, a performance loss of
9.626%, even though these benchmarks runs were executed seconds apart. This
behavior is likely caused by other instances sharing the same physical machine,
which produced noise in the system and influenced the performance of our own
instances.

Contrarily to Amazon EC2, the VMs executing in a Nimbus cloud on Grid’5000
showed stable performance measurements, both within one VM and among mul-
tiple VMs. When performing these benchmark runs, each VM was executed on a
dedicated physical machine, which minimized the noise produced in the system.

To compare Resilin with Amazon Elastic MapReduce, we separate the eval-
uation of a job flow execution in two parts. First, we compare the deployment
time, which includes provisioning a virtualized Hadoop cluster and performing
its configuration. Second, we compare execution time, from the submission of
a Hadoop computation until its completion. These experiments are run with
various cluster sizes. In each experiment, we had a dedicated master node. We
used the following numbers of core nodes: 1, 2, 4, and 8. Thus, the total number
of instances were 2, 3, 5, and 9.

Additionally, we perform a synthetic benchmark of the cloud storage repos-
itory by measuring its read performance. The cloud storage repository is an
important part of the system, as it is used to store input and output data. Fi-
nally, we report the cost of the instances used on Amazon Elastic MapReduce.

4.1 Deployment Time
The deployment time corresponds to the time taken from the submission of a
RunJobFlow request to the API until the Hadoop cluster is ready to start ex-
ecuting an application. This includes provisioning a virtualized Hadoop cluster
and performing its configuration. The provisioning of the cluster contains two
main phases: propagating the virtual machine images to the hypervisor nodes
and starting the virtual machines. The deployment time of a Hadoop cluster is
independent of the application submitted for execution.

To compare the deployment performance of Elastic MapReduce and Resilin,
we submit job flows on both services and compare the time from the submission

RR n° 7767

Resilin: Elastic MapReduce for Private and Community Clouds 10

2 3 5 9

Deployment performance

Number of instances

D
ep

lo
ym

en
t t

im
e

(s
)

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Elastic MapReduce
Resilin

Figure 2: Deployment time of Hadoop clusters on Amazon Elastic MapReduce
and Resilin with different number of instances

of the job flow until the start of the Hadoop computation. This time is computed
as the difference between the CreationDateTime and the ReadyDateTime of the
job flow, as reported by the DescribeJobFlows API request.

In the case of Amazon, the EC2 instances have a 5 GB root file system (the
instances also have 350 GB of storage from local disks). However, since details
of the Amazon EC2 architecture are not available, we cannot know how much
of this data is propagated on the network, or if hypervisors have a local cache
of popular virtual machine images.

In the case of the Nimbus cloud, the deployment time is mostly dependant
of the propagation of virtual machine images to the hypervisor nodes. The size
of our virtual machine image is 4 GB. LANTorrent is used for propagating these
images to hypervisors. LANTorrent is a file distribution protocol integrated into
the Nimbus IaaS toolkit. It is optimized to propagate the same virtual machine
images from a central repository across a LAN to many hypervisor nodes.

Figure 2 shows the deployment time for different cluster sizes. Deployment
time in Amazon EC2 is fairly stable, even though it can be perturbed by other
users of the infrastructure, like the CPU performance presented earlier. Re-
silin also presents a stable deployment time. This can be explained by the effi-
cient propagation mechanism used by LANTorrent, which scales almost linearly.
However, Resilin is constantly slower than Elastic MapReduce by approximately
one minute. We believe that the deployment process of Resilin can be improved
by several techniques:

• propagation performance can be improved by optimizing the size of the
virtual machine image, or by using compression or caching,

• configuration performance can be improved by reducing the number of
SSH connections to the virtual machines (Resilin currently does one con-
nection per configuration action, while all actions could be done by exe-
cuting a single script).

RR n° 7767

Resilin: Elastic MapReduce for Private and Community Clouds 11

2 3 5 9

WordCount execution performance

Number of instances

E
xe

cu
tio

n
tim

e
(s

)

0
50

0
10

00
15

00 Elastic MapReduce
Resilin

Figure 3: Execution time of Word Count on Amazon Elastic MapReduce and
Resilin with different number of instances

4.2 Execution Time
To compare the execution performance of Elastic MapReduce and Resilin, we
submit the same job flows, each composed of only one step, on both services and
compare the time from the start of the requested Hadoop computation until its
completion. This time is computed as the difference between the StartDateTime
and the EndDateTime of the step, as reported by the DescribeJobFlows API
request. We evaluate 2 different applications: Word Count and CloudBurst.
We evaluated Resilin with Hadoop settings similar to those used by Elastic
MapReduce. For instance, the number of map and reduce tasks were chosen to
be the same: 4 map tasks and 2 reduce tasks per instance.

4.2.1 Word Count

To evaluate the performance of a streaming job, we ran a Word Count program
on a collection of text files. Word Count computes the number of occurrences
of each word in a text collection. The Amazon Elastic MapReduce Word Count
sample [31] uses a copy of The World Factbook as input data. This book is
split in 12 files, for a total of 18 MB. However, the content is not split evenly:
the last 3 files are small in comparison to the first 9 files which contain most
of the data. This text collection is small: Hadoop was created to process data
at a much larger scale. We copied 100 times the first 9 files to create a larger
collection of 900 files, for a total of 1.8 GB.

Figure 3 presents the results of the execution time of Word Count. For all
cluster sizes, Resilin is faster than Amazon Elastic MapReduce. This is not
surprising, since we determined that the virtual machines used on Grid’5000
had higher CPU performance. As the cluster size is increased, the difference of
performance between Elastic MapReduce and Resilin becomes smaller. We will
analyze if this can be explained by contention to access the Cumulus server.

RR n° 7767

Resilin: Elastic MapReduce for Private and Community Clouds 12

2 3 5 9

CloudBurst execution performance

Number of instances

E
xe

cu
tio

n
tim

e
(s

)

0
10

0
20

0
30

0
40

0
50

0
60

0 Elastic MapReduce
Resilin

Figure 4: Execution time of CloudBurst on Amazon Elastic MapReduce and
Resilin with different number of instances

4.2.2 CloudBurst

CloudBurst [28] is one of the sample workloads provided by Amazon for Elastic
MapReduce. It implements a parallel read-mapping algorithm optimized for
mapping next-generation sequence data to the human genome and other ref-
erence genomes. It is invoked as a custom JAR (cloudburst.jar), with the
locations of input and output data and parameters for the execution (including
the number of map and reduce tasks). We use the exact same program, input
data and parameters as those provided by Amazon as a sample application (240
maps and 48 reduces). All input and output data is stored in the cloud storage
repository.

Figure 4 presents the results of the execution time of CloudBurst. For this
application, Resilin is consistently slower than Elastic MapReduce. Since Ama-
zon uses a modified version of Hadoop with many tuned parameters, we will
analyze if this difference in the execution environment is the source of the per-
formance.

4.3 Cloud Storage Performance
In this experiment, we compare the performance of the cloud storage repository
used in Amazon Elastic MapReduce and Resilin. We created a 1.8 GB file,
uploaded it to S3 and to a Cumulus repository in Grid’5000, and compared
the time required to read its content from Hadoop. The read operation was
performed with the fs -cat option of the hadoop command using the s3n
protocol. Output was sent to /dev/null to avoid any slowdown from I/O
operations on the local hard drive.

Figure 5 compares the performance results obtained in Elastic MapReduce
with one client and in Resilin (with Cumulus acting as a storage repository),

RR n° 7767

Resilin: Elastic MapReduce for Private and Community Clouds 13

Number of instances 2 3 5 9
Instance cost (per hour) $0.34 $0.51 $0.85 $1.53

Elastic MapReduce cost (per hour) $0.06 $0.09 $0.15 $0.27
Total cost (per hour) $0.40 $0.60 $1 $1.8

Table 2: Per-hour financial cost of Elastic MapReduce computations on Amazon
with c1.medium instances in the US East region (not including S3 cost)

first with one client and then with 2 parallel clients. Results were obtained by
executing 10 iterations of the read process. The plot reports the minimum, lower
quartile, median, upper quartile, and maximum values observed. As with CPU
benchmarks, we observed important performance variations when reading data
stored in Amazon S3 from an EC2 instance. The slowest read operation (4.2
MB/s) took more than 6 times longer than the fastest one (26.4 MB/s), while
the mean bandwidth of the 10 iterations was 10.14 MB/s. When scaling up the
number of parallel readers, we did not notice any strong change of performance
behavior, as Amazon S3 is presumably backed by thousands of machines serving
data to clients, with data replicated in several locations.

With Resilin and the Cumulus storage repository, reading the file from one
client at a time lead to a very stable bandwidth averaging 83.37 MB/s. Contrar-
ily to Amazon S3, the Cumulus server is implemented with a single machine,
which becomes a bottleneck when more clients are accessing the cloud storage
in parallel. Figure 5 shows that for 2 parallel readers, the per-client bandwidth
is reduced. This result was expected, since the resources of the Cumulus server
are shared between the 2 clients. A notable behavior of Cumulus is that the
bandwidth was not shared fairly between the 2 clients. While one client was
averaging a bandwidth of 24.76 MB/s, the other was receiving data at 51.42
MB/s. Also, the cumulative bandwidth with 2 clients (76.18 MB/s) shows some
performance degradation compared to the one-client scenario.

If more than 2 clients are doing parallel requests to a single Cumulus server,
the performance of each client will degrade further. We note that Cumulus
can be configured to scale horizontally across many nodes [11] by using parallel
file systems such as GPFS. Using this setup, it should be possible to retain a
good level of performance even when increasing the number of Cumulus clients.
However, we did not test such a configuration in our experiments.

4.4 Financial Cost
An important difference between a public cloud like Amazon Web Services and
a private or community cloud is the charging model. A public cloud directly
charges its customers for resources used, while a private or community cloud is
paid for by organizations (companies, universities, laboratories, etc.) and is free
of charge for its direct users.

In Table 2, we report the price of the Elastic MapReduce clusters used in our
experiments. The price is composed of the cost of the Amazon EC2 instances
plus the cost of the Elastic MapReduce service. In our case, the EC2 instances
were c1.medium instances of the US East region, billed at $0.17 per hour. For
this type of instance, the Elastic MapReduce service costs $0.03 per instance

RR n° 7767

Resilin: Elastic MapReduce for Private and Community Clouds 14

●

Elastic MapReduce Resilin (1 client) Resilin (2 clients)

20
40

60
80

Cloud storage performance

R
ea

d
ba

nd
w

id
th

 p
er

 c
lie

nt
 (

M
B

/s
)

Figure 5: Comparison of cloud storage performance between Amazon Elastic
MapReduce and Resilin (with the Cumulus cloud storage repository)

per hour. We note that each partial hour is fully billed: a job flow executing
for 4 minutes costs a full hour.

The prices reported in Table 2 do not include the cost of the Amazon S3
storage. Amazon charges for three types of resource consumption in S3. Users
are charged for the amount of storage space they use, for the number of requests
to the S3 service, and for outgoing data transfer. There is no charge for data
transferred between S3 and EC2 in the same region. In the case of Elastic
MapReduce, this is generally the case: users provision instances in the data
center where their data is available. However, for users with very large data
sets, the storage space consumption and the number of requests could lead to
significant costs. For instance, storing 1 PB of data in the US Standard Region
of S3 costs more than $100,000 per month.

We cannot compare the cost of Elastic MapReduce computations with the
real cost of resources of a private or community cloud, since the latter depends on
many variables, including the costs of hardware resources, power, maintenance
contracts, administrative staff, Internet network connectivity, etc.

5 Related Work
Related work on running MapReduce computations in the cloud has been fo-
cused on adapting MapReduce to cloud characteristics, either by creating com-
pletely new implementations of MapReduce, or by modifying existing systems.
For instance, Gunarathne et al. [16] proposed AzureMapReduce, a MapReduce
implementation built on top of Microsoft Azure cloud services [25]. They lever-

RR n° 7767

Resilin: Elastic MapReduce for Private and Community Clouds 15

age several services offered by Azure, such as Azure Queues for scheduling tasks,
Azure blob storage for storing data, etc. This allows their implementation to
be decentralized and more elastic than a Hadoop-based cluster, leading to in-
creased levels of fault-tolerance and flexibility. Similarly, Liu and Orban [23]
created Cloud MapReduce, a MapReduce implementation leveraging services
from the Amazon Web Services platform, with data stored in Amazon S3, and
synchronization and coordination of workers performed with Amazon SQS and
Amazon SimpleDB. These contributions are orthogonal to our objectives. While
their goal is to build MapReduce implementations taking advantage of features
offered by specific cloud services, we aim to bring an easy to use MapReduce
execution platform to many different cloud implementations. Furthermore, to
our knowledge, no open source cloud implements the Azure API or the SQS and
SimpleDB interfaces, making it impossible to run these MapReduce implemen-
tations outside of Microsoft Azure and Amazon Web Services.

Another type of proposition has been to take advantage of spot instances
available in Amazon EC2 [29]. Spot instances are virtual machines that leverage
unused capacity of the Amazon EC2 infrastructure. The price of spot instances
varies over time, depending on the infrastructure load. Users bid for a maximum
price they are willing to pay for spot instances. As long as the current spot
instance price stays lower than their bid, they are charged with the current spot
price. When the spot instance price rises above their bid, their instances are
terminated. Chohan et al. [13] propose using spot instances to reduce the cost
of execution of MapReduce jobs. They study bidding strategies to optimize the
effectiveness of using spot instances. Liu [22] uses spot instances in the Cloud
MapReduce system, showing its efficiency as it handles instance terminations
more gracefully than a Hadoop cluster. On August 18, 2011, Amazon unveiled
spot instance support for Elastic MapReduce. However, no automatic bidding
strategy or extended fault-tolerance is provided: customers are responsible for
specifying how they want to use spot instances, knowing that it can lead to
job failure. We do not yet support spot instances in Resilin. However, since
Nimbus provides an implementation of spot instances, we consider implementing
this feature in the future.

Another axis of research has been focusing on optimizing the number, type
and configuration of resources allocated for a MapReduce computation. Kam-
batla et al. [18] study how to configure the number of map and reduce tasks
running in parallel on each compute node. They propose to analyze the behavior
of an application and to match it against a database of application signatures
containing optimal Hadoop configuration settings, in order to derive efficient
configuration parameters.

6 Conclusion and Future Works
In this paper, we presented Resilin, an implementation of the Elastic MapReduce
API that allows users to run MapReduce computations on resources originating
from other clouds than Amazon EC2, such as private and community clouds.
Resilin takes care of provisioning Hadoop clusters and submitting jobs, allowing
users to focus on writing their MapReduce applications rather than managing
cloud resources. Resilin uses the EC2 API to interact with IaaS clouds, making
it compatible with most open source IaaS toolkits. We evaluated our implemen-

RR n° 7767

Resilin: Elastic MapReduce for Private and Community Clouds 16

tation of Resilin using a Nimbus cloud deployed on the Grid’5000 testbed and
compared its performance with Amazon Elastic MapReduce, both for deploy-
ment and execution time. Results show that Resilin offers a level of performance
similar to Elastic MapReduce.

As future work, we plan to complete compatibility with the Amazon Elastic
MapReduce API, by providing Hive and Pig job flows. We will also evaluate
Resilin with other cloud implementations than Nimbus, such as Eucalyptus and
its Walrus cloud storage repository. We will optimize the deployment process
and analyze reasons for executions slower than Elastic MapReduce. For users
having access to multiple clouds, we will investigate how Resilin could auto-
matically select which cloud infrastructure to use, instead of relying on users to
choose where they want to provision resources. Finally, we plan to release the
Resilin software as open source in the near future.

Acknowledgment
The authors would like to thank Kate Keahey for discussions on early versions on
this work, and John Bresnahan for his help related to the Cumulus implementa-
tion. Experiments presented in this paper were carried out using the Grid’5000
experimental testbed, being developed under the INRIA ALADDIN develop-
ment action with support from CNRS, RENATER and several Universities as
well as other funding bodies (see https://www.grid5000.fr).

References
[1] Apache Hadoop. http://hadoop.apache.org/.

[2] boto: A Python interface to Amazon Web Services. http://boto.
cloudhackers.com/.

[3] Eucalyptus. http://www.eucalyptus.com/.

[4] FutureGrid. https://portal.futuregrid.org/.

[5] Great Internet Mersenne Prime Search. http://www.mersenne.org/
freesoft/.

[6] Interacting with Walrus (2.0). http://open.eucalyptus.com/wiki/
EucalyptusWalrusInteracting_v2.0.

[7] Nimbus. http://www.nimbusproject.org/.

[8] OpenNebula. http://www.opennebula.org/.

[9] paramiko. http://www.lag.net/paramiko/.

[10] Twisted. http://twistedmatrix.com/trac/.

[11] John Bresnahan, Kate Keahey, David LaBissoniere, and Tim Freeman.
Cumulus: An Open Source Storage Cloud for Science. In 2nd Workshop
on Scientific Cloud Computing, pages 25–32, 2011.

RR n° 7767

https://www.grid5000.fr
http://hadoop.apache.org/
http://boto.cloudhackers.com/
http://boto.cloudhackers.com/
http://www.eucalyptus.com/
https://portal.futuregrid.org/
http://www.mersenne.org/freesoft/
http://www.mersenne.org/freesoft/
http://open.eucalyptus.com/wiki/EucalyptusWalrusInteracting_v2.0
http://open.eucalyptus.com/wiki/EucalyptusWalrusInteracting_v2.0
http://www.nimbusproject.org/
http://www.opennebula.org/
http://www.lag.net/paramiko/
http://twistedmatrix.com/trac/

Resilin: Elastic MapReduce for Private and Community Clouds 17

[12] Michael Cardosa, Chenyu Wang, Anshuman Nangia, Abhishek Chan-
dra, and Jon Weissman. Exploring MapReduce Efficiency with Highly-
Distributed Data. In MapReduce ’11, 2011.

[13] Navraj Chohan, Claris Castillo, Mike Spreitzer, Malgorzata Steinder, Asser
Tantawi, and Chandra Krintz. See Spot Run: Using Spot Instances for
MapReduce Workflows. In 2nd USENIX Workshop on Hot Topics in Cloud
Computing, pages 1–7, 2010.

[14] Cycle Computing. Lessons learned building a 4096-core Cloud HPC Su-
percomputer for $418/hr. http://blog.cyclecomputing.com/2011/03/
cyclecloud-4096-core-cluster.html.

[15] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In 6th Symposium on Operating Systems Design
and Implementation, pages 137–149, 2004.

[16] Thilina Gunarathne, Tak-Lon Wu, Judy Qiu, and Geoffrey Fox. MapRe-
duce in the Clouds for Science. In Proceedings of the 2010 IEEE Second In-
ternational Conference on Cloud Computing Technology and Science, pages
565–572, 2010.

[17] Keith R. Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane Canon,
Shreyas Cholia, John Shalf, Harvey J. Wasserman, and Nicholas J. Wright.
Performance Analysis of High Performance Computing Applications on the
Amazon Web Services Cloud. In Proceedings of the 2010 IEEE Second In-
ternational Conference on Cloud Computing Technology and Science, pages
159–168, 2010.

[18] Karthik Kambatla, Abhinav Pathak, and Himabindu Pucha. Towards op-
timizing hadoop provisioning in the cloud. In USENIX Workshop on Hot
Topics in Cloud Computing, pages 1–5, 2009.

[19] Katarzyna Keahey, Ian Foster, Tim Freeman, and Xuehai Zhang. Virtual
Workspaces: Achieving Quality of Service and Quality of Life in the Grid.
Scientific Programming, 13(4):265–275, 2005.

[20] Katarzyna Keahey, Maurício Tsugawa, Andréa Matsunaga, and José A. B.
Fortes. Sky Computing. IEEE Internet Computing, 13(5):43–51, 2009.

[21] Kate Keahey and Tim Freeman. Science Clouds: Early Experiences in
Cloud Computing for Scientific Applications. In First Workshop on Cloud
Computing and its Applications, pages 1–5, 2008.

[22] Huan Liu. Cutting MapReduce Cost with Spot Market. In 3rd USENIX
Workshop on Hot Topics in Cloud Computing, pages 1–5, 2011.

[23] Huan Liu and Dan Orban. Cloud MapReduce: a MapReduce Implementa-
tion on top of a Cloud Operating System. In 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pages 464–474, 2011.

[24] Andréa Matsunaga, Maurício Tsugawa, and José Fortes. CloudBLAST:
Combining MapReduce and Virtualization on Distributed Resources for
Bioinformatics Applications. In 4th IEEE International Conference on e-
Science, pages 222–229, 2008.

RR n° 7767

http://blog.cyclecomputing.com/2011/03/cyclecloud-4096-core-cluster.html
http://blog.cyclecomputing.com/2011/03/cyclecloud-4096-core-cluster.html

Resilin: Elastic MapReduce for Private and Community Clouds 18

[25] Microsoft. Windows Azure Platform. http://www.microsoft.com/
windowsazure/.

[26] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil
Soman, Lamia Youseff, and Dmitrii Zagorodnov. The Eucalyptus Open-
source Cloud-computing System. In 9th IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, pages 124–131, 2009.

[27] Lavanya Ramakrishnan, Piotr T. Zbiegel, Scott Campbell, Rick Bradshaw,
Richard Shane Canon, Susan Coghlan, Iwona Sakrejda, Narayan Desai,
Tina Declerck, and Anping Liu. Magellan: Experiences from a Science
Cloud. In 2nd Workshop on Scientific Cloud Computing, pages 49–58,
2011.

[28] Michael C. Schatz. CloudBurst: highly sensitive read mapping with
MapReduce. Bioinformatics, 25(11):1363–1369, 2009.

[29] Amazon Web Services. Amazon EC2 Spot Instances. http://aws.amazon.
com/ec2/spot-instances/.

[30] Amazon Web Services. Amazon Elastic MapReduce. http://aws.amazon.
com/elasticmapreduce/.

[31] Amazon Web Services. Word Count Example. http://aws.amazon.com/
articles/2273.

[32] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The Hadoop Distributed File System. In Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), pages 1–
10, 2010.

[33] Konstantin V. Shvachko. Apache Hadoop: The Scalability Update. ;login:,
36(3):7–13, June 2011.

[34] Borja Sotomayor, Rubén S. Montero, Ignacio M. Llorente, and Ian Foster.
Virtual Infrastructure Management in Private and Hybrid Clouds. IEEE
Internet Computing, 13(5):14–22, 2009.

[35] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit
Jain, Joydeep Sarma, Raghotham Murthy, and Hao Liu. Data Warehous-
ing and Analytics Infrastructure at Facebook. In 2010 ACM SIGMOD
International Conference on Management of Data, pages 1013–1020, 2010.

RR n° 7767

http://www.microsoft.com/windowsazure/
http://www.microsoft.com/windowsazure/
http://aws.amazon.com/ec2/spot-instances/
http://aws.amazon.com/ec2/spot-instances/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/articles/2273
http://aws.amazon.com/articles/2273

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

	Introduction
	Amazon Elastic MapReduce
	Architecture and Implementation
	Multi-Cloud Job Flows

	Evaluation
	Deployment Time
	Execution Time
	Word Count
	CloudBurst

	Cloud Storage Performance
	Financial Cost

	Related Work
	Conclusion and Future Works

