
HAL Id: inria-00633200
https://hal.inria.fr/inria-00633200

Submitted on 17 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comparison on FPGA of Modular Multipliers
Suitable for Elliptic Curve Cryptography over GF(p) for

Specific p Values
Mark Hamilton, William Marnane, Arnaud Tisserand

To cite this version:
Mark Hamilton, William Marnane, Arnaud Tisserand. A Comparison on FPGA of Modular Multi-
pliers Suitable for Elliptic Curve Cryptography over GF(p) for Specific p Values. 21st International
Conference on Field Programmable Logic and Applications (FPL), Sep 2011, Chania, Greece. pp.273-
276, �10.1109/FPL.2011.55�. �inria-00633200�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49953264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00633200
https://hal.archives-ouvertes.fr


A Comparison on FPGA of Modular Multipliers Suitable for Elliptic Curve
Cryptography over GF(p) for Specific p Values

Mark Hamilton, William P. Marnane
Claude Shannon Institute for Discrete Mathematics,

Coding and Cryptography
Department of Electrical & Electronic Engineering

University College Cork, Ireland
{markh,liam}@eleceng.ucc.ie

Arnaud Tisserand
IRISA, CNRS, INRIA,

Centre Rennes - Bretagne Atlantique,
Université Rennes 1,

6 rue Kérampont, 22305 Lannion, FRANCE
arnaud.tisserand@irisa.fr

Abstract—In this paper we provide a comparison of different
modular multipliers suitable for use in an elliptic curve
processor, when working with a Mersenne prime modulus.
Mersenne primes allow for the use of fast modular reduction
techniques. Several multipliers are presented that can be
implemented solely in slice logic. A design that makes use of
the DSP48E blocks on Virtex 5 FPGAs is also described. The
different multipliers are compared for speed, area and power
consumption when implemented on a Virtex 5 FPGA.

Keywords: FPGA, Hiasat Multiplier, Elliptic Curve Proces-
sor, Mersenne prime, Modular Multiplication.

I. INTRODUCTION

The modular multiplier in an elliptic curve processor
is generally the component that determines the critical
path of the design. A very basic method for computing
a single modular multiplication is to perform a full width
multiplication and then reduce the result mod p. The reduc-
tion step is computationally intensive as it requires more
or less the division of two numbers. During a modular
exponentiation the reduction would have to be performed
after each multiplication, this method would be too slow
to be used for Elliptic Curve Cryptography (ECC) where
the modulus can be several hundred bits in length. The
Montgomery algorithm [1] is a much more efficient method
as it does not require the computationally intensive trial
division operations.

An alternative to the Montgomery method is to choose
a modulus of a special form that support fast modular
reduction, such as 2n − 1, 2n or 2n + 1. For ECC the most
interesting form is 2n − 1 where n is a prime number. This
form of number is known as a Mersenne prime and there
are two such primes that are currently useful for ECC. In
[2], NIST specify a curve over GF(p) with p = 2521 − 1
as one of the standard curves to be used for ECC. In
[3], the authors introduce a method for performing ECC
using a curve defined over the extension field GF(p2) with
p = 2127 − 1. There are many ways of implementing a
multiplier modulo a Mersenne prime. Several designs were
implemented on a Virtex xc5vlx50 and an xc5lx220 FPGA

and compared. The xc5vlx50 is the smallest Virtex 5 FPGA
that Xilinx produces.

II. MULTIPLIERS FOR MODULO 2n − 1 MULTIPLICATION

In 1992, Hiasat [4] proposed a design that takes advantage
of the fast modular reduction that can be performed when
working with moduli of the form 2n ± 1. In the case of
2n − 1 the multiplication can be performed as follows.

If,

Z = XY =
2n−1∑
i=0

zi2i (1)

the modular reduction of Z can be described as,

|Z|2n−1 =

∣∣∣∣∣
n−1∑
i=0

zi2i + 2n
2n−1∑
i=n

zi2i−n

∣∣∣∣∣
2n−1

(2)

where,

|2n|2n−1 = |1|2n−1 (3)

This type of multiplier can be implemented through the
use of a full width multiplier followed by correction circuitry
that performs the modular reduction step. Methods for
performing the n × n bit multiplication are discussed later
in the section. The correction circuitry consists of simple
combinational logic. The setup is shown in Fig. 1.

n
Circuitry

xn n
bits |Z|2 −1

n

Y n

nX

2n

Z Correction

Figure 1. Hiasat Multiplier

We have seen that the modular reduction step above can be
performed efficiently in hardware. Next we discuss methods
for efficiently implementing the n × n bit multiplication
shown in Fig. 1.

2011 21st International Conference on Field Programmable Logic and Applications

978-0-7695-4529-5/11 $26.00 © 2011 IEEE

DOI 10.1109/FPL.2011.55

273



A. Serial Multiplier

The simplest form of multiplier is one which implements
an n-bit multiplication as the sum of n partial products,
Fig. 2. The multiplier, Y , is fed into a shift register and the
least significant bit (LSB) is scanned. If the current bit is
a 1, the multiplicand, X , is added to an accumulator and
the multiplier is shifted to the right by one bit position. If
a 0 bit is detected, nothing is added to the accumulator and
the multiplier is shifted to the right by one bit position, this
is represented by the multiplexer in Fig. 2. This process
continues until every bit of the multiplier has been scanned.
This method is known as the schoolbook method for mul-
tiplication. This form of multiplier requires a single n-bit
adder and performs the multiplication in n clock cycles.
Fig. 2 shows how the output of the adder feeds into a shift
register that holds the accumulator value. Y is stored in the
LSBs of the accumulator and shifted right. After n clock
cycles Y is completely shifted out of the accumulator and
only the result of the multiplication, Z, will remain. Z can
then be fed into some correction circuitry to obtain the mod
2n − 1 result, as shown in Fig. 1. The critical path of the
design is the n-bit adder.

Z

1
0

n
2
n

sh
if

t 
Z

sh
if

t 
Y

X

n

n

Y

n n

1

2n

Figure 2. Serial Multiplier

B. Booth Multiplier

In 1951 Booth [5] introduced a multiplication algorithm
which reduced the number of additions of partial products to
n/2, at the cost of some extra hardware. A modified version
of Booth’s algorithm was introduced in [6]. Both algorithms
work by precomputing partial products multiples from a
certain set. In the case of the modified Booth algorithm the
multiples {−2X,−X, 0, X,+2X} are precomputed. Every
multiple in this set can be calculated by a bitwise shift, an
inversion in 2’s complement or both. For the modified Booth
algorithm overlapping groups of 3 bits of the multiplicand
must be scanned at a time. For a detailed description of
Booth recoding schemes see [7]. The circuit is shown in
Fig. 3. The critical path of this design is through the adder
and the circuitry used for the precomputations.

Z

2
X

  
 X

  
 0

  
 −

X
  

−
2

X

p
re

co
m

p
u

te
 m

u
lt

ip
le

s

nX

n

sh
if

t 
Z

sh
if

t 
Y

3

Y n

2
n

+
3

2n

n

Figure 3. Booth2 Multiplier

III. MONTGOMERY MULTIPLIER

In 1985 Montgomery [1] introduced an algorithm to
efficiently compute the modular product of two numbers.
The algorithm is very efficient when used for modular ex-
ponentiation as it does not require computationally intensive
trial division operations. The Montgomery multiplier is one
of the most widely used types of multipliers in elliptic curve
processors. This is due to its relatively short critical path and
its ability to be used with a wide range of different moduli.

Montgomery’s method first requires the numbers to be
converted to a N -residue form mod p. The result of a Mont-
gomery multiplication will also be in N -residue form. To
obtain the correct result the answer must be converted back
to standard form. The main operation performed in ECC is
scalar multiplication. From [8] we know that for this case,
the conditional subtraction at the end of the Montgomery
Multiplication algorithm is not required. Algorithm 1 shows
how the Montgomery Multiplication is performed without a
conditional subtraction.
Algorithm 1: Montgomery Multiplication

Input: X ′ =
∑k

i=0 X ′i2
i, Y ′ =

∑k
i=0 Y ′i 2i, p

Output: Z ′ = X · Y · 2−k+2 (mod p)
Z ′ = 0, yk+1 = 0;1

for i=1 to k + 2 do2

qi = Z ′i−1 + yiX
′ (mod 2)3

zi = (Z ′i−1 + qin + yiX
′)/24

end5

A circuit for performing a Montgomery multiplication is
shown in Fig. 4. The critical path of this design is through
the two adders.

k+3

sh
if

t

i−1Z
k+3

k+3X

Y k+3

k+3

k+3

k+3

Z i

n

Figure 4. Montgomery Multiplier

274



IV. MULTIPLIER WITH BRAM AND DSP48ES

All of the previous multipliers that have been discussed
can be implemented entirely in slice logic on an FPGA.
However, FPGAs also contain large amounts of block RAM
and DSP blocks. Incorporating these elements into the de-
sign of the multiplier can give an alternative for performing
large multiplications.

In a Xilinx FPGA, the DSP48E and BRAM based design
uses a number of DSP48E blocks to calculate the partial
products. The partial products are then stored in BRAM. An
adder can read from the BRAM and add the partial products.
To decrease the number of clock cycles required to perform
a multiplication, the number of DSP48E blocks used can be
increased. An example of the design of the multiplier using
four DSP48E blocks is shown in Fig. 5. The design shown
consists of four DSP48E blocks, four blocks of BRAM and
one adder. If the number of DSP48E blocks and BRAM is
increased, the general setup of the design remains the same.

d
ec

o
m

p
o

se
 X

 &
 Y

d_inA

d_inB

BRAM

d_outA

d_outB

d_inA

d_inB

BRAM

d_outA

d_outB

d_inA

d_inB

BRAM

d_outA

d_outB

d_inA

d_inB

BRAM

d_outA

d_outB

partial

product

select

controller

RAM_select

recursive_level

enable done

X

Y

Z

Figure 5. DSP48E and BRAM based Multiplier

Each DSP48E block on a Xilinx Virtex 5 FPGA is capable
of performing a full 25×18 bit multiplication, giving a 48 bit
result. However in this design we only require the DSP48E
blocks to perform 18×18 bit multiplications. To take advan-
tage of the high clock frequency of these DSP48E blocks,
a large multiplication must be decomposed recursively until
the size of the partial product multiplications is 18×18 bits
or less. The maximum frequency of the design will not be
limited by the DSP48E blocks but by the critical path of
the adder used to sum the partial products. It is possible to
pipeline the adder but for large bit lengths, achieving a clock
frequency close to that of the DSP blocks is not possible.

The simplest way to decompose the multiplication x× y,
is as follows. Let x and y be represented as a binary string
of length t. To split x and y into two equal parts let n = t/2,
then,

x = xH2n + xL

y = yH2n + yL

x× y = (xH2n + xL)(yH2n + yL)
= za22n + zb2n + zc (4)

where, za = xHyH , zb = xHyL + xLyH and zc = xLyL.
This method can be applied recursively to the partial prod-
ucts until the calculation of za, zb and zc consist of 18× 18
bit, or less, multiplications. For each decomposition there are
then four partial products that have to be calculated using the
DSP48E blocks, xLyL, xLyH , xHyL and xHyH . These four
partial products must then be summed according to Eqn. (4).
By using the Karatsuba method for decomposition [9], the
number of multiplications required to calculate the partial
products can be reduced from four to three. However this
increases the number of additions that need to be performed.
Since the critical path in the design is through the adder, the
previous method for decomposition, Eqn. (4), is used.

A. Multiplier Operation

The multiplier design based on DSPE blocks and BRAM
is shown in Fig. 5. The inputs X and Y are decomposed
by simply routing the correct portions of the array of bits
to the multipliers. A multiplexer routes the decomposed X
and Y signals into the DSP blocks, to be multiplied. The
controller determines which partial products are routed to
the multipliers at each clock cycle through the use of the
partial product select line. For every DSP48 block in the
design, there is a dual port block RAM and for every four
DSP48E blocks there is a single adder.

A generator was written in C++ to generate the VHDL
code for the multiplier. This was necessary due to the
complexity of decomposing the multiplicands and also the
multiplexer that routes inputs to the DSP48E blocks. The
generator is designed to take as inputs the bit length of the
multiplication and number of DSP48E blocks to be used.
From these values the generator produces all the VHDL files
necessary to implement the multiplier.

V. IMPLEMENTATION

In order to thoroughly compare the different multiplier
designs, the circuits were implemented on a Virtex 5
FPGA and the power consumption measured. The SASEBO-
GII evaluation board [10] is specifically designed for side
channel analysis experiments on FPGAs, consequently the
board is also suitable for accurately measuring the power
consumption of circuits on an FPGA.

The board allows for access to the V ccint pin of the
FPGA. The V ccint pin of the FPGA is a 1V power line
used only to power the core of the chip. This is useful
for measuring the power consumption of a circuit on an
FPGA as power to the IO blocks are supplied separately.
The resulting value for power consumption is that only of
the circuit implemented on the FPGA. The V ccint pin of
the FPGA was connected to a very accurate DC power
analyser. The dynamic power consumption of each circuit
was measured and averaged over the period of 30 minutes.
Each circuit processed random data sent from the control

275



Multiplier Bit Length Area(slices) Max Freq(MHz) Clk Cycles Throughput
(Mbits/S)

Power Consumption
dynamic (mW)@24MHz static (mW)

Montgomery 127 264 161 129 159 3.45 266.97
Serial 127 352 186 128 185 1.52 271.17

Booth2 127 353 167 65 327 6.05 266.78
DSP BRAM (4DSPs) 127 1139 110 31 451 20.31 295.75

Montgomery 521 957 54 523 54 17.1 276.18
Serial 521 1280 50 522 50 2.84 277.59

Booth2 521 1601 84 525 83 35.59 288.98
*DSP BRAM (4DSPs) 521 6250 52 353 77 -

Table I
POWER CONSUMPTION RESULTS

FPGA during this time. The static power consumption was
also measured while the circuit was not processing any data.

VI. RESULTS

Shown in Table IV-A are post place and route and power
consumption measurment results for a Virtex xc5vlx50-
1ff324. The clock speed for all power measurements is
24MHz. The results for 521-bit DSP BRAM circuit, denoted
by *, are taken from a xc5vlx220 as this circuit contains too
much block RAM to fit on the smaller Virtex xc5vlx50.
The area results for the DSP BRAM circuits do not take
into account the BRAM or the DSP48E blocks that are also
present in the circuit. The best results in each category are
highlighted in bold.

In order to properly route the 521 bit Booth2 circuit, a
pipelined design was used. This allowed the design to be
routed onto the chip without exceeding the length of the
carry chain on the FPGA.

The results show that the Montgomery, Booth2 and Serial
multipliers are all closely matched in the power they con-
sume. The circuits that make use of block RAM and DSP
blocks are capable of performing the multiplication much
faster than the other circuits. However the area used by these
multipliers is much higher than the circuits that implement
the multiplication in a serial way. The standard deviation of
the power consumption of the Booth2 multiplier was lowest
for a bit length of 127 bits. This low standard deviation
in power consumption would be a desirable property for
high security applications as it should reduce the risk of the
circuit being susceptible to power analysis attacks such as
those described in [11] and [12]. For a comparison of ECC
algorithms resistant to Simple Power Analysis attacks see
[13].

VII. CONCLUSION

We have shown a comparison of the performance of
various different multipliers on a Virtex 5 FPGA. The
multipliers were compared for area, throughput and power
consumption. The results have shown that there are many
ways of implementing a modular multiplier on an FPGA,
each of which has their own advantages. The Montgomery
multiplier design has the advantage of being able to perform
modular multiplications where the modulus is of a general
form and also at very low area.

When working with a modulus of special form such as
2n−1, the most efficient design is a Booth2 multiplier. The

Booth2 design has a low area similar to a serial multiplier
but a much higher throughput due to the recoding used.

In certain applications such as handling large amounts of
traffic on a network, high speed encryption is more desirable
than low area or low power design. In this situation making
use of the BRAM and DSP48E resources on the FPGA may
be a desirable way of implementing the multiplier in an ECC
unit. Implementing the multiplier in this way also keeps the
critical path of the design relatively short. Performing the
full n× n-bit multiplication and reduction in a single clock
cycle with a fully parallel multiplier would give a very high
throughput but also a long critical path. Such a design might
hinder operations elsewhere on the chip if only one clock is
present.

ACKNOWLEDGMENT

This material is based upon works supported by the Science Foundation
Ireland under Grant No. 06/MI/006 and the Mobility Grant 2010 from the
Collège Doctoral International of the Université Européenne de Bretagne.

REFERENCES
[1] P. Montgomery, “Modular multiplication without trial division,” in

Mathematics of Computation, vol. 44, 1985, pp. 519–521.
[2] Digital Signature Standard (FIPS–186-3), NIST, June 2009.
[3] S. D. Galbraith, X. Lin, and M. Scott, “Endomorphisms for faster el-

liptic curve cryptography on a large class of curves,” in EUROCRYPT
2009, LNCS 5479, 2009, pp. 518–535.

[4] A. Hiasat, “New Memoryless, mod(2n ± 1) Residue Multiplier,” in
Electronics Letters, vol. 28, 1992.

[5] A. D. Booth, “A Signed Binary Multiplication Technique.” Quarterly
Journal of Mechanics and Applied Mathematics,, vol. 4, no. 2, pp.
236–240, 1951.

[6] O. MacSorley, “High-speed arithmetic in binary computers,” Proceed-
ings of the IRE, vol. 49, no. 1, pp. 67–91, jan. 1961.

[7] G. W. Bewick, “Fast multiplication: Algorithms and implementation,”
Ph.D. dissertation, Electrical Engineering, Stanford University, 1994.

[8] C. D. Walter, “Montgomery exponentiation needs no final subtrac-
tions,” Electronic Letters, vol. 35, no. 21, pp. 1831–1832, October
1999.

[9] A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers
by automatic computers,” Proceedings of the USSR Academy of
Sciences, vol. 145, pp. 293–294, 1962.

[10] “Side-channel attack standard evaluation board, SASEBO-GII,” http:
//www.rcis.aist.go.jp/special/SASEBO/.

[11] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with
a leakage model,” in CHES 2004, ser. LNCS, vol. 3156, 2004, pp.
16–29.

[12] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology — CRYPTO ’99, ser. LNCS, vol. 1666, 1999,
pp. 388–397.

[13] A. Byrne, N. Meloni, A. Tisserand, E. M. Popovici, and W. P.
Marnane, “Comparison of simple power analysis attack resistant algo-
rithms for an elliptic curve cryptosystem,” in Journal of Computers,
vol. 2, 2007, pp. 52–62.

276


