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ABSTRACT

Seismic wave propagation in porous rocks that are saturated
with a liquid exhibits significant dispersion and attenuation
due to fluid flow at the pore scale, so-called squirt flow. This
phenomenon takes place in compliant flat pores such as micro-
cracks and grain contacts that are connected to stiffer isometric
pores. Accurate quantitative description is crucial for inverting
rock and fluid properties from seismic attributes such as attenu-
ation. Up to now, many analytical models for squirt flow were
proposed based on simplified geometries of the pore space.
These models were either not compared with a numerical
solution or showed poor accuracy. We have developed a new
analytical model for squirt flow, which is validated against a

3D numerical solution for a simple pore geometry that has been
classically used to explain squirt flow; that is why we refer to it
as classical geometry. The pore space is represented by a flat
cylindrical (penny-shaped) pore whose curved edge is fully con-
nected to a toroidal (stiff) pore. Compared with correct numeri-
cal solutions, our analytical model provides very accurate
predictions for the attenuation and dispersion across the whole
frequency range. This includes correct low- and high-frequency
limits of the stiffness modulus, the characteristic frequency,
and the shape of the dispersion and attenuation curves. In a
companion paper (part 2), we extend our analytical model to
more complex pore geometries. We provide as supplemental in-
formation MATLAB and symbolic Maple routines to reproduce
our main results.

INTRODUCTION

Wave propagation in fluid-saturated porous rocks exhibits energy
loss, or attenuation, and velocity dispersion. Most of the attenuation
and dispersion of seismic waves in such rocks usually are due to
fluid flow taking place at various scales. At the pore scale, this en-
ergy loss is referred to as squirt flow (Mavko and Nur, 1975; Mavko
and Jizba, 1991; Dvorkin et al., 1995; Pride et al., 2004; Gurevich
et al., 2010; Müller et al., 2010; Pimienta et al., 2015a, 2015b).
Squirt flow occurs between interconnected pores due to different
shapes or different orientations (Mavko et al., 2009; Müller et al.,
2010). Many analytical models describing squirt flow have been
suggested. These models explore squirt flow between intercon-
nected compliant cracks (O’Connell and Budiansky, 1977; Palmer
and Traviolia, 1980), between compliant cracks and stiff pores

(Murphy et al., 1986; Mukerji and Mavko, 1994; Dvorkin et al.,
1995; Pride et al., 2004; Gurevich et al., 2010; Collet and Gurevich,
2016), and between cracks and spheroidal pores (Xu, 1998; Chap-
man et al., 2002; Chapman, 2003; Jakobsen and Chapman, 2009).
In real rocks, examples of compliant pores, which here are referred
to as cracks, are microcracks and grain contacts. An overview of
early theoretical studies on squirt flow is given by Jones (1986).
Several experimental studies confirm the importance of squirt flow
at different frequency ranges, including sesimic frequencies (Mayr
and Burkhardt, 2006; Adelinet et al., 2010; Mikhaltsevitch et al.,
2015; Pimienta et al., 2015a, 2015b; Subramaniyan et al., 2015;
Borgomano et al., 2019; Chapman et al., 2019).
Numerically, squirt flow can be modeled by solving a set of equa-

tions describing coupled fluid-solid deformation (Zhang et al.,
2010; Zhang and Toksöz, 2012; Quintal et al., 2016, 2019; Das
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et al., 2019; Alkhimenkov et al., 2020a, 2020b; Lissa et al., 2020,
2021). Quintal et al. (2016, 2019) propose a simplified numerical
solution based on the linearized quasistatic Navier-Stokes equa-
tion. Alkhimenkov et al. (2020a) benchmark this numerical solution
using a published analytical model (Collet and Gurevich, 2016)
under a specific scenario, while identifying and quantifying the
causes of inaccuracies due to the assumptions used in the analytical
model for scenarios corresponding to the described pore geometry.
Guided by the numerical simulations presented in Alkhimenkov
et al. (2020a), we develop an analytical model for squirt flow, which
allows us to accurately calculate the corresponding seismic disper-
sion and attenuation. This model does not have any fitting param-
eters and is in a very good agreement with 3D numerical solutions
across a wide frequency band. This paper (part 1) is focused on
describing the analytical model for the classical geometry used in
many previous studies: a penny-shaped crack surrounded by a toroi-
dal pore (Murphy et al., 1986; Gurevich et al., 2010; Collet and
Gurevich, 2016). In a companion paper (part 2), we will propose
an analytical model for more complex geometries and investigate
in further detail the characteristic frequency of attenuation due to
squirt flow. We provide MATLAB and symbolic Maple routines
to allow the reader to reproduce our main results and/or to obtain
results for other material properties and pore sizes. The routines ar-
chive (v1.0) is available from a permanent DOI repository (Zenodo)
(Alkhimenkov and Quintal, 2021).

Importance of validating analytical models against
numerical simulations

Rock physics relies on models that quantitatively describe certain
physical concepts with predictive power. For squirt flow, all the
models presented in the literature quantitatively describe the disper-
sion and attenuation based on many assumptions. Only recently,
computational advances made it possible to directly compare ana-
lytical models against 3D numerical solutions. As a result, it has
been shown that certain analytical models are not accurate because
some of their assumptions are not fulfilled even for idealized geom-
etries (Alkhimenkov et al., 2020a).
We propose a simple and logical workflow, which will make it

possible to (1) benchmark published analytical models, and (2) en-
sure the quality of future models (Figure 1). There are five key steps.
For a given physical concept, an analytical model for a simple
geometry is considered (step 1). The solution also can be calculated
numerically for the same simple geometry (step 2). The results p
redicted by the analytical model are benchmarked through the

comparison with the numerical solution (step 3). If the analytical
model can adequately describe the physics for a simple geometry,
it then can be extrapolated for real rocks (step 4). This can be done
by finding key parameters of the analytical models. If the analytical
model for a simple geometry cannot describe the key features of the
exact numerical solution for the same simple geometry, then this
model should not be applied to real rocks.
Up to now, “validation” of analytical models involved only steps

1 and 4. However, step 4 does not appropriately validate the ana-
lytical model because of obvious differences in corresponding
geometries. Furthermore, other physical mechanisms, which were
not accounted for in the analytical model, could have an important
effect on the laboratory results. Indeed, validation against laboratory
results usually requires several fitting parameters. Therefore, vali-
dating analytical models against inherently accurate 3D numerical
simulations based on exact same model geometry and same physi-
cal mechanisms is of primary importance. Using a numerical sol-
ution helps to better understand the involved physical mechanism
by evaluating the effect of key parameters as well as to improve the
analytical model by testing assumptions.

Seismic attenuation and dispersion due to squirt flow

One measure of seismic P-wave attenuation is the so-called in-
verse quality factor 1∕QðωÞ ¼ ImðMðωÞÞ∕ReðMðωÞÞ (O’Connell
and Budiansky, 1978), where ω ¼ 2πf is the angular frequency
(f is the frequency) and M ¼ K þ 4∕3G is the complex-valued
P-wave modulus, where K and G are the bulk and shear moduli,
respectively. Throughout the paper, by attenuation we imply the in-
verse quality factor.
We recall a brief overview of the physics based on the previous

analytical studies (Mavko and Jizba, 1991) with some additional in-
formation obtained from numerical simulations (Quintal et al., 2019;
Alkhimenkov et al., 2020a, 2020b; Lissa et al., 2020). In the physics
of squirt flow, the cause of energy dissipation is fluid pressure dif-
fusion at the pore scale. An idealized rock model can be parameter-
ized by three components: solid elastic matrix, isometric pores, and
thin compliant cracks (Figure 2). Pores and cracks are interconnected
and saturated with a fluid. A passing seismic wave deforms the com-
pliant cracks more than the stiff pores, which causes fluid pressure
gradients in the cracks. This results in fluid pressure diffusion, some-
times referred to as local fluid flow or squirt flow, which strongly
depends on the frequency of the propagating wave.
At low frequencies, the fluid pressure becomes uniform through-

out the pore space because there is enough time for it to equilibrate.
This is called relaxed state. The effective elastic properties can be
calculated by using Gassmann’s equations (Gassmann, 1951) given
that the elastic moduli of the dry frame are known. At low frequen-
cies, 1∕Q is proportional to ≈ω1 according to numerical simulations
for simple geometries (Alkhimenkov et al., 2020a). At intermediate
frequencies, the fluid pressure gradients are at their maximum,
which correspond to the attenuation peak. The frequency at which
the attenuation is at its maximum is called the characteristic fre-
quency ωc. At high frequencies, there is no time for fluid to flow
or fluid pressure to diffuse between cracks and pores; cracks behave
as hydraulically isolated from pores. This is called unrelaxed state.
The slope of the high-frequency asymptote of the attenuation curve
depends on the pore geometry (Alkhimenkov et al., 2020a, 2020b).
If the pore space is represented by a penny-shaped crack connected
to a toroidal pore, then 1∕Q at high frequencies is proportional

Figure 1. Workflow to (1) benchmark published analytical models
and (2) ensure the quality of future models.
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to ≈ω−1∕2. An evaluation of the high-frequency asymptote of
1∕Q for more complex geometries is presented in part 2 of the
present study.

THE ANALYTICAL MODEL

An analytical model for seismic attenuation and dispersion caused
by squirt flow should, at least, accurately determine three key fea-
tures: the low- and high-frequency limits for the elastic moduli and
the characteristic frequency. To calculate the low-frequency limit, one
needs the correct dry moduli of the rock and then must use Gass-
mann’s equations to obtain the moduli in the case of saturation
with a fluid. To calculate the high-frequency limit, one needs the
dry moduli of the rock where the crack normal compliance is zero
and again must use Gassmann’s equations to obtain the moduli of the
saturated rock. The characteristic frequency is directly related to the
aspect ratio of compliant cracks and can be reasonably estimated. If
these three parameters are determined, the dispersion and attenuation
curves can be plotted using, for example, a standard linear solid
(SLS) rheology. The disadvantage of the SLS model is that the re-
sulting 1∕Q is a symmetric curve if plotted in a bilogarithmic scale,
which is usually not the case for attenuation caused by squirt flow
(Alkhimenkov et al., 2020a, 2020b; Lissa et al., 2020).
The analytical model that we present here features the key com-

ponents of previous analytical models for squirt flow (e.g., Dvorkin
and Nur, 1993; Mukerji and Mavko, 1994; Dvorkin et al., 1995;
Gurevich et al., 2010; Collet and Gurevich, 2016; Glubokovskikh
et al., 2016) but with several key modifications, which make it ac-
curate. The main building block of our analytical model is the so-
called modified frame, which was originally introduced by Mavko
and Jizba (1991). The modified frame represents a rock configura-
tion where cracks are saturated with a fluid, whereas the isometric
pores are dry. The development of our analytical model is shown in
Figure 3. First, we calculate the moduli of the dry rock for two con-
figurations: the dry rock containing the torus connected to the crack,
and the dry rock containing the torus connected to the crack with
zero normal compliance (step 1, Figure 3). Then, we calculate the
relaxation of the crack stiffness due to fluid pressure diffusion and
obtain accurate values of the frequency-depen-
dent moduli of the modified frame (step 2, Fig-
ure 3). Finally, we use Gassmann’s equations to
obtain the frequency-dependent moduli of the
fully saturated medium (step 3, Figure 3).

General expressions

Let us consider the classical model for squirt
flow presented in Figure 4, assuming a represen-
tative volume element (RVE) (for clarity, later in
this paper, we will show slices of half of the mod-
els as shown in Figure 4b). The stiff isometric
pore is represented by a torus, and the penny-
shaped crack is represented by a flat cylinder.
The embedding medium consists of an elastic
grain material described by a compliance tensor
Sgijkl. The mth inclusion (interconnected isomet-
ric pore and crack) is represented by a compli-
ance contribution tensor H with components
Hm

ijkl. The relation for the overall strain ϵij can
be written as

ϵij ¼ Sgijklσkl þ Δϵij ¼ Sgijklσkl þ
X
m

Hm
ijklσkl; (1)

where σkl represents the remotely applied stresses and Δϵij repre-
sents the extra strain due to the presence of the inclusion described
by the H tensor. The components of the effective compliance tensor
of a 3D medium with inclusion(s) are

S�ijkl ¼ Sgijkl þ
X
m

Hm
ijkl: (2)

The expression 2 is exact and valid for a finite and infinitely extended
RVE (Nemat-Nasser and Hori, 2013). The main assumption is that
the grain material and inclusions are elastic and homogeneous. The
compliance tensors can be complex functions of frequency (Hashin,
1970). In three dimensions, the H tensors can be calculated exactly
for ellipsoids by using the Eshelby result; in two dimensions, exact
results are known for several geometries (Kachanov and Sevostianov,
2018). In our particular case, in equations 1 and 2,m ¼ 1 because we

Figure 3. The development of the present analytical model.

Figure 2. Raw synchrotron radiation X-ray tomographic micros-
copy image of dry Berea sandstone. One slice of the total data cube
with 10243 voxels (from Madonna et al., 2013).
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have only one inclusion. For our pore space geometry (Figure 4), no
closed-form expression of this H tensor exist; thus, we derive an
approximation.

General expressions for our geometry

The key components of our model are illustrated in Figure 5. The
effective compliance tensor with components S�ijkl for the dry model
represented in Figure 5c can be written similarly to expression 2 (in
Voigt notation),

½S�mn�dry ¼ Sgmn þ ½Hmn�dry: (3)

The effective frequency-dependent compliance tensor with compo-
nents S�ijklðωÞ for the fluid-saturated model is (Figure 5e)

½S�mnðωÞ�sat ¼ Sgmn þ ½HmnðωÞ�sat: (4)

The corresponding effective stiffness matrix for the saturated model is

½C�
mnðωÞ�sat ¼ ½S�mnðωÞ�−1sat : (5)

The compliance matrix of an elastic grain material Sgmn is frequency
independent. We also introduce the compliance contribution matrix
of the dry torus ½Htp

mn�dry and the compliance contribution matrix
½HmnðωÞ�MF of an inclusion represented by a dry torus connected
to a crack saturated with a fluid (this compliance contribution can
be used to obtain the moduli of the modified frame). By using expres-

sions 35, several configurations of the model (illustrated in Figure 5)
can be evaluated. For example, the effective compliance tensor for the
dry model containing only the torus (Figure 5b) ½S�mn�tp is

½S�mn�tp ¼ Sgmn þ ½Htp
mn�dry: (6)

The effective compliance matrix for the modified frame model
(Figure 5d) is

½S�mnðωÞ�MF ¼ Sgmn þ ½HmnðωÞ�MF: (7)

Finally, the effective compliance matrix for the fluid-saturated model
½S�mnðωÞ�sat can be calculated by applying anisotropic Gassmann’s
equations to expression 7 for each frequency. The result will be equiv-
alent to that obtained via expression 4.

Some remarks

To calculate the resulting effective moduli, one needs to find the
frequency-dependent compliance contribution matrix ½HmnðωÞ�sat of
a saturated pore space represented by a torus connected to a flat cyl-
inder (see expression 4). Equivalently, instead of finding ½HmnðωÞ�sat
directly, we can find ½S�mnðωÞ�MF and then obtain ½HmnðωÞ�sat. Let us
assume that a torus and a flat cylinder are disconnected and far from
each other. We can represent the H tensor in the form

½Hmn�dry ¼ ½Htp
mn�dry þ ½Hcr

mn�dry; (8)

where ½Htp
mn�dry and ½Hcr

mn�dry represent the compliance contribution
matrices of the dry torus and the dry crack, respectively. The compli-
ance contribution matrix for the modified frame (dry torus and satu-
rated crack with a frequency-dependent fluid bulk modulus) is

½HmnðωÞ�MF ¼ ½Htp
mn�dry þ ½Hcr

mnðωÞ�sat; (9)

where the compliance contribution matrix of the torus ½Htp
mn�dry is fre-

quency independent but the compliance contribution matrix of the
crack ½Hcr

mnðωÞ�sat is frequency dependent. However, the expressions
8 and 9 are accurate only when the torus and the crack are not con-
nected and far enough from each other that there are no elastic inter-
actions. Because we are working with a model where the torus and the
crack are interconnected, the expressions 8 and 9 are not valid as illus-
trated by Alkhimenkov et al. (2020a). The compliance contribution
matrix ½HmnðωÞ�MF should be calculated differently, such as in the
procedure that we describe next.

Calculation of the model compliance

The overall dispersion and attenuation magni-
tudes of the modified frame (and hence, of
the fully saturated model) are controlled by the
elastic bounds: the low-frequency limit — the
dry moduli of the model containing the intercon-
nected torus and crack (Figure 5c), and the high-
frequency limit — the dry moduli of the model
containing the torus, whereas the crack normal
compliance is zero (Figure 5b). The correspond-
ing values of the dispersion are illustrated in
Figure 6. These low- and high-frequency values
can be taken from different sources:

Figure 5. Cartoon illustrating the different model configurations used to obtain the cor-
responding compliance matrices.

Figure 4. (a) Sketch illustrating the big pore model: a flat cylinder
representing a crack whose edge is connected to a torus representing
a stiff isometric pore. (b) Avertical slice across half of the model. The
term r is the minor radius of the torus (dMn ¼ 2r is the minor diam-
eter of the torus), and dMj ¼ rþ b is the major radius of the torus.
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1) These values can be estimated from the laboratory measure-
ments by measuring the low- and high-pressure rock moduli;
this procedure is described in many studies (e.g., Gurevich
et al., 2010). We do not examine nor use this approach here.

2) The second option is to calculate the low- and high-frequency
moduli of a dry model numerically.

3) The third option is to calculate the low- and high-frequency
moduli of a dry model analytically.

If the analytical methods are properly used, then the resulting
moduli are equivalent to the ones obtained numerically. In this
study, we adopt the dry moduli calculated numerically and we pro-
vide the workflow to calculate the dry moduli analytically; the
numerical and analytical approaches provide us identical results.
One of the most important outcomes of this study is the adequate

calculation of the effective elastic moduli of the interconnected pore
space using an analytical approach. The pore space consists of two
interconnected cavities: the stiff isometric pore (torus) and the com-
pliant crack (flat cylinder). The correct values for the elastic moduli
are obtained numerically for several configurations and shown in
Figure 6. Details on the numerical solutions and applied boundary
conditions are given in Appendix A. These correct values are used
to benchmark the model compliance obtained analytically. The ana-
lytical expressions are provided next.

Analytical expressions

To derive the compliance contribution matrix of the interconnected
torus and crack ½Hmn�dry, we use the conventional approach used in
micromechanics to construct the property contribution matrix of com-
plex geometries (e.g., intersecting cracks and inclusions of “irregular”
shapes; see chapters 4.3 and 4.4 in Kachanov and Sevostianov, 2018).
Several different techniques exist, which can be used separately or in
combinations. Here, we adopt the following method: by using the re-
sults of 3D numerical simulations for the interconnected torus and
crack, we find the structure of the compliance contribution matrix,
its principal directions, and the key geometric characteristics of inclu-
sions which control the compliance contribution matrix. Then, we
construct the compliance contribution matrix of the interconnected
torus and crack ½Hmn�dry by using the known property contribution
tensors for simple geometries (in our case, the crack, the torus, and
spheroid). It turns out that all components of the ½Hmn�dry are con-
trolled by the torus except for ½H33�dry, ½H44�dry,
and ½H55�dry. This is simple to understand because
the compliance contribution matrix of the crack is
described by the two components only (Schoen-
berg and Douma, 1988; Schoenberg and Helbig,
1997); thus, the only nonzero components are
½Hcr

33�dry, ½Hcr
44�dry ≡ ½Hcr

55�dry. However, the crack
is connected to the torus, therefore, the theory
for cracks embedded into a homogeneous material
by Schoenberg and Douma (1988) and Schoen-
berg and Helbig (1997) cannot be used here to
calculate ½Hcr

33�dry, ½Hcr
44�dry, and ½Hcr

55�dry. Instead,
from the numerical experiments we find that the
½H33�dry, ½H44�dry, and ½H55�dry components of
the compliance contribution matrix of the intercon-
nected torus and crack are the same as for a sphe-
roid ½HEcr

mn�dry. From now on, we refer to this
spheroid as the extended crack. The shape of

the extended crack is such that it works as an envelope for the torus
as shown in Figure 7. Thus, we use ½HEcr

33 �dry, ½HEcr
44 �dry, and ½HEcr

55 �dry
components to the contribution matrix of the interconnected torus and
crack ½Hmn�dry. This approach provide us with a very good approxi-
mation of the compliance contribution matrix for this particular geom-
etry — the interconnected torus and crack. A detailed workflow is
given next (see also Figure 7):

1) The compliance contribution matrix of the dry torus ½Htp
mn�dry

should be calculated as

½Htp
mn�dry¼

2
666666664

½Htp
11�dry ½Htp

12�dry ½Htp
13�dry 0 0 0

½Htp
21�dry ½Htp

22�dry ½Htp
23�dry 0 0 0

½Htp
31�dry ½Htp

32�dry ½Htp
33�dry 0 0 0

0 0 0 ½Htp
44�dry 0 0

0 0 0 0 ½Htp
55�dry 0

0 0 0 0 0 ½Htp
66�dry

3
777777775
:

(10)

Figure 6. Sketch illustrating the configurations of our model that
correspond to the high- and low-frequency limits obtained from
the numerical calculations for the ½C�

33�sat component (properties in
Tables 1 and 2).

Figure 7. Sketch illustrating the workflow for calculating analytically different compo-
nents of the compliance matrix for the model with interconnected isometric pore and crack.
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2) The compliance contribution matrix of the extended dry crack
is calculated ½HEcr

mn �dry. The diameter of the extended crack is
equal to the diameter of the crack (2b) plus an extension cor-
responding to twice the minor diameter of the torus (4r), as
shown in Figure 7. In other words, the projection of the pore
space containing the crack and torus and the projection of the
extended crack model onto the xy-plane are the same. The
thickness of the extended crack is such that the extended
crack is a spheroidal envelope for the torus as shown in
Figure 7. For our particular geometry, the thickness of the
extended crack is approximately twice the minor diameter
of the torus, dMn ¼ 2r (see Figures 4 and 7 for geometric
parameters).

3) The compliance contribution matrix of the interconnected
torus and crack ½Hmn�dry is thus constructed by using the
obtained components of ½Htp

mn�dry and ½HEcr
mn �dry:

½Hmn�dry¼

2
666666664

½Htp
11�dry ½Htp

12�dry ½Htp
13�dry 0 0 0

½Htp
21�dry ½Htp

22�dry ½Htp
23�dry 0 0 0

½Htp
31�dry ½Htp

32�dry ½HEcr
33 �dry 0 0 0

0 0 0 ½HEcr
44 �dry 0 0

0 0 0 0 ½HEcr
55 �dry 0

0 0 0 0 0 ½Htp
66�dry

3
777777775
:

(11)

The components ½Htp
13�dry and ½Htp

23�dry, and the corresponding
symmetric components, also could be replaced by ½HEcr

13 �dry
and ½HEcr

23 �dry (which may improve the accuracy) but this ef-
fect is of minor importance; thus, we do not explore it in more
details. The components ½Htp

33�dry, ½Htp
44�dry, and ½Htp

55�dry rep-
resenting the torus are replaced by the components represent-
ing the extended crack ½HEcr

33 �dry, ½HEcr
44 �dry, and ½HEcr

55 �dry. The
compliance contribution matrices of a torus and extended
crack (spheroid) can be calculated analytically as described
in chapters 4.3 and 4.2 of Kachanov and Sevostianov (2018).

The compliance contribution matrix of the modified frame is

½HmnðωÞ�MF¼

2
666666664

½Htp
11�dry ½Htp

12�dry ½Htp
13�dry 0 0 0

½Htp
21�dry ½Htp

22�dry ½Htp
23�dry 0 0 0

½Htp
31�dry ½Htp

32�dry ½HEcr
33 ðωÞ�MF 0 0 0

0 0 0 ½HEcr
44 �dry 0 0

0 0 0 0 ½HEcr
55 �dry 0

0 0 0 0 0 ½Htp
66�dry

3
777777775
:

(12)

The only difference between the matrices in equations 11 and 12 is
the component ½HEcr

33 ðωÞ�MF. Because the fluid flow takes place in
the crack only when the displacement boundary condition in the
vertical (z) direction is applied, the component ½HEcr

33 ðωÞ�MF is
the only frequency-dependent component. This statement also is
supported by the numerical simulations by Alkhimenkov et al.
(2020a). The component ½HEcr

13 ðωÞ�MF also might exhibit some
dispersion, but the magnitude is negligibly small (Alkhimenkov
et al., 2020a). The limits of ½HEcr

33 ðωÞ�MF are

lim
ω→þ∞

½HEcr
33 ðωÞ�MF ¼ ½Htp

33�dry (13)

and

lim
ω→þ0

½HEcr
33 ðωÞ�MF ¼ ½HEcr

33 �dry: (14)

To separate the contribution of the torus, which is a constant
value across a full frequency band, from the contribution of the
extended crack compliance, which is frequency dependent, we in-
troduce

½H 0
mnðωÞ�MF ¼ ½HmnðωÞ�MF − ½Htp

mn�dry

¼

2
66666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 ½H 0
33ðωÞ�MF 0 0 0

0 0 0 ½H 0
44�MF

dry 0 0

0 0 0 0 ½H 0
55�MF

dry 0

0 0 0 0 0 0

3
77777777775
: (15)

Expression 15 has the same structure as the compliance contribution
matrix of a crack written in terms of normal and tangential compli-
ances Zn and Zt. The limits of ½H 0

33ðωÞ�MF are

lim
ω→þ∞

½H 0
33ðωÞ�MF ¼ 0 (16)

and

lim
ω→þ0

½H 0
33ðωÞ�MF ¼ ½HEcr

33 �dry − ½Htp
33�dry ≡ Zap

n ; (17)

where for simplicity we introduce the apparent normal crack
compliance Zap

n . The apparent tangential crack compliance is
Zap
t ¼ ½H 0

44�MF
dry ≡ ½H 0

55�MF
dry . Even though the structure of the matrices

is the same, the absolute values of the components in equation 15
are calculated differently from the formulas for Zn and Zt suggested
for cracks embedded in a homogeneous material by Schoenberg and
Douma (1988) and Schoenberg and Helbig (1997). The effective
compliance matrix for the modified frame can be calculated using
equation 7 as

½S�mnðωÞ�MF ¼ Sgmn þ ½Htp
mn�dry þ ½H 0

mnðωÞ�MF: (18)

Finally, the effective compliance moduli of a fully saturated
model ½S�mnðωÞ� can be obtained by saturating the modified frame
½S�mnðωÞ�MF with a fluid using Gassmann’s equations. The expres-
sion 18 is the main result of this study and is valid for any geometry
of the pore space if the appropriate compliance contribution matri-
ces are used.

Calculation of the frequency-dependent crack stiffness

To derive the frequency-dependent component of the contribution
matrix ½H 0

33ðωÞ�MF (i.e., the normal crack compliance), we note that
the thin crack is adequately described by two parameters (as shown
in equation 15); then, we use anisotropic Gassmann’s equations to
calculate the moduli considering the crack saturated. The derivation
is simple, requiring only algebraic manipulations, but they are
cumbersome; thus, we refer to the supplemental information that
can be accessed through the following link: S1 (Alkhimenkov and
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Quintal, 2021) for the full derivation (Maple script). The resulting
expression is

½H 0
33ðωÞ�MF ¼ ðKg − K�

fðωÞÞϕcZ
ap
n

ðKg − K�
fðωÞÞϕc þ K�

fðωÞKgZ
ap
n
; (19)

where ϕc is the compliant porosity (crack porosity), Zap
n is the normal

apparent compliance of the crack (see expression 17), and Kg is the
bulk modulus of the solid grains. If a crack cannot be described by
two parameters (e.g., the ½H 0

13�MF
dry component also is affected), then

one can use our Maple script (supplemental information can be ac-
cessed through the following link: S1) (Alkhimenkov and Quintal,
2021) with already derived equations for the general (anisotropic)
form of the solid background and the property contribution matrix
of the inclusion, e.g., crack. The expression for the frequency-depen-
dent bulk modulus of the fluid K�

fðωÞ will be given next.

Extension for cracks with finite thickness

If the crack thickness is not so small that the aspect ratio is larger
than 0.0025 then the limit given in equation 16 is not equal to zero.
A small nonzero value ½Zap

n �fth will be present,

lim
ω→þ∞

½H 0
33ðωÞ�MF ¼ ½Zap

n �fth (20)

and the normal apparent crack compliance becomes

½Zap
n �f ¼ Zap

n − ½Zap
n �fth: (21)

In this case, the only modification that is needed is a slight change in
expression 19 by including the additional compliance ½Zap

n �fth

½H 0
33�MF¼ ðKg−K�

fðωÞÞϕc½Zap
n �f

ðKg−K�
fðωÞÞϕcþK�

fðωÞKg½Zap
n �f

þ½Zap
n �fth: (22)

Relaxation of the crack stiffness

In the analytical model, the relaxation of the
crack stiffness due to fluid pressure diffusion
controls the frequency dependence of the effec-
tive elastic moduli of the medium. The relaxation
of the crack stiffness can be modeled via the
relaxation of the fluid bulk modulus K�

fðωÞ in
the crack. In several previous studies, the task
is reduced to solving the problem for a crack only
by applying boundary conditions directly to the
crack walls and tip of the crack (e.g., Murphy
et al., 1986). Then, the derived expression for
K�

fðωÞ is treated as the crack stiffness. Unfortu-
nately, applying boundary conditions to the crack
walls and the crack tip produces a different result
compared with applying the boundary conditions
directly to the walls of the model. For illustration,
we show the models considering zero fluid pres-
sure at the crack tip and the big pore model, with
the corresponding results of numerical simula-
tions (Figure 8). In the rock-physics literature,

the relaxation of fluid pressure was derived by solving an equation
for fluid pressure distribution p in the flat cylinder (crack) under
sinusoidal loading Δheiωt applied to the walls of the crack, Δh
is the displacement of the crack walls (e.g., Murphy et al., 1986;
Dvorkin and Nur, 1993). Then, by integrating the fluid pressure
p over the thickness and area of the crack, the frequency-dependent
fluid bulk modulus K�

fðωÞ was determined. In the mechanics liter-
ature, similar problems were solved in the time domain for different
viscoelastic materials (e.g., Chalhoub and Kelly, 1990; Tsai and
Lee, 1998). All the solutions are very similar for the same geom-
etries and applied boundary conditions with slight differences de-
pending on the approximations done during the derivation.
We use symbolic environment Maple to derive a general structure

of the solutions for the frequency-dependent fluid bulk modulus
K�

fðωÞ. We start with the known approach by applying the boundary
conditions to the walls of the crack (Murphy et al., 1986; Tsai and
Lee, 1998). But afterward we modify the resulting solution by tak-
ing into account the heterogeneous stress field induced by the torus.
In Cartesian coordinates, the expression for fluid pressure under the
compression strain ϵc applied to the walls of the crack is

∂2p
∂x2

þ ∂2p
∂y2

− k2p ¼ −k2Kfϵc; (23)

where k is a parameter a function of the applied strain and rheology
of the crack (e.g., Tsai and Lee, 1998). In polar coordinates, the
expression for fluid pressure becomes

∂2p
∂r2

þ 1

r
∂p
∂r

− k2p ¼ −k2Kfϵc: (24)

Figure 8. Sketch illustrating the simplifications made in analytical models via applied
boundary conditions (a vertical slice of the twomodels shown in Figure 4). (a and c) Boun-
dary conditions applied to the walls of the model. (b and d) Boundary conditions
applied to the walls of the crack. (e) The numerical result; note that the high-frequency
slope of the attenuation curve is substantially different if the crack is connected to an actual
pore.
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The stiffness of the crackH can be expressed via the surface integral
over the crack area S for the averaged vertical stress σ̄zz,

H ¼ −
�Z

S
σ̄zzdS

�
∕ðSϵcÞ; σ̄zz ¼

�Z
h
σzzdh

�
∕h: (25)

If the crack rheology represents a pure fluid, then H ≡ Kf . Similar
equations were considered in the previous studies by Murphy et al.
(1986) and Chalhoub and Kelly (1990).

Zero fluid pressure at the crack tip

In the modified frame configuration, the crack is connected to
the dry isometric pore, which corresponds to zero fluid pressure
boundary condition at the edge of the crack. This configuration was
studied by Chalhoub and Kelly (1990) and Tsai and Lee (1998).
The solution for K�

fðωÞ treating the crack as a flat cylinder is

K�
fðωÞ ¼ Kf þ

4

3
iωη −

ðKf − 2
3
iωηÞ2

ðKf þ 4
3
iωηÞ k̄1J0ðk̄1Þ

2J1ðk̄1Þ − iωη
; (26)

where η is a fluid dynamic viscosity, J0 and J1 are the Bessel func-
tions of the first kind of order 0 and 1, respectively, and k̄1 is defined
as

k̄1 ¼
1

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3iωη∕

�
Kf þ

4

3
iωη

�s
; (27)

where α ¼ h∕ð2bÞ is the crack aspect ratio. A different expression
for K�

fðωÞ was provided by Chalhoub and Kelly (1990)

K�
fðωÞ ¼ Kf

�
1 −

2J1ðk̄2Þ
k̄2J0ðk̄2Þ

�
; (28)

where k̄2 is

k̄2 ¼
1

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3iωη∕Kf

q
: (29)

It was pointed out by Tsai and Lee (1998) that the solution 28 is
similar to 26 for Poisson’s ratio¼ 0.5 but different if Poisson’s ratio
≤ 0.5 (the solution 26 matches numerical solutions for Poisson’s
ratio ≤ 0.5). Thus, for fluids (Poisson’s ratio ¼ 0.5) either solution
26 or 28 can be used (Figure 9). The expression 28 is used by Gur-
evich et al. (2010) and Collet and Gurevich (2016) for the relaxation
of the fluid bulk modulus of the modified frame.

Nonzero fluid pressure at the crack tip

In this configuration, the crack is connected to the saturated iso-
metric pore meaning that the fluid pressure in such a pore will in-
crease due to the fluid flow from the crack (for the precise boundary
conditions, see Murphy et al., 1986). In this case, during the relax-
ation of the fluid bulk modulus, the fluid “feels” the finite volume of
the isometric pore. The solution 25 for this boundary condition is
(Murphy et al., 1986)

K�
fðωÞ ¼ Kf

�
1 −

2VporJ1ðk̄2Þ
2VcrJ1ðk̄2Þ þ k̄3VporJ0ðk̄2Þ

�
; (30)

where Vpor is the volume of the stiff pore and Vcr ¼ πhb2 is the
volume of the compliant crack. The geometric parameters h, b,
and r are provided in Table 1. For a torus, Vpor is calculated as
Vpor ¼ 2π2ðbþ rÞr2. Under the assumption of Vpor → ∞, the ex-
pression 30 reduces to expression 28 (it can be seen from expression
30 by removing terms with 1∕Vpor). The low-frequency limit of K�

f
calculated using equation 30 is

lim
ω→0

K�
f ¼ VcrKf

Vcr þ Vpor

: (31)

Note that the shape of the curves in expressions 26, 28, and 30 is the
same (Figure 9a), which means that for the big pore model solutions
26, 28, and 30 are equivalent. In other words, the volume of the big
pore is so large compared with the volume of the crack that zero
fluid pressure boundary condition provides us a good approxima-
tion. The low-frequency limit K�

f ≠ 0 (but close to 0) in equation 30
compared with expressions for zero fluid pressure boundary
condition at the edge of the crack (expressions 26 and 28 where
K�

f ¼ 0). The high-frequency limit of the K�
f is

lim
ω→∞

K�
f ¼

�
1þ 2

�
cosðkaþ π∕4Þ
sinðkaþ π∕4Þ

�
1

ka

�
Kf: (32)

This high-frequency limit (equation 32) also applies to expression
28 for K�

fðωÞ.
Figure 9. The real part of the frequency-dependent fluid bulk
modulus K�

f and the dimensionless attenuation calculated using
different expressions for the big pore model with α ¼ 0.005.

MR92 Alkhimenkov and Quintal

D
ow

nl
oa

de
d 

02
/1

8/
22

 to
 8

5.
21

8.
44

.1
37

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
21

-0
22

9.
1



Modification of the relaxation of the fluid bulk modulus for the
classical geometry

Alkhimenkov et al. (2020a) show that the ½C�
33ðωÞ�sat component

obtained via the analytical model by usingK�
fðωÞ (equation 28) is in

agreement with the numerical simulation for zero fluid pressure at
the crack tip and no stiff pore (Figure 8). It means that if the back-
ground material is homogeneous, the relaxation of the fluid bulk
modulus is not affected (or the effect is negligible) by the surround-
ing homogeneous grains. In other words, applying boundary con-
ditions to the walls of the crack or to the walls of the model produces
similar results in this special case of no stiff pore (Figure 8a and 8b).
But this configuration is not realistic. For a more realistic scenario,
when a stiff pore is present (Figure 8c), the ½C�

33ðωÞ�sat component
obtained via the analytical model by using K�

fðωÞ obtained analyti-
cally for the configuration shown in Figure 8a diverges from the
numerical result (Alkhimenkov et al., 2020a). This disagreement
is due to the presence of the isometric pore connected to the crack,
which changes the stress field in the model. Because of the modified
stress field, the fluid flow also is affected and the boundary condi-
tions applied to the wall of the crack are no longer accurate (Fig-
ure 8c and 8d). According to numerical solutions for the models
where a torus is connected to a crack, the high-frequency slopes
of the dispersion and attenuation curves are substantially different
from those obtained via solutions for the crack only having a zero
fluid pressure boundary condition at the tip (equation 28; Figure 8e).
A similar observation has been pointed out by Solazzi et al. (2021)
for partially saturated cracks.
By analyzing the numerical results, we find that the 1∕Q at high

frequencies is proportional to ≈ω−1∕2 for the classical geometry (the
crack connected to the toroidal pore). However, the solutions for
K�

fðωÞ (expressions 26, 28, and 30) and the resulting 1∕Q exhibit
different behavior at high frequencies compared with the numerical
solutions. Therefore, we derive an approximation to the relaxation
of the fluid bulk modulus K�

fðωÞ for the classical geometry by using
the solution 30 with a modified high-frequency asymptote. For that,
we use a special form of a branching function. The concept of a
branching function is simple and allows us to find an accurate
approximation for a given cumbersome exact solution (Pride et al.,
1993; Johnson, 2001). A branching function is designed such that it
satisfies the Kramers-Kronig relations, and thus can be used to
approximate seismic attenuation and dispersion curves. To con-
struct the branching function, one needs to know the low- and high-
frequency limits along with the low- and high-frequency asymp-
totes of the exact solution. We use the following branching function,

K�
fðωÞ ¼ Kf − ðKf − y · KLF

f Þ∕
�
1 − ζ þ ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iωτ∕ζ2

q �
;

(33)

where y ¼ 0 for the solution considering zero fluid pressure at the
crack tip or y ¼ 1 for the solution considering nonzero fluid pressure
boundary condition at the crack tip. In equation 33, Kf corresponds
to the high-frequency limit of the exact solution (which is exactly the
fluid bulk modulus) and KLF

f (if y ¼ 1) or 0 (if y ¼ 0) corresponds to
the low-frequency limit of the exact solution 30 or 26. The two
parameters ζ and τ control the shape of the branching function.
The recipe to construct the branching function is as follows:

1) We extract several parameters of the solution 30 for K�
fðωÞ:

the low- and high-frequency limits of K�
fðωÞ, the low-fre-

quency asymptote of 1∕QK�
f
¼ ImðK�

fðωÞÞ∕ReðK�
fðωÞÞ, and

the characteristic frequency fcrackc of 1∕QK�
f
(at the maximum

of 1∕QK�
f
). This gives us four parameters.

2) We construct the branching function 33 with y ¼ 1 to
approximate the solution 30 using the known parameters
obtained in step 1 but with the modified high-frequency
asymptote being proportional to ≈ω−1∕2. There are only four
parameters in the branching function 33. The last relation to
close the system of equations is that the intersection of low-
and high-frequency asymptotes of the branching function co-
incides with the characteristic frequency fcrackc obtained in
step 1. The resulting modified solution is shown in Figure 9
(black squares).

3) The final modified solution for K�
fðωÞ is obtained from step 2

by setting y ¼ 0 in the expression 33. This step is needed to
obtain the solution for the zero fluid pressure boundary con-
dition at the crack tip because our analytical model is based
on the modified frame (Figure 3).

The calculations in steps 1–3 are simple, requiring only algebraic
manipulations, but they are cumbersome; thus, we refer to the sup-
plemental information that can be accessed through the following
link: S1 (Alkhimenkov and Quintal, 2021) for the full derivation
(Maple script). The resulting expressions for the branching function
are given next.
By setting y ¼ 0 in expression 33 (corresponding to zero fluid

pressure at the crack tip), the frequency-dependent bulk modulus
of the fluid K�

fðωÞ becomes

K�
fðωÞ ¼ Kf − Kf∕

�
1 − ζ þ ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iωτ∕ζ2

�s
; (34)

where the parameter τ is calculated as

τ ¼ 3

4

η

Kf

ζ

α2
; (35)

and the parameter ζ is calculated as

Table 1. Geometric properties for the big pore model and
the small pore model.

Geometric parameter
Big pore
model

Small pore
model

Flat cylinder (crack) radius, b 0.1 m 0.1 m

Flat cylinder (crack) thickness, h 0.0005 m 0.0005 m

Crack aspect ratio, α ¼ h∕ð2bÞ 0.0025 0.0025

Major radius of torus, bþ r 0.124 m 0.1067 m

Minor radius of torus, r 0.024 m 0.0067 m

Total porosity 0.045 0.0034

Crack porosity ≈4.9 × 10−4 ≈4.9 × 10−4

Major radius — the distance from the center of the tube to the center of the torus.
Minor radius — the radius of the tube (our isometric pore).
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ζ ¼ 128

27

Kf

η3
ðKLF

f Þ2
ðfcrackc Þ3 α

6; (36)

with fcrackc given by

fcrackc ¼ 4ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kf · KLF

f

q
η

α2: (37)

The parameter fcrackc determines the characteristic frequency of
K�

fðωÞ. The apparent fluid bulk modulus at low frequencies KLF
f is

KLF
f ¼ VcrKf

Vcr þ Vpor

: (38)

The low-frequency asymptote of the K�
f calculated using equa-

tion 33 is

lim
ω→0

K�
f ¼ ðKf − KLF

f Þτ
KLF

f ζ
ω: (39)

The high-frequency asymptote of the K�
f calculated using equa-

tion 33 is

lim
ω→∞

K�
f ¼ ðKf − KLF

f Þ ffiffiffi
2

p

2Kf
ffiffiffi
τ

p 1

ω2
: (40)

It is possible that for some specific parameters that expressions
34–38 lose their accuracy. In this case, one can modify the expres-
sions 34–38 using the Maple symbolic environment to improve ac-
curacy. We do not explore in detail the accuracy of the boundary
conditions for the crack tip proposed by Murphy et al. (1986) (the
solution 30), different boundary conditions may slightly modify the
expression 30 and the derived modification of this solutions 34–38.
Note that the branching function of the form 33 was used to

approximate cumbersome exact solutions in different contexts by
many authors (Pride et al., 1993; Johnson, 2001). Note that equa-
tion 33 is designed to approximate solutions in the stiffness. A sim-
ilar branching function exists to approximate solutions in the
compliance, which is more suitable for some applications (Gurevich
et al., 2009).

Big pore model

Figure 9 shows the real part of the frequency-dependent fluid
bulk modulus K�

f and the dimensionless attenuation calculated us-
ing different expressions for the big pore model with α ¼ 0.005.
Because the volume of the big pore is large, the expressions for
K�

f 26 and 28 reduce to expression 30. Note that 1∕Q of K�
f of

equations 26 and 28 is the same as for equation 30 for frequencies
larger than the characteristic frequency but tend to infinity for
frequencies lower than the characteristic frequency because K�

f →
0 as ω → 0. The term K�

f calculated via the branching function 33
(y ¼ 1) is identical to equation 30 except for the high-frequency
asymptote. Note that asymptotes of the branching function intersect
at the characteristic frequency of K�

f calculated via equation 30.
Figure 10 is similar to Figure 9 but K�

f calculated via equation 34
is shown together with the numerical solution. The numerical sol-
ution was obtained from the simulations for the modified frame of
the big pore model (α ¼ 0.005), and then by inverting forK�

f via the
analytical formulas 18 and 19. The term K�

f calculated via equa-
tion 34 is in agreement with the numerical solution (note that there
are no fitting parameters in equation 34).

Small pore model

Figure 11 shows the real part of the frequency-dependent fluid
bulk modulus K�

f and the dimensionless attenuation calculated us-
ing different formulas for the small pore model with α ¼ 0.0025.
The branching function with y ¼ 0 (equation 33 or, equivalent,
equation 34) corresponds to the configuration with zero fluid
pressure at crack tip (which is used in the present analytical model
for the modified frame). At low frequencies, K�

f is calculated via the
branching function 33 (y ¼ 0) and the solution 30 are not equal to
zero because the volume of the small pore is only slightly larger
than the volume of the crack. The term 1∕Q calculated via the
branching with y ¼ 0 (equation 33 or equation 34) is in agreement
with the numerical solution.

Summary

Our analytical model requires (1) the calculation of the effective
compliance matrix of the modified frame (expression 18), (2) the cal-
culation of the frequency-dependent component ½H 0

33�MF (expression
19), which represents the frequency-dependent crack stiffness, and
(3) the calculation of the effective stiffness moduli of a fully saturated
model by applying Gassmann’s equations (Gassmann, 1951). If the

Figure 10. The real part of the frequency-dependent fluid bulk
modulus K�

f and the dimensionless attenuation calculated using dif-
ferent expressions for the big pore model with α ¼ 0.005.
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low- and high-frequency limits of the dry model are known, then
step 1 can be skipped; the frequency-dependent component
½H 0

33�MF (expression 19) provides the transition from low to high
frequencies (step 2).

The modified frame

Our analytical model requires the calculation of the effective
compliance matrix of the modified frame (expression 18),

½S�mnðωÞ�MF ¼ Sgmn þ ½Htp
mn�dry þ ½H 0

mnðωÞ�MF; (41)

where Sgmn is the compliance matrix of the solid grain material,
½Htp

mn�dry is the compliance contribution matrix of the isometric pore
(torus), and ½H 0

mnðωÞ�MF is the additional compliance contribution
matrix of the crack connected to the torus. The compliance contri-
bution matrices of a torus ½Htp

mn�dry and extended crack (ellipsoid)
½HEcr

mn �dry can be calculated analytically using expressions from,
e.g., Kachanov and Sevostianov (2018). Then, following the work-
flow presented in Figure 7, the ½H 0

mnðωÞ�MF can be calculated as
½H 0

mnðωÞ�MF ¼ ½HmnðωÞ�MF − ½Htp
mn�dry (for details, see formula 15),

where ½HmnðωÞ�MF is constructed by expression 12 using the al-
ready obtained ½Htp

mn�dry and ½HEcr
mn �dry.

The frequency-dependent crack stiffness

The ½H 0
33�MF component is calculated by

½H 0
33ðωÞ�MF ¼ ðKg − K�

fðωÞÞϕcZ
ap
n

ðKg − K�
fðωÞÞϕc þ K�

fðωÞKgZ
ap
n
; (42)

where ϕc is the compliant porosity (crack porosity), Zap
n is the ap-

parent normal compliance of the crack (see expression 17), and Kg

is the bulk modulus of the solid grains. The expression for the fre-
quency-dependent bulk modulus of the fluid K�

fðωÞ can be calcu-
lated by using equation 34. For cracks of finite thickness,
equation 22 should be used instead of equation 42.

The moduli of a fully saturated model

Finally, the effective stiffness moduli of a fully saturated model
½C�

mnðωÞ�sat can be obtained by using anisotropic Gassmann’s equa-
tions (Gassmann, 1951) at each frequency to ½S�mnðωÞ�MF:

½C�
mnðωÞ�sat ¼ ð½S�mnðωÞ�MFÞ−1 þ αmαnM; (43)

αm ¼ 1 −
�X3

n¼1

CMF
mn

�
∕Kg∕3; (44)

for m ¼ 1; 2; 3 and α4 ¼ α5 ¼ α6 ¼ 0, and where

M ¼ ðϕ∕Kf þ ð1 − ϕÞ∕Kg − K�∕K2
gÞ−1; (45)

K� ¼ 1

9

X3
m¼1

X3
n¼1

CMF
mn ðωÞ; (46)

where ϕ is the total porosity of the medium without the compliant
porosity (which is neglected because the compliant porosity is usu-
ally two or more orders of magnitude lower than the stiff pore’s
porosity), K� is the generalized bulk modulus of the modified
frame, and αm is the Biot-Willis coefficient.

VALIDATION AGAINST 3D NUMERICAL
SOLUTIONS

For the validation, we consider several 3D models consisting of a
pore space embedded in an elastic solid grain material. The numeri-
cal methodology is described in Appendix A and is introduced by
Quintal et al. (2016, 2019); the boundary conditions for the direct
relaxation tests to compute all components of the stiffness matrix
are described in Alkhimenkov et al. (2020a, 2020b). The models
considered are as follows:

1) The saturated big pore model with crack aspect ratio
α ¼ 0.0025. This is the model shown in Figure 4.

2) The saturated big pore model with finite thickness crack
(aspect ratio α ¼ 0.005).

3) The modified frame of the big pore model with finite thick-
ness crack (aspect ratio α ¼ 0.005).

4) The modified frame of the small pore model with crack aspect
ratio α ¼ 0.0025. Here, the isometric pore represented by the
torus is small.

The geometric properties of the models with crack aspect ratio
α ¼ 0.0025 are shown in Table 1 and the material parameters are
shown in Table 2. The model geometry is scalable; i.e., if all

Figure 11. The real part of the frequency-dependent fluid bulk
modulus K�

f and the dimensionless attenuation calculated using dif-
ferent expressions for the small pore model with α ¼ 0.0025.
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geometric parameters of the models are divided or multiplied by any
number, the results will be the same.

Big pore model

Figure 12 shows results for the ½C�
33�sat complex-valued compo-

nent of the stiffness matrix obtained using the present analytical
model, the model of Collet and Gurevich (2016) with two different
sets of normal and tangential compliances (for more details, see
Appendix B and Alkhimenkov et al., 2020a) and the numerical sol-
ution for the model shown in Figure 4. The model A of Collet and
Gurevich (2016) does not take into account the connectivity of the
crack and pore, and gives stiffer moduli of the rock at low frequen-
cies compared with the correct moduli. The model B of Collet and
Gurevich (2016) takes into account the connectivity of the crack and
pore using the modification introduced by Alkhimenkov et al.
(2020a) and gives correct moduli of the rock at low frequencies.

The aspect ratio is α ¼ 0.0025, which corresponds to the limit
where the crack aperture is small enough that at high frequencies
the fluid stiffens the crack to the point that Zap

n ¼ 0. Our analytical
model is in good agreement with the numerical solution. For the big
pore model, fcrackc (equation 37) is almost identical to the character-
istic frequency fc of the fully saturated model.

Big pore model with the finite thickness crack

Figure 13 shows results for the ½C�
33�sat complex-valued component

of the stiffness matrix obtained from our analytical model, the models
A and B of Collet and Gurevich (2016), and from the numerical sim-
ulation. The aspect ratio here is α ¼ 0.005. The high-frequency limit
of the ½C�

33�sat is slightly lower due to the increased crack aperture,
and thus, compliance. Our present analytical model takes into ac-
count the nonzero value of Zap

n corresponding to larger aspect ratios
showing good agreement with numerical solutions.

Modified frame of the big pore model with finite
thickness crack

We also validate the extension of the analytical model to finite
thickness crack against a modified frame configuration. Figure 14
shows results for the ½C�

33�MF complex-valued component of the
stiffness matrix obtained from the present analytical model, the
models A and B of Collet and Gurevich (2016) and from the
numerical simulation. In this case, dispersion and attenuation are
much stronger than in Figure 13 because the fluid in the crack
can freely flow into the empty pore without experiencing any

Table 2. Material properties used in all models.

Material parameter Solid Fluid

Bulk modulus K 36 GPa 4.3 GPa

Shear modulus μ 44 GPa 0 GPa

Shear viscosity η 0 Pa · s 1.414 Pa · s

Figure 12. Numerical and analytical results for the big pore model
(Figure 4) with a crack aspect ratio α ¼ 0.0025: (a) real part of the
½C�

33�sat component and (b) dimensionless attenuation for the ½C�
33�sat

component. On the right, snapshots of the fluid pressure Pf at three
different frequencies: LF, low-frequency limit (relaxed state); Fc,
intermediate frequency (close to the characteristic frequency);
and HF, high-frequency limit (unrelaxed state). The spatial dimen-
sion of the snapshots are not to scale and their colors representing
the fluid pressure Pf correspond to a downward displacement (com-
pression) of 10−8m applied to the top boundary of the model. The
inset represents the cross section of half of the model.

Figure 13. Numerical and analytical results for the big pore model
with the crack aspect ratio α ¼ 0.005 (i.e., finite thickness crack):
(a) real part of the ½C�

33�sat component and (b) dimensionless attenu-
ation for the ½C�

33�sat component. Here, the crack aperture is two
times larger than in the model with aspect ratio of α ¼ 0.0025 (Fig-
ure 12). The inset represents the cross section of half of the model.
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difficulties due to the finite volume of the torus that otherwise would
result in an increase in fluid pressure at low frequencies. Our ana-
lytical model is in good agreement with numerical solutions, con-
firming that it can adequately describe the frequency dependence of
the modified frame.

Modified frame of the small pore model

We also apply our analytical model to a different pore space con-
figuration — small pore model (Table 1). In this configuration, the
volume of the torus is small; thus, dispersion and attenuation also
are small. But the modified frame of the small pore model shows
significant dispersion and attenuation (Figure 15). We consider an
aspect ratio α ¼ 0.0025. The result from our analytical model is in a
good agreement with the numerical solutions.

DISCUSSION

The key features making our model accurate

There are two key features that make the present analytical model
very accurate. The first one is the correct calculation of the model
compliances. We provide the workflow to obtain the effective com-
pliance matrix which takes into account the connectivity of the stiff
pore and the compliant crack; it provides the correct values of the
low- and high-frequency limits of the stiffness moduli. The second
feature is the accurate description of the relaxation of the compliant
crack due to fluid pressure diffusion; it gives the correct shape of the
dispersion and attenuation curves across the whole frequency range.

The usual treatment of the pore and crack as being disconnected
when calculating the model compliance provides inaccurate predic-
tions of the overall attenuation and dispersion. The error of the low-
frequency limit of the dispersion curve can be as large as 100% of
the crack compliance, as can be seen in Figure 12 (blue curve, ana-
lytical model A of Collet and Gurevich, 2016). However, once the
workflow for calculating the model compliance takes into account
the connectivity of the pore and crack, the low- and high-frequency
limits of the dispersion curve become accurate (green curve, modi-
fication of analytical model of Collet and Gurevich, 2016). The
modification of the analytical model of Collet and Gurevich
(2016) (model B) was provided by Alkhimenkov et al. (2020a) (Ap-
pendix B). Our analytical model is based on the property contribu-
tion tensors which provides a general approach for calculating the
moduli and can be extended for more complex geometries of the
pore space (equation 41). The presented workflow (Figure 7) to
construct the property contribution tensor of the interconnected pore
and crack provides the correct values of the low- and high-fre-
quency limits of the dispersion curve (Figures 12–15).
Small deformations caused by the wave propagation compress

the compliant crack and cause fluid pressure diffusion or squirt
flow. The fluid pressure distribution in the crack is significantly af-
fected by the inhomogeneous stress field introduced by the isomet-
ric pore (especially at frequencies higher than the characteristic
frequency). The stiffening effect of the fluid in the crack is substan-
tially different for homogeneous and heterogeneous stress field dis-
tributions surrounding the crack (see Figure 8). Thus, we had to
modify the expression for the relaxation of the crack stiffness

Figure 14. Numerical and analytical results for the modified frame
of the big pore model with the crack aspect ratio α ¼ 0.005 (i.e., fi-
nite thickness crack): (a) real part of the ½C�

33�MF component and
(b) dimensionless attenuation for the ½C�

33�MF component. The inset
represents the cross section of half of the model.

Figure 15. Numerical and analytical results for the modified frame
of the small pore model with the crack aspect ratio α ¼ 0.0025:
(a) real part of the ½C�

33�MF component and (b) dimensionless attenu-
ation for the ½C�

33�MF component. The inset represents the cross sec-
tion of half of the model.
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for this specific geometry of the pore space represented by the
interconnected torus and crack. This modification depends on
the shape of the pore space and is explored in more detail in part
2 of this study. The popular idea of considering certain viscoelastic
moduli describing the stiffening effect of fluid is, in general, impre-
cise. The stiffness of the fluid can be replaced by viscoelastic
moduli only for particular pore space geometries, as we show in
the present and follow up studies.

The effect of the finite volume of the stiff pore

The volume of the isometric (stiff) pore Vpor has a key influence on
the magnitude of the dispersion and attention. If this volume is sig-
nificantly larger than the volume of a compliant crack Vcr (i.e., by
two orders of magnitude or more), then the fluid in the crack does
not feel that the volume of the isometric pore is finite. In other words,
in the low-frequency limit, the normal crack compliance of the
saturated model is the same as if it was dry. This can be seen in
Figure 10, in which in the low-frequency limit K�

f approaches zero.
However, if the volume of an isometric pore is similar to the vol-

ume of a compliant crack (or just an order of magnitude larger), then
the fluid in the crack does feel that the volume of the isometric pore
is finite and the resulting dispersion and attenuation are reduced. At
low frequencies, fluid flow from the crack into the isometric pore
significantly increases fluid pressure in the stiff pore. As a result, in
the low-frequency limit, the normal crack compliance has a finite
nonzero value. This can be seen in Figure 11 (small pore model) in
which in the low-frequency limit K�

f approaches ≈0.6 GPa. The
resulting attenuation and dispersion are very small (Alkhimenkov
et al., 2020a).
The expression 31 gives an estimate of K�

fðωÞ for the case in
which the fluid flow in the crack feels the finite volume of the iso-
metric pore, the low-frequency limit of K�

fðωÞ is

KLF
f ¼ VcrKf

Vcr þ Vpor

: (47)

The resulting value of KLF
f can be used in expression 19 to calculate

the normal fracture compliance

ZLF
n ¼ ðKg − KLF

f ÞϕcZ
ap
n

ðKg − KLF
f Þϕc þ KLF

f KgZ
ap
n
: (48)

The value ZLF
n gives the quantitative answer to the question: “how

strong is the stiffening effect of the crack at low frequencies?”

The importance of pore connectivity and elastic
interactions

Elastic interaction is a very popular topic in mechanics as well as
in rock physics. When the concentration of cracks or pores is small,
the elastic interactions also are small and can be ignored. In this
case, to calculate the effective elastic moduli one can use methods
which do not take into account elastic interactions (so-called non-
interactive approximation of effective medium theory); these meth-
ods usually provide exact results for simple pore geometries. When
the concentration of cracks or pores is increased, the elastic inter-
actions take place and affect the effective elastic properties. Exact
results are possible only for a limited number of configurations,
usually for two-body problems. For many-body problems many
approximations exist. However, the effect of pore connectivity is
a distinct subject with a distinct contribution.
Figure 16 shows a slice equivalent to that in Figure 4 with the

three pore configurations: the torus and the crack are connected,
the torus and the crack are disconnected but close to each other,
and the torus and the crack are disconnected and a bit further from
each other. On top of each subplot, the effective stiffness component
½C�

33�dry calculated numerically (with properties given in Tables 1
and 2) is shown. Roughly, the pore is reducing the ½C�

33�dry compo-
nent of the solid grain material by 10.6 GPa (from 94.6 to 84 GPa)
(Figure 6). Then, embedding the crack connected to the pore is
further reducing the ½C�

33�dry component by 22.5 GPa (from 84
to 61.5 GPa). Conversely, if the crack is not connected to the pore,
the reduction of the ½C�

33�dry component is only 11 GPa (from 84 to
73 GPa); thus, the “connectivity” costs 11.5 GPa. The connectivity
cost to the stiffness of the model (11.5 GPa) is five times bigger than
the effect of elastic interactions (2 GPa) shown in Figure 16. This
example shows that the first-order effect to the effective elastic
properties is due to the connectivity of the pores and cracks. The
effect of elastic interactions on the effective elastic properties is of
secondary importance and can be considered only when intercon-
nectivity is taken into account. Roughly, interconnectivity signifi-
cantly increases the “apparent” crack density in such a way that the
surface of the crack together with its invisible continuation into the
isometric pore control the effective elastic properties. Such apparent
crack density can be two or even more times bigger than the crack
density of the cracks only. Unfortunately, elastic interactions are

very popular in research papers but interconnec-
tivity is usually ignored.

The correctness of expression 19 for
the normal crack compliance

The expression 19 is equivalent to the expres-
sion derived before (e.g., Gurevich, 2003):

Zsat
n ¼ Zn

1þ Zn
ϕcð1∕Kf−1∕KgÞ

; (49)

where Zsat
n is the normal crack compliance of the

saturated crack and Kf can be replaced by
K�

fðωÞ (e.g., Collet and Gurevich, 2016). The
expression 19 (or 49) is exact for the following

Figure 16. A slice of the 3D models illustrating the effect of elastic interactions on the
½C�

33�dry component. (a) The isometric pore is connected to the crack representing a uni-
fied interconnected pore space, (b) the isometric pore and crack are disconnected but
close, and (c) disconnected and far from each other.
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configuration: a thin crack embedded into a solid grain material
and the crack compliance is described by only two parameters
Zn and Zt. Then, we apply anisotropic Gassmann’s equations
to calculate the moduli considering the crack saturated. The result
of Gassmann’s equations is the only modification of Zn, which
becomes Zsat

n . In the present framework, we use Gassmann’s equa-
tions in two ways. First, we use them to saturate the crack, whereas
the stiff pore remains dry. This violates the assumptions for the
applicability of Gassmann’s equations (because the model is three
phase: grains, dry stiff pore, and crack saturated with a fluid). Sec-
ond, we apply Gassmann’s equations to the modified frame to
calculate the moduli of the fully saturated model. Because the
modified frame is heterogeneous, this also violates the assump-
tions for the applicability of Gassmann’s equations. However,
numerical solutions show that the present analytical model is very
accurate for the modified frame as well as for the fully saturated
pore space. One explanation for such accuracy is that the pore
space is correctly partitioned into the stiff pore
and compliant crack. The stiff pore acts as a
“storage” volume for the fluid and does not con-
tribute directly to the overall attenuation; the
fluid pressure is approximately uniform at each
frequency. The fluid flow in the compliant crack
is responsible for the overall attenuation of
the model.
In the low-frequency limit, the expression 19

gives the normal crack compliance Zap
n of the dry

crack. In this case, we apply anisotropic Gass-
mann’s equations to saturate the model where
the pore and the crack are present; this procedure
is correct without regard to the pore space structure. If in the aniso-
tropic Gassmann’s equations we use the whole porosity (stiff pore
and crack porosities), then the result is exact in the low-frequency
limit.

The choice of the model

Figure 17 shows the big torus model with the crack aperture h on
the left and the crack aperture 50h on the right. Surprisingly, the
½C�

33�dry component of the effective elastic moduli of the dry model
is the same for both models. This means that the torus surrounding
cracks controls the stiffness because it is connected to the whole
circumference of the crack. The components of the stiffness matrix
½H33�dry, ½H44�dry, and ½H55�dry are controlled by the torus only. This
geometry cannot represent the rock pore space adequately because
cracks do control the stiffness in real rocks. That is why in part 2 we
will explore more complex pore space geometries where isometric
stiff pores are rather spherical and the crack circumference is only
partially connected to stiff pores.

A SLS as an analytical model

The SLS rheology for the ½C�
33ðωÞ�sat component can be written

as

½C�
33ðωÞ�sat ¼

½C�
33�LFsat þ i½C�

33�HFsat ðω∕ωcÞ
1þ iðω∕ωcÞ

; (50)

where ½C�
33�LFsat and ½C�

33�HFsat are the effective moduli of the saturated
model at low- and high-frequency limits, respectively, and ωc is

the characteristic frequency (Mavko et al., 2020). Thus, only three
input parameters are needed to calculate dispersion and attenuation.
Figure 18 shows results for the ½C�

33ðωÞ�sat complex-valued compo-
nent of the stiffness matrix obtained with the present analytical
model, the SLS model, the modified model of Collet and Gurevich
(2016) (model B, with correct limits), the approximation of the
modified model of Collet and Gurevich (2016) (model B), and
the numerical solution. Note that model of Collet and Gurevich
(2016) is the same as the model of Gurevich et al. (2010) but
for anisotropic media (all cracks with the same orientation). Gur-
evich et al. (2010) propose an approximation for the relaxation
of the fluid bulk modulus K�

fðωÞ (equation 28),

K�
fðωÞ ¼ −ðk̄2Þ2Kf∕8: (51)

If this approximation 51 is used for K�
fðωÞ in the modified model of

Collet and Gurevich (2016) (model B), then it becomes identical to

Figure 17. Sketch illustrating the pore space (dry) of the big pore model with two
different crack apertures: (a) h and (b) 50h.

Figure 18. Numerical and analytical results for the big pore model
with the crack aspect ratio α ¼ 0.025: (a) real part of the ½C�

33�sat
component and (b) dimensionless attenuation for the ½C�

33�sat com-
ponent.
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the SLS result across all frequencies (Figure 18). In other words,
SLS is almost identical to the model of Collet and Gurevich
(2016); thus, a single expression 50 can be used to obtain the same
dispersion and attenuation curves. A similar observation is given in
Carcione and Gurevich (2011) for an isotropic squirt flow model of
Gurevich et al. (2010).

CONCLUSION

We have developed an analytical model for seismic attenuation
and dispersion in a fluid-saturated porous medium caused by squirt
flow. We used the classical pore space geometry used in many pre-
vious studies, a penny-shaped crack surrounded by a toroidal stiff
pore. Our model can be applied to very thin cracks as well as to
cracks with finite thicknesses. We compared our analytical model
with 3D numerical solutions. The analytical and numerical results
are in a very good agreement for all considered relative sizes of pores
and cracks. Our analytical model features several key differences
compared with previously published analytical models, making it
much more accurate. First, we provide an approach to calculate
the elastic moduli of interconnected pore and crack. We showed that
ignoring the interconnectivity of cracks and pores in the calculation
of the model compliance leads to inaccurate predictions of low- and
high-frequency limits of the moduli dispersion. Second, we derived
a good approximation for the relaxation of the crack stiffness due to
fluid pressure diffusion, which makes our model accurate for the
whole frequency band. Furthermore, we showed that the crack stiff-
ness is significantly affected by the surrounding heterogenities. Thus,
precise expressions for the crack stiffness are possible only for
specific pore geometries.
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APPENDIX A

NUMERICAL METHODOLOGY

The numerical methodology that we use for validation of the
analytical models is described by Quintal et al. (2019) and Alkhi-
menkov et al. (2020a, 2020b), here we briefly outline the main
equations. We consider that a model is composed of a solid material
(grains) and a pore space saturated with a fluid. The solid phase is
described as a linear isotropic elastic material for which the conser-
vation of momentum is (e.g., Landau and Lifshitz, 1959b; Nemat-
Nasser and Hori, 2013)

∇ · σ ¼ 0; (A-1)

where “∇ ·” stands for the divergence operator acting on the stress
tensor σ. The infinitesimal stress-strain relation for an isotropic elas-
tic material can be written as

σ ¼ ðK −
2

3
μÞtr

�
1

2
ðð∇ ⊗ uÞ þ ð∇ ⊗ uÞTÞ

�
I2

þ 2μ

�
1

2
ðð∇ ⊗ uÞ þ ð∇ ⊗ uÞTÞ

�
; (A-2)

where I2 is the second-order identity tensor, tr is the trace operator,
“⊗” denotes the tensor product, the superscript “T” corresponds to
the transpose operator, u is the displacement vector, and K and μ are
the bulk and shear moduli, respectively. The fluid phase is described
by the quasi-static linearised compressible Navier-Stokes momen-
tum equation Landau and Lifshitz, 1959a):

−∇pþ η∇2vþ 1

3
η∇ð∇ · vÞ ¼ 0; (A-3)

where v is the particle velocity, p is the fluid pressure, and η is the
shear viscosity. Equation A-3 is valid for the laminar flow of a New-
tonian fluid. In the numerical solver, equations A-2 and A-3 are
written in the space-frequency domain as

σij ¼ λeδij þ 2μϵij þ iω
�
2ηϵij −

2

3
ηeδij

�
; (A-4)

where ϵij are the components of the strain tensor
ϵij ¼ 0.5ðui;j þ uj;iÞ, e is the trace of the strain tensor, λ and μ
are the Lame parameters, ui is the displacement in the ith direction,
δij is the Kronekecker delta, i is the imaginary unit, and ω is the
angular frequency. Equations A-1 and A-4 are implemented into
a finite-element solver. In the domain representing a solid material,
equation A-4 reduces to equation A-2 by setting the shear viscosity
η to zero. In the domain representing compressible viscous fluid,
equation A-3 is recovered by setting the shear modulus μ to zero.
The solid and fluid displacements are described by the same variable,
and thus, naturally coupled at the boundaries between subdomains
(Quintal et al., 2016, 2019). The numerical model is discretized using
an unstructured mesh with tetrahedral elements (Figure A-1). A direct
PARDISO solver (Schenk and Gärtner, 2004) is used for solving the
linear system of equations.
Direct relaxation tests are performed to compute all components

of the stiffness matrix Cij (Voigt notation) by applying a displace-
ment boundary condition of the form u ¼ 10−8 × expðiωtÞ to a cer-
tain external wall of the model and in a certain direction, whereas at
other walls of the model, the displacements are set to zero or let free
to change. In the direct tests that we perform, only one component
of the stiffness matrix cij can be directly calculated after one
numerical simulation. A detailed description of the boundary con-
ditions is given in Alkhimenkov et al. (2020a, 2020b). The resulting
stress and strains are averaged over the spatial domain for each
frequency. Then, the complex-valued CiiðωÞ components (diago-
nal) are calculated for each frequency (in Voigt notation, no index
summation):
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CiiðωÞ ¼
hσiðωÞi
hϵiðωÞi

; (A-5)

where h·i represents the volume averaging over the sample volume.
For calculating the P-wave modulus (ii ¼ 11; 22; 33), a harmonic
displacement on the i direction is applied perpendicularly to a wall
of the model. At the other walls of the model, the normal component
of the displacement is set to zero. For calculating shear components
of the stiffness matrix (ii ¼ 44; 55; 66), the boundary conditions
applied are those of a simple shear test. For the C12ðωÞ, C13ðωÞ,
and C23ðωÞ components (off-diagonal), mixed direct tests are per-
formed. The corresponding inverse quality factor is (O’Connell and
Budiansky, 1978)

1

QijðωÞ
¼ ImðCijðωÞÞ

ReðCijðωÞÞ
; (A-6)

which is used as a measure of attenuation (O’Connell and
Budiansky, 1978). In the simulations, the energy dissipation is
caused by fluid pressure diffusion. The viscous shear relaxation
in the fluid (O’Connell and Budiansky, 1977) is negligible in
our study.

APPENDIX B

ANALYTICAL MODEL OF COLLET AND
GUREVICH (2016)

We compare the results of our numerical simulation against an
anisotropic version of the squirt flow analytical solution of Gure-
vich et al. (2010) proposed by Collet and Gurevich (2016). Here, we
use the formulation presented by Alkhimenkov et al. (2020a). Collet
and Gurevich (2016) consider a double-porosity medium with
aligned identical cracks embedded in a hypothetical background
rock matrix made up of grains and stiff pores only. The crack is
fully described in terms of normal and tangential compliances Zn

and Zt, respectively (Kachanov, 1993; Sayers and Kachanov, 1995;
Schoenberg and Sayers, 1995). They consider the so-called modi-
fied frame in which only the cracks are filled with fluid, whereas the
stiffer pores are empty (Mavko and Jizba, 1991). In the low-fre-

quency limit, the relaxed moduli of the modified
frame are equal to the rock dry moduli (which
means that ZMF

n ¼ Zn); whereas in the high-fre-
quency limit, the fluid in the cracks stiffens the
frame and the unrelaxed moduli of the modified
frame are equal to the dry moduli of the rock
without a compliant porosity (which means that
ZMF
n ¼ 0) (Mavko and Jizba, 1991).
In the analytical solution of Collet and Gure-

vich (2016), the frequency-dependent compli-
ance tensor of the modified frame is written as
(for a vertical transversely isotropic [VTI]
medium)

SMF
mn ðωÞ ¼ Sbmn þ ΔSMF

mn ðωÞ; (B-1)

where Sbmn is the compliance tensor of the rock
matrix and ΔSMF

mn ðωÞ is the additional compli-
ance due to the crack (Schoenberg and Helbig,

1997):

ΔSMF
mn ðωÞ ¼

2
6666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 ZMF
n ðωÞ 0 0 0

0 0 0 Zt 0 0

0 0 0 0 Zt 0

0 0 0 0 0 0

3
7777775
: (B-2)

The frequency-dependent normal fracture compliance is

ZMF
n ðωÞ ¼ Zn

1þ Zn
ϕcð1∕K�

fðωÞ−1∕KgÞ
; (B-3)

where ϕc is the compliant porosity (crack porosity) and Zn is the
normal compliance of the crack. Gurevich et al. (2010) propose
that the stiffness of the crack can be described using a fre-
quency-dependent fluid bulk modulus K�

fðωÞ:

K�
fðωÞ ¼

�
1 −

2J1ðkaÞ
kaJ0ðkrÞ

�
Kf; (B-4)

where Jξ is Bessel function of the first kind (ξ ¼ 0 or ξ ¼ 1 cor-
responds to the zero or first order Bessel function), Kf is the fluid
bulk modulus, a is the radius of the crack, and k is the wavenumber
of the pressure wave:

ka ¼ 1

α

�
−
3iωη
Kf

�
1∕2

; (B-5)

where α is the aspect ratio of the crack (crack thickness divided by
diameter) and η is the viscosity of the fluid. Equations B-4 and B-5
were obtained by imposing a zero fluid pressure boundary condi-
tion (Pf ¼ 0) at the edge of the cylindrical crack (Gurevich et al.,
2010). The frequency-dependent stiffness tensor of the fluid-satu-
rated medium is given by the anisotropic Gassmann’s equa-
tion (Gassmann, 1951):

Csat
mnðωÞ ¼ CMF

mn ðωÞ þ αmαnM; (B-6)

Figure A-1. The element’s size distribution for the big pore model. The element’s size
in the crack is ≈6 × 10−4 m, and in the surrounding grain material it is 7.2 × 10−3 − 4 ×
10−2 m. The element’s size distribution for the other models is similar. The total number
of elements is 1.5 × 106 − 5 × 106 depending on the model configuration, e.g., big/small
pore or full/half/quarter of a model was used.
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αm ¼ 1 −
�X3

n¼1

CMF
mn

�
βg∕3; (B-7)

for m ¼ 1; 2; 3 and α4 ¼ α5 ¼ α6 ¼ 0, and where

M ¼ ðϕβf þ ð1 − ϕÞβg − K�β2gÞ−1; (B-8)

K� ¼ 1

9

X3
m¼1

X3
n¼1

CMF
mn ðωÞ; (B-9)

where ϕ is the total porosity of the medium without the compliant
porosity, K� is the generalized bulk modulus of the modified
frame, βf is the compressibility of the fluid, αm is the Biot-Willis
coefficient, and βg is the compressibility of the grain material.
For the comparison between the analytical solution and the

numerical results, all stiffness properties of the dry medium are cal-
culated numerically (or are the same as in the numerical simulation)
and used as input to the analytical solution. To obtain the normal Zn

and tangential Zt compliances of the crack, we numerically calcu-
late several (homogenized) elastic stiffness tensors of a dry medium
(Figure B-1): a torus embedded into the solid grain material (CVTI

1

stiffness tensor), a crack embedded into a medium described by the
CVTI
1 stiffness tensor (CVTI

2 stiffness tensor), and a torus connected
with a crack embedded into the solid grain material (CVTI

3 stiffness
tensor). Then, all CVTI stiffness tensors are inverted to the corre-
sponding compliance tensors SVTI. For obtaining Zn and Zt there
are two options:
1) Workflow A: Zn and Zt are calculated using the difference

between the SVTI1 compliance tensor and the SVTI2 compliance tensor
(Figure B-1). In this case, we first homogenize the torus (and obtain
CVTI
1 ) and then, embed the crack into this homogenized material

CVTI
1 . Thus, Zn and Zt do not take into account the fact that the

crack is connected with the stiffer pore. This approach is used
by Collet and Gurevich (2016).
2) Workflow B: Zn and Zt are calculated using the difference

between the SVTI1 compliance tensor and the SVTI3 compliance tensor
(Figure B-1). In this case, we also first homogenize the torus
but then embed the crack connected to the torus into the solid

grain material. Thus, the CVTI
3 stiffness tensor

corresponds to the dry stiffness tensor of the
model, so the difference SVTI1 − SVTI3 gives the
correct compliances Zn and Zt for the dry model
(using the homogenized material CVTI

1 ).
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