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Un borne de valeur sans arbitrage, indépendante
d’un modele, d’options sur variance

Résumé : Dans le cadre de Galichon, Henry-Labordére et Touzi [9], nous considérons la borne
sans arbitrage, indépendante d’un modele, étant donné la distribution marginale du sous-jacent.
Nous restreignons d’abord le calcul & un domaine borné. Puis nous proposons un algorithme de
gradient avec projection, combiné & un schéma de différences finies, pour approcher la borne.
Nous obtenons un résultat général de convergence, puis traitons un exemple numérique d’option
sur swap.

Mots-clés :  Option sur variance, borne de prix indépendante d’'un modele, algorithme de
gradient avec projection.



No-arbitrage bound for variance options 3

1 Introduction

In a recent work of Galichon, Henry-Labordere and Touzi [9], the authors proposed a framework
to compute the optimal model-free no-arbitrage price bound of exotic options in a vanilla-
liquid market. Let Q¢ := C([0,7],R?) be the canonical space with canonical process X and
canonical filtration F¢ = (Ff)o<i<T, So be a constant. We denote by P(ds,) the collection of
all probability measures P on (94, .7-'%) under which X is a F¢—martingale and Xy = Sy P—a.s.
As indicated in [9], there is a progressively measurable process (X); which is pathwise defined
and coincides with the P-quadratic variation of X, P-a.s. for every P € P(dg,).

The process X is a candidate of underlying stock price, we do not impose any dynamic assump-
tions on X, but only suppose that it is a martingale. Then for an option with payoff G € }"%,
the upper bound of model-free no-arbitrage price is given by

sup EF [G] .
PEP(6SO )

Suppose in addition that we are in a market where the vanilla options with maturity T are
liquid, so that the investor can identify the marginal distribution p of Xp. In other words, let
¢ € LY(RY, 1), the T—maturity European option with payoff ¢(X7) has a unique no-arbitrage
price

wo) = [ le)ulda).
Rd

Let us use the vanilla option portfolio to hedge G. By buying a portfolio ¢(Xr), we spend p(¢)
and so the payoff at maturity 7' becomes G — ¢(Xr). Therefore, we get a new upper bound
of model-free price: suppep (s, ) EY [G — ¢(X71)] + p(¢). By minimizing on the vanilla option
portfolio ¢, the optimal upper Hound is then given by

. . P o
¢€l]Lnlf(N)Pe§’?12§)so){E (G = ¢(X7)] + u(d)} - (1.1)

As another motivation, we observe that the upper bound (1.1)) is formally the conjugate dual
formulation of problem

sup  EF[G] = sup inf {E"[G—¢(X7)] +n(o)}, (1.2)
PEP (854 .1) PeP(5s,) PEL! (1)

where P(ds,, i) denotes the collection of all martingale probability measures P € P(dg,) such
that X7 ~F 1. We remark that the above equality holds since

EP[G] if Xp ~F g,
—00 otherwise.

inf ){EP[G—qﬁ(XT)} +u(@d)} = {

pEL (1

In this paper, we shall consider in particular the no-arbitrage price bound of variance option in
a similar framework. Let us restrict to the one-dimensional case d = 1 and 77 > T > 0 be two
constants. We define the corresponding canonical space as 2 := C([0,T1],R) and denote still by
X the canonical process, F = (F;)o<i<7, the canonical filtration and by (X) the progressively
measurable process which coincides with the quadratic variation of X under every martingale
probability measure P. Suppose that the vanilla options of maturities Ty, T are liquid such
that we can identify the marginal distribution po (resp. wi1) for Xr, (resp. Xr,). We shall
consider the variance option with payoff

G = g((X)1y,1,Xr,) at maturity 77 for some appropriate function g,

RR n° 7777



4 J.F. Bonnans and X. Tan

where (X) 1, 7, == (X)1, — (X)7,. Let P?(uo) denotes the set of all the probability measures P
on (€, Fr, ) such that X, ~F o and E¥ [(X) 1, 1, | Fr,] < 00, P—a.s., we define the no-arbitrage
price upper bound of variance option G = g({X)1, ,, X1,) by

inf sup  {E" [g((X) 1,70, X1,) — ¢(X7,)] + pa(9) } (1.3)
pcQuad PeP2(uo)

where Quad denotes the set of functions satisfying a quadratic growth condition, i.e.

- : |6(2)]
Quad := { ¢ : R — R such that ilelg Tt [ < oo } (1.4)

Remark 1.1. The main reason to choose Quad is from the observation of Dupire [7] that
variance swap is equivalent to a European option option with payoff X2, see also Remark
and Corollary [3.9.

By the time-change martingale theorem (see e.g. Theorem 3.4.6 of Karatzas and Shreve [12]), we
can establish a correspondence between the set of martingale probability measures on (€, Fr,)
and the set of stopping times on a Brownian motion. In fact, a local martingale Y can be
represented as a time-changed Brownian motion, i.e. ¥; = Wiy, with a Brownian motion W.
On the other hand, given a stopping time 7 on W, the process Y defined by Y; :=W_,_« isa

local martingale between 0 and T'. Therefore, can be formulated as o
U = if a(p) with a(p) := sup E[g(r,W;) —o(W,)] + m(¢), (1.5
#cQuad reT
where W is a Brownian motion such that Wy ~ po and
T = {7’ stopping times such that E[T‘Wo] < 00, a.s.}. (1.6)

We can also derive a dual formulation for (|1.5) following the same arguments as for deriving
(1.2). Let 7 (u1) denote the set of all stopping times 7 € T such that W, ~ pq, then the dual
formulation of (1.5) becomes

sup inf E[g(r, W) = 6(Wo)| +ju(@) = sup E[g(r,W,)]. (1.7)
reT ¢ecQuad €T (1)

Given a Brownian motion W and a distribution u;, the problem of finding stopping time 7
such that W, ~ pq, i.e. 7 € T(p1), is called the Skorokhod Embedding Problem (SEP). Then
our formulation is consistent with Hobson’s [I0] observation of the connection between
the SEP and the problem of optimal no-arbitrage bounds of exotic options in a vanilla-liquid
market.

The SEP and the optimality property of its solutions as well as their applications in finance
are studied in several papers recently, we refer to Obt6j [I5] and Hobson [II] for a survey. In
particular, for the optimization problem (L.7), if g(z,t) = f(t) for some function f defined on
R, it is proved that the maximum is achieved by Root’s embedding when f is concave and by
Rost’s embedding when f is convex (see Root [16] and Rost [17]). However, for general payoff
function g, there is no systematic method to find the optimal value of such problems. That is
also our main motivation to develop a numerical method to solve these problems.

Our main contribution is then to provide a numerical scheme to approximate the bounds for
general variance options.

The rest of the paper is organized as follows: In Section [2, we give an equivalent formulation for
the bound U in (1.5). Then in Sectionwe provide an asymptotic analysis of our approximation,

INRIA



No-arbitrage bound for variance options )

which restrict the calculation of U to a bounded domain. In Section 4] we propose a numerical
scheme which combines the gradient projection algorithm and the finite difference method,
and we give a general convergence result. Finally, Section [f] provides a numerical example on
variance swap.

Notations: Let p be a probability measure on (R, B(R)), we define

uo) = [ olalutde). for every 6 € L' ().

2 An equivalent formulation of the bound

We will fix the payoff function g : (t,x) € Rt xR — g(t,z) € R of the variance option as well as
the marginal distributions g, t1, and then reformulate the price bound problem . To make
the problem be well posed, let us first make some assumptions on the marginal distributions
1o, w1 and the payoff function g.

Assumption 1. The probability measures pg, p1 on R have finite second moment, i.e.
po(do) + p(do) < oo, with ¢o(x) = 2.
Moreover, ug < p1 in the convex order, i.e.
wo(@) < p1(d), for every convex function ¢ defined on R. (2.1)

Remark 2.1. It is shown in Strassen [18] that the convex order inequality is a sufficient
and necessary condition for the existence of a martingale with marginal distributions pg and
at time Ty and T, such that Ty < T7.

In particular, since the identity function I (where I(x) := x) and its opposite —I are both convez,
it follows immediately from that po and pq have the same first moment, i.e. po(I) = pi(I).

Assumption 2. The payoff function g(t,x) is Lo— Lipschitz in (t,x) with constant Ly € RT.

Example 2.2. The most popular variance option is the “variance swap”, whose payoff function
is g(t,x) = t. There exist also “volatility swap” with payoff g(t,z) = \/t, and calls (puts)
on wariance, or volatility, where the payoff function are (t — K)* (K —t)T), or (V/t — K)7T

(K —Vt)t).
In addition to Assumption [2] we give another assumption on the payoff function g.

Assumption 3. The function g(t,x) increases in t, and convex in x for every fived t € RT.
Moreover, for every fived t € RT, g(t,0) = minger g(t, z) and g(t,z) is affine in x on [My, o)
and (—oo, —My] with constant My € RT.

Remark 2.3. Assumption [ may not be crucial given Assumptions [l and[4 As we shall see
later in Corollary let K € R and v be defined on R, denote gx (t, ) := g(t,x) + Kt+1¢(x),
we then have

Ulgrw) = Ulg)+KCo+p(¥),
where U(g) (resp. U(gk,y)) denotes the upper bound of (L.5) associated with the payoff function
g (resp. gry), and

Co = plgo) — po(do), with ¢o(x) = a°. (2.2)
Therefore, for an arbitrary payoff function g, we can consider the payoff function g(t,x) + Kt
which is increasing in t. And this does not change the nature of the upper bound problem (L.5)).

RR n° 7777



6 J.F. Bonnans and X. Tan

Now we shall give an equivalent formulation of the problem (1.5)). Let B = (By);>0 be a standard
one-dimensional Brownian motion such that By = 0, F = (F;)¢>0 be its natural filtration and
T be a set of F—stopping times defined by
7> := {F — stopping time 7 such that E(7) < co}. (2.3)
Given a strategy function ¢ € Quad which is given by (L.4]), we denote
g¢(t,$) = g(t,l’) - ¢(I)7 (24)
and define functions A? : R* x R — R and A} : R — R by
N(t,z) = sup E[g°(t+72+B;)], and AZ(-) := A°(0,). (2.5)
TET >

Then the new formulation of the model-free no-arbitrage price upper bound is given by

U = inf u(¢), with u(d) = po(A\) + (). (2.6)
scQuad

We notice that uo()\g) is well defined under Assumptions |1/ and [2| by the fact that )\g)(x) >
g%(0,z) = g(0,z) — ¢(z) > —C(1 + 2?) for some positive constant C' and that A\?(t,z) is
measurable from the following Lemma.

Lemma 2.4. Let Assumptions and@ hold, then for every ¢ € Quad, the function \*(t,z) is
lower-semicontinuous and hence measurable.

Proof. By Assumption [2] for a fixed ¢ € Quad, there is a constant C € RT such that
| ¢?(t+72+B,) | < C(1+t+7+2"+B}).

Thus for a fixed 7 € T, (t,z) — E[g?(t + 7,x + B;)] is continuous by the dominated con-
vergence theorem together with @ proved below. It follows immediately by its definition
in that A? is lower-semicontinuous since it is represented as the supremum of a family of
continuous function. O

Theorem 2.5. Let Assumptions @ and@ hold. Then the problem (1.5) and (2.6) are equiv-

alent, i.e. U =U.

The proof is a simple consequence of the dynamic programming, we shall report it in Appendix.

Remark 2.6. Here we only give the upper bound formulation. By the symmetry of the set
Quad defined in (1.4), if we reverse the payoff function to —g(t, ), then with the upper bound
U(—g) associated to payoff —g, the value —U(—g) is the lower bound for the payoff g.

When g(t,z) = (t — K)T, i.e. the option is the variance call, Dupire [7], Carr and Lee [6]
proposed a systematic scheme to find a non-optimal bound as well as the associated strategy ¢
in a similar context. In their implemented examples, they showed that their bounds are quite
close to the optimal bounds from Root’s embedding solution.

For general payoff functions g(t,x), when there is no systematic method to solve the problem
, we shall propose a numerical scheme to approximate the optimal ¢ as well as the optimal
upper bound U. In fact, we can easily observe that ¢ — \? is convex since it is represented
as the supremum of a family of linear mapping in (2.5). Thus ¢ — u(¢) is a convex function
and the problem of U in turns out to be a minimization problem of a convex function, as
expected for a dual formulation of . We propose to use the finite difference scheme to solve
u(¢) with every given ¢, and then approximate the minimization problem on ¢ by an iterative
algorithm.

INRIA



No-arbitrage bound for variance options 7

3 Analytic approximation

In order to make the numerical resolution of U in (2.6)) possible, we shall first restrict the
calculations to a bounded domain by some analytic approximations.

3.1 The analytic approximation in four steps

Let us present the analytic approximation in four steps. The first step is to introduce a subset
of Quad defined by

Quad, := { ¢ € Quad non negative, convex, such that ¢(0) =0 },
and then to prove that it is equivalent to optimize on Quad, for problem (2.6).
Proposition 3.1. Let Assumptions @ and@ hold true, then |U| < oo, and

U = ¢E&fado u(®). (3.1)

Our second approximation is on the growth coeflicient of ¢ in Quad,. Let K be a positive
constant, we denote

UK = inf wu(¢) with Quad) := {¢ € Quad, : ¢(z) < K(|z|Vva?) }. (3.2)
peQuad;

By the convexity of functions in Quad,,, we see that every ¢ € Quad,, is in fact locally Lipschitz
continuous, and hence Quad, = U K>0Quad(l,( . Then it follows immediately that

UK U as K — oo (3.3)

The third approximation is on the tail of functions in Quadé( . Given a constant M > My,
where M is given in Assumption [T} we denote

Quadf™ = {oe Quady such that ¢(z) = K2? for |z| > 2M }, (3.4)
and

kM= inf u(Q). (3.5)

peQuad;
Proposition 3.2. Let Assumptions [}, [4 and[3 hold, then
0 < URM-U" < u(dxm), (3.6)
where
Prn(z) = AKM(jz| = M)1yciaj<on + Ka?1sou (3.7)

Clearly, ¢x v € Quadé(’M and for every fixed K > 0, p1(¢x ) — 0 as M — oo when
satisfies Assumption

For the fourth step of the analytic approximation, we first introduce

A¢’T(t, x) = sup E[gd’(t + 7,2+ B;)], /\g’T(-) = A¢’T(O, ),
TeT>®, 7<T—t

RR n° 7777



8 J.F. Bonnans and X. Tan

NOTR(t ) = sup  E[g?(t+ 7,2 + B;)], (3.8)
TET>®, <R
and
NOTR(t 2y = sup E[g®(t + 7,2 + B,)), (3.9)
TET, T<TENT-1)
where

R = inf{s : x+ B, ¢ (—R,R)}.
Lemma 3.3. Let Assumptions[3 and[3 holds true, and Lo, My are given in the Assumptions.

Suppose that K > Lo, M > My and R > (1 + 4/ KfLO)M. Then for every ¢ € Quadé(,M;

N(t,z) = A7 (t,x), and NOT(t,x) = X>TR(t x), VY(t,z)€[0,T] xR.

Given ¢ € Quadé( ’M, we define

gronT , Qinde Lul(9), with uT(¢) == po(\T) + m(g).  (3.10)
eQuad,”

ProEosition 3.4. Let Assumptions[1], [§ and[3 hold, My and Lo be constants given in Assump-

tion|d K > Lo, M = My, R = (14 \/ )M and L= 2(K + 2Lo)(R? V 1), we denote
§ = —log(q(R)) >0, where q(R) := 1 /2R /2 gy
. 7 © V2r ) ar '
Then
0 < UKM_ gKMT o [,—8T-1) (3.11)

Finally, we just remark that U7 in (3.10) is defined via A>T which is equivalent to A\*>T-%
from Lemma Then by Theorem 6.7 of Touzi [19], we can characterized A* 7% as the
viscosity solution of a variational inequality.

Proposition 3.5. The function \>T-% defined in (3.9)) is the unique viscosity solution of vari-
ational inequality

10%X 0O
—sah )(tw) = 0, on [0,T)x (~R,R), (3.12)

min ( A—g?,
with boundary condition
Mt z) = ¢°(t,z), on ([0,T] x {£R}) U ({T} x [-R, R]).

3.2 A first analysis

Before proving the convergence results given in Propositions [3.1] [3:2] and [3.4] we first give two
well-known properties of the stopping times on a Brownian motion and report their proofs for
completeness. We then provide also a first analysis on u(¢) and U in (2.6)).

INRIA
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Lemma 3.6. Let ¢ : (t,z) € RT x R+ 9(t,x) € R be a function Lipschitz in t and satisfying
SUP(¢,2)eR+ xR |’Zl’$f2)‘ < 00. Then for every T € T°°,

E[¢(r,B,)] = tlggo E [ ¢(r At,Brat) |- (3.13)
In particular,
E[B?] = Jim E[B2,,] = Jim E[r At] = E[r] and E[B;] = 0. (3.14)

Proof. Given a stopping time 7 € T°°, let Y; := B,A:. Then by assumptions on 9, there is a
constant C' > 0 such that

G(Bri,TAt) < C(L+Y247) < C(1+sup¥247), Ve 0.
s>0

We notice that (Y;):>0 is a continuous uniformly integrable martingale by its definition, and
E[supszo Yﬂ < 4E[r] < oo by Doob’s inequality. And hence it follows by the dominated
convergence theorem that (3.13) holds true. O

Given T > 0, we denote by 77 the collection of all F—stopping times taking value in [0, 77, i.e.
T' = {7AT:7eT™}. (3.15)
Lemma 3.7. Let ¢ € Quad and denote by ¥°°™ its convex envelope, then

inf E (B, inf E¢(B,) = ¥°"(0), T .
Jof E(Br) —»  inf E¢(B;) = ¢=7(0), as T— oo

Proof. Let a < 0 < b be two constants and 7, := inf {t : B; ¢ (a,b)}. We first notice that
Tap € T°° since E[r, 3] = limys o0 E[745 A t] = limy_00 E[Bfa‘bm] < (a® + b*) < oo. Hence by
(3.14), E[B, ,] = 0, which implies that P(B,, , = a) = ﬁ and P(B;, , = b) = ;=%. Therefore,

inf E(B,) < inf E¢(B,,) = inf (b b W(a) + — w(b)) = p"(0).

TET® a<0<b : a<0<b \b —a b—a
On the other side, for every 7 € T°°, by Jensen’s inequality together with the fact that E[B,] =0
from (3.14)), it follows that <" (z) < E[¢°""(z + B;)] < E[¢(z + B;)], and therefore,

it Bg(B,) = 4(0).

Finally, the convergence of inf crr E¢(B;) to inf ey EY(B;) as T — oo is a direct conse-

quence of (3.13)) in Lemma O

With the above two lemmas, we can now give a first analysis on u(¢) as well as U defined in
£.6).

Corollary 3.8. Let ¢ € Quad and (a,b) € R?, then u(¢) = u(payp), where dqp is given by
Gap(x) = ¢(z) + ax +b.

Proof. By the definition of )\g in (2.5) together with Lemma it follows that )\g"‘b(z) =
A (z) + ax + b. Moreover, as discussed in Remark [2.1} 11o(I) = p1(I) for the identity function
I. Then we get u(¢) = u(¢q,p) by their definitions in (2.6). O

The next result can be viewed as a consequence of Dupire’s [7] observation that variance swap
is equivalent to a European option with payoff function g(z) = 22. We give it in our context.

RR n° 7777



10 J.F. Bonnans and X. Tan

Corollary 3.9. Let Assumptions @ hold true, ¢ € Quad, K € R and ¢(t,z) be the payoff
function, we define another payoff function gi .y by gr.(t, ) = g(t,x) + Kt + ¢(x). Denote
by U(g) (resp. U(gk,p)) the no-arbitrage price upper bound defined in associated with the
payoff function g (resp. gx.). Then

Ulgrw) = Ulg) + KCo + m(¥), (3.16)

where Cy is given by (2.2). In particular, the upper bound of “variance swap” option is Cy, and
the bound of a European option with payoff function ¥(z) is given by u1(¢)).

Proof. Given ¢ € Quad, we denote ¢x () := ¢(x) +1)(x) + Kz? which also belongs to Quad,
then by (3.14)

E[gK7¢(t+T,x+BT)—(bK,w(:c—i—BT)] = H‘E[gqb(t—&—T,gc—l—BT)]—K3027 V1 e T=.

It follows by the definition of U in (2.6]) that U(gx.y) > U(g) + KCo + p1(v). And moreover,
by the arbitrariness of K € R, 1 € Quad and symmetric relationship between g and gg , we

proved (3.16]).

For the last statement, it follows by (3.16)) that we only need to prove that U(g") = 0 with
g = 0. Indeed, with the payoff function ¢° = 0, we get immediately from (2.5 and (2.6)) as
well as Lemma B.7 that

w(@) = — po(@®") + pa(d) = pa(¢%") = po(¢") = 0,
where the last inequality comes from Assumption [Il Finally, we conclude with U(¢°) = 0 by
the fact that u(g®) = 0. O

Remark 3.10. Let us consider the formulation of U in (L.5)). From the definition of T in
(1.6), we see that every stopping time 7 € T conditioned on Wy belongs to T defined in (2.3)).
Then by the same arguments, we have under the same conditions as in Corollary[3.9 that

Ulgkw) = Ulg) + KCo + m(¥),
where U(g) (resp. U(gk.y)) denotes the price bound associated with payoff function g (resp.

gK,p) given in (L.5)).

3.3 Proofs of the convergence
Now we are ready to give the proof of the convergence results in Propositions and

Proof of Proposition [3.1] First, with the positive constant Ly given in Assumption [I} we
have

Moreover, it is clear that U is monotone w.r.t. the payoff function g by its definition in (2.6).
Then it follows by Corollary [3.9] that

11(g(0,9)) < U < wi(g(0,:)) + LoCp, with Cy defined in (2.2).

Next, let us prove the equality (3.1)) for U. Let T € RT, 70 € 77 and ¢ € Quad. By the
dominated convergence theorem, it is easy to see that x — inf .+ E¢(x 4+ B,) is continuous.

INRIA
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This, together with the weak dynamic programming in Theorem 4.1 of Bouchard and Touzi [4],
implies the dynamic programming principle:

ik, B+ 5) = B[ g Elote s Bl
Then for constants 7' > T,
MN(@) = sup E[g’(rz+B,)] > suwp E[g(r,a+B;)—¢x+B,)].
TET™ To<T<T

By the increase of g in ¢t and its convexity in z from Assumption [3] we have
Elg(r,x + B;)|Fr] > E[g(ro,2 + Br)|Fr,] > g(70,2 + Bry),
and hence

M(@) = Elg(r,o+By,)] - E| inf E[g(x+B)|Fs,]|.

To<T<T
Sending T to +oo, by Lemma it follows that
Mo(x) > E[g(r0,2+ Br) — ¢“"(x+ By) |.
Thus, by arbitrariness of 79 in 77 as well as that of T € R, we get
M@ = lim swp E[g(r,z+Br) — ¢“"(x+By) ],

T—o0 T()GTT

= sup E [ g(TO7I+BTU) - ¢conv(I+BT0) ]a
ToET >

where the last equality is a direct consequence of Lemma [3.6] since ¢°°™* is either of quadratic
growth or equals to —oco.

Finally, since ¢ > ¢°™", by the definition of v and U in , it is clear that the infimum in
can be taken on the collection of all convex functions in Quad. Moreover, by the property
of u(¢) in Corollary the infimum can be then taken on the collection of all positive convex
functions ¢ in Quad such that ¢(0) =0, i.e. U = inf¢eQuad0 u(¢). We then proved (3.1). O

Proof of Proposition Let us first recall that every function ¢ € Quadé( is nonnegative,
convex such that ¢(0) = 0 and ¢(x) < K(|z|va?). Given ¢ € Quady, we denote ¢ar := ¢Vox ar-
Clearly, ¢, lies in Quad{f M and A < \? since dp > ¢. It follows from the definition of u(¢)
in (2.6 and positivity of ¢ that

won) — u(@) < pa(dm) — () < o m).

This, together with the arbitrariness of ¢ € Quadé( and the fact that ¢ € Quadé( ’M, concludes
the proof for (3.6). O

In preparation of the proof for Lemma [3.3] and Proposition [3:4 we first give a property for
functions in Quad(lf M

Lemma 3.11. Let Assumptions[q and[3 hold true, Lo, My be the constants given in Assumption
K > Lo, M > My and R = (1+ \/K_ILO )M. Given fized t € R* and ¢ € Quadi™™, we
denote
P(a) = —g%tw) — Lox® = ¢(x) — g(t,x) — Loa”.
Then ¥’ (z) = ¢(x) when x ¢ [-R, R].
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Proof. By Assumption [2] we know that there are constants C;, Cy such that x — g¢(t, x) is
affine with derivative C; when x > M, and affine with derivative C> when x < —M. For fixed
t € RT, let x be a continuous function defined on R by the following: Y is affine on intervals
[-2M,—M], [-M, 0], [0, M], [M,2M] and

x(0) = —g(t0),

X(xM) = —LoM?* — g(t,£M),

X(£2M) = 4(K — Lo)M? — g(t,+2M),

x(x) (K — Lo)z* — g(t,2M) — Ci(z —2M), x>2M,
x(x) (K — Lo)x? — g(t,—2M) — Cy(x +2M), 2z < —2M.

II:unctionIChi(x)

05+

05

Figure 1: An example of function x when M = 1.

By Assumptions [2[ and [3, we can verify that for every ¢ € Quadé("M and the corresponding v
defined in the statement of the lemma,

(@) > x(z), when x € [-2M,2M],
= x(x), when z ¢ [-2M,2M].
Then given x ¢ [—R, R], it follows by a simple calculation that x(y)

> X
every y € R, which implies that x“°"”(x) = x(z). And hence ¥(z) > " (x) > x“"(z) =
x(x) =¢(z) for z ¢ [-R, R). O

Proof of Lemma We shall just show that A? = A% since AT = A\»T'F holds with the
same arguments. Moreover, to prove A? = \*7% it is enough to show that A? < A®7% since its
inverse inequality is obvious from the definition of A?"% in (3.8)).
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First, let us fix t € R and = ¢ (—R, R), we denote v, (y) := —g®(t,y) — Loy + Loxz®. Then by
Lemma we have 2" (z) = 1, (x) = —g®(t,x). And it follows that for every 7 € T°°,
E[g¢*°(t+m2+B,)] < E[g°(t,a+B;) + Lot ]
= E[¢°(t,x+B;) + Lo(z+ B;)? — Loz” |
= —Evu(e+B;) < —¢f™@) = ¢°(t2),  (3.17)

which implies that \?(¢,z) < A®"%(t, x) for every = ¢ (—R, R) since in this case 7% = 0.
Next, for every 7 € T and « € [—R, R], we have according to (3.17) that

E[g*(t+7,2+B;) ]
E [g¢(t+7,x+37)1795} +E {E [°(t+ 72 + Bo)Looys | Foppn ] }

S E [g¢(t+T/\Tfam+BT/\Tf)]a
which implies that A?(¢,z) < A*72 (¢, x) for all z € [~ R, R]. O

Proof of Proposition We first derive an estimate on stopping times inferior to Tf,
borrowed from Carlier and Galichon’s [5] Lemma 5.2. Let = € [—R, R], then for every stopping
time 7 < 7, we have

P(r>T) < P(F>T) < Mi<y<rP(|By — Byo1| <2R) < e 007D, (3.18)

Recall that E[(z + B;)?] = 2® + E[r], V7 < 7 from (8.14). Then by the definitions of A?™#
and AT in (3.9)), for every ¢ € Quad{f’M,

MR, 2) — A TR0,2) < sup E | g®(r,x+ B;) — ¢®(r AT,z + Bopr) ]

T<rR
= sup E [@D(TAT,:UJrBT/\T) —¢(x+ B;,7) ],
<7tk
where (t,z) = —g?(t,x) — Lox? + Lot. Clearly, 1 increases in t and |[¢(t,z1) — ¥(t, z2)| <

2(K +2Lg)(R?V 1), Va1, m3 € [~ R, R] by Assumptions [2| and [3] therefore,
AP (0,2) = A TR0,2) < sup E | |¥(r AT,z + Brar) — (r AT,z + B;)| |

T<rR

= sup E [ |[¢(T,2+ Br) — ¢(T,z+ B;)|1;>7 |
T<rR

< sup 2 (K +2Lg) (R*V1)P(r>T)
T<rhR

S Ijef(s(Tfl)7

where the last inequality is from (3.18)). Finally, by arbitrariness of ¢ € Quadé(’M together with
Lemma we prove (3.11)). O

4 The numerical approximation

We shall propose a numerical method to approximate U7, The idea is to compute \®T-%
with a finite differences numerical scheme, and then solve the minimization problem
with an iterative algorithm. Concretely, we shall first propose a discrete system characterized
by h = (At,Az), on which there is a discrete optimization problem with value U,f( AT Jose
to UKMT  Then we use the gradient projection algorithm to solve the discrete optimization

problem of U,f( MT

RR n° 7777
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4.1 A finite difference approximation

Let T, R > 2M be constants in RT and (I,r,m) € N3, h = (Az, At) € (RT)? such that [At =T,
rAxr = R and mAxz = M. Denote x; = iAx and t; = kAt and define the discrete grid:

N = {a; : i€eZ}, Ngr:= NN[-R,R],
Mrg = {(tr, i) : (ki) € Zt xZ} N ([0,T] x [-R, R]),
The terminal set, boundary set as well as interior set of My g are denoted by
aTMT,R = { (T,:L‘i) r<i<r }, 8RMT,R = { (tm:l:R) P 0<EkE<] },
MT,R = Mrpg\ (OrpMr,rUOr Mo R).
Given a function w(t,r) defined on Mr g, we introduce the discrete derivative of w:

w(ty, Tit1) — 2w(ty, ;) + w(tg, Ti—1)
l)2 t i = .
w(te, z:) Az?

Then with function ¢ defined on N and the notation
97ty i) = g(te, wi) — @(x:) (4.1)

as well as 0 € [0, 1], we define )\f’T’R as the solution of the finite difference scheme of variational
inequality (3.12) on My g:

A:’R(tkﬂaffi) - S\Z’R(tk,mi)

+ 3A8 (0 DA (o w) + (1= 0) DAL (g, 22)) = 0,
/\Z’R(tk,xi) = max ( g‘p(tk,aﬁi) , ;\g’R(tk,xi) ), (tk,xi) S .A;lT7R,
At as) = g% (tk, @), (tk, i) € Or M R UORMrT R.

(4.2)

We notice that the above §—scheme has clearly a unique solution. And it is a consistant scheme
for (3.12)) in sense of Barles and Souganidis [2]. To see this, it is enough to rewrite the second

equation of (4.2)) as
AR _ TR
min()\Z’R—g‘P, % )(tk,xi) =0

We shall assume in addition that the discretization parameters h = (At, Az) satisfy the CFL
condition

At

— <
(1-6) Az?2 —

1. (4.3)
Then the finite difference scheme (4.2) is monotone in sense of [2], and the numerical solution
A2 TR converges to AP TR given ¢ := ¢|x by the results of [2].

Remark 4.1. The discrete system is the 0-scheme for variational inequality with
Dirichlet boundary condition g(x,t) — o(x) on OpMp g UIrMr r. It is well-known that when
the finite difference scheme is explicit (i.e. § = 0) and the CFL condition AA;Q <1 holds, it can
be interpreted as the dynamic programming principle for a system on a Markov chain A (see

e.g. Kushner [T]]). This interpretation holds also true for general 0-scheme, as we shall see
later in the proof of Proposition [[.Z)
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We next introduce a natural approximation of ur(¢) in (3.10):

un () = po(lin®A{T ) + m (lin"e]), (4.4)

where Af:g’R(') = )\}f’T’R(O, -}, and for every function ¢ defined on Ny, we denote by lin[g]

its linear interpolation extended by zero outside [—R, R].

Assumption 4. There are constants (py,p2, Lx pr) € (RT)? which are independent of h =
(At, Ax) such that

/Lo( ‘)\g’T’Rl[_RvR] — hnRP\ﬁ:g’R]’ ) < LK,JVI,T (A.’Epl + Atpz)’ (45)
for every ¢ € Quadf’M and © = np-

Remark 4.2. When 0 = 1, (4.2)) is the implicit scheme for (3.12)), then Assumption |4| holds
true with p; = % and py = i in sprirt of the analysis of Krylov [13].

When 6 = 0 and the CFL condition (4.3)) is true, (4.2) is a monotone explicit scheme, then in

spirit of Barles and Jakobsen [1]], Assumption holds with p; = 1—10 and py = é

Let Quad{f’hM be the collection of all functions on the grid N defined as restrictions of functions

in Quad{M:
Quadg’hM = { ¢:= ¢|n, for some ¢ € Quady ™ }. (4.6)
We can then provide a discrete approximation for U7 in (3.10):

UM .- inf up (). (4.7)
" peQuad; ;"

Let B(NR) be the set of all bounded functions defined on the grid Ng, then clearly
Quad{f}tM = {<p € B(NR) nonnegative, convex satisfying ¢(0) = 0, ¢(x;) = K27,
for all 2m < |i| <7, and |p(z41) — @(x;)| <AKMAz, V—-2m < i< Qm}. (4.8)

Proposition 4.3. Let Assumptions @, hold, then with the same constants Ly v, p1, p2
introduced in Assumption [}

’UK’M’T _ U}f(’M’T’ < Liarr(Dz + At?) + AKRAz + (po + 1) (68), (4.9)
where ¢f(z) :== K155 g

Proof. First, given ¢ € Quadé( M Which is 4K R—Lipschitz, we introduce ¢ := ¢|n, €
Quadéf;LM so that |1inR[<p] — ¢’L°°([7R Ry < 4K RAz. Then it follows by Assumption [4{ that
lur(¢) — un7(¢)| < L ar(AzPt + AtP?) + AKRAT + (po + p1)(6%), and hence

URMT gl < Lievr (AxP + AtP2) + AKRAz + (po + 1) (9%).

Next, given ¢ € Quad{f }IM, we take ¢ := lin®[p] + & € Quadé(’M. It follows by Assumption
that lur(¢) — un ()] < L ar(AzPt + AtP2) + (po + p1)(o%), and therefore,

Ui{,M,T o UK,M,T < LK,M,T (A{L‘pl + Atpz) + (HO + M1)<¢§)
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4.2 Gradient projection algorithm

As we can easily observe from its definition in (2.6]) that ¢ — u(¢) is convex since it is represented

as the supremum of a family of linear map, we shall show that ¢ — up (@) is also convex,
K,M,T

then a natural candidate for the resolution of U, = inf@eQuadg,hM up, () in (4.7) is the
gradient projection algorithm. Recall that B(Ng) denotes the collection of all bounded function
on Nxg.

Proposition 4.4. Under the CFL condition (4.3), the function ¢ — up 1(p) is convez.

Proof. Let us first rewrite the finite differences scheme (4.2]) into a vector system. Denote o :=
TR Y. . (Yo TR -

AL, Ak = (A (tk’xi))—rgigr’ Moo= (Af (tk’xi))—rgigr and g, := (g% (tk, xi))—rgigr €

R?*+1. Let I, denote the (27 + 1) x (2r + 1) identity matrix, IT and by € R?"*+! be defined by

0 0 0 0 0
1 -2 1 0 (=) — A1 (—7)
o 1 -2 1 0
IT:= . . ) bk = : )
1 -2 1 0 0
0 1 =21 ar(r) = Ae41(r)
0 0 0 0 O

and © := [Io41 — GQH]_l [I3741 + (1 — 0)odlI], then scheme (£.2) can be rewritten as
S\k = @/\k+1 + bg, and M\ = S\k V qg. (4.10)

Under CFL condition , we can verify that the above scheme is monotone, i.e. every element
of © is positive, and moreover, ©1 = 1, where 1 := (1,---,1)7 € R?"*!. It follows that © can
be the probability transition matrix of some Markov chain A, whose state space is the grid Ny
with absorbing boundary. Let 'ThR denote the collection of all stopping times 7 on A such that

Ay € N for t < 7, then )\f’T’R can be represented as solutions of an optimal stopping problem
on A:

)\f’T’R(tkaxi) = sup E [QW(ATaT) | Atk =T ]
TETE, >t

Now given a family of stopping times 7, = (7} )_,<i<, in T;%, we introduce the function )\f:g BT
defined on Ng:

)\f:OT,R,‘rh(xi) = E [QW(AWT) ’ Ao = x; ]
Then uy, 7 has an equivalent representation:

up () = sup ﬂ;’ (p) := sup uo(linR[Af:g’R’T’l]) + /Jl(linR[gp]). (4.11)
ThE(TR)2r+1 T €(TR)2r+1

Clearly, for every 7, ¢ — 1", () is linear, and finally it follows by (4.11)) that ¢ — up r(¢) is
convex. O

Remark 4.5. In the above Markov chain system (4.11)), given ¢ € B(NR), let us define an
optimal stopping time 11(p) by

m(p) = inf{tn 0 APTET (0 A) = 6% (0 Ar) (4.12)
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then clearly,

unr(p) = sup  apgle) = af(p). (4.13)
ThE(TH)2r 1

Now we are ready to give the gradient projection algorithm for U,f( MT 4y @.7). Given ¢ €

B(NR), we denote by PQuadK,M [ap] its projection on Quadé(;LM. Of course, such a projection
0,h ’

depends on the norm equipped on B(Ng), which is an important issue to be discussed later.
Let v = (7n)n>0 be a sequence of positive real numbers, we propose the following algorithm:

Algorithm 1. For optimization problem (4.7):
e 1, Let o := dr pm|nn, where ¢ is defined in (3.7).
e 2, Given ¢y, compute up () and a sub-gradient Vup, r(pn).
3, Let n = P, ) n — nv s nj|-
e 3, Let pny1 uad;M [ = Y0 Vun1(on)]
e 4, Go back to step 2.

In the following, we shall discuss essentially three issues: the computation of sub-gradient
Vup, v(p), the projection from B(Ng) to Quadéf ;LM and the convergence of the above gradient
projection algorithm.

4.2.1 Computation of sub-gradient

Let us fix ¢ € B(NRg), we then denote by (p?,5’) the unique solution of the following linear
system on M g:

P (te, z:) = —0ij, (tg,zi) € OrMp rUOrMr R,
P (g, i) — P (e, 1) + 5O (0D?P (g, 2:) + (1 — 0) D?p! (tgy1, 21)) = 0, (4.14)
. ~jt,xi, if)\@’T’Rt ,xi) > g% (tk, x;), ° .
Pt = BT N (0@ 2 00y e W
— ej(x;), otherwise.
. 1, if i=j L
where e; € B(NR) is defined by e;(z;) := 6; ; = i Let p} := p’(0,-).
’ 0, otherwise.
Proposition 4.6. Let CFL condition (4.3) hold true, then the vector
VU}LT(QO) = ( /JJO(hnR[pg)]) + Nl(linR[ejD )72m§j§2m (415)

is a sub-gradient of map ¢ — up ().

Proof. Let us first consider the Markov chain A introduced in the proof of Proposition [£.4 By
(4.13), we have for every perturbation Ap € B(Ng),

_ T A T
un (o +A¢) = Ao+ Ap) > @ (o + Ag),
It follows still by (4.13)) that

un (0 +A¢9) — unrle) = @ (o +Ap) — @i (),
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which implies that
() N\ —Th(p) 4.16
e re) — i) ) (116)

is a sub-gradient of up 1 at ¢ since ¢ — ﬂ;%) (1) is linear by its definition in (4.11).
Finally, by the definition of 7, () in (4.12) as well as (4.2]) and (4.14)), it follows that

Pltez) = — E[e(Anp) | An =i ]
And hence the sub-gradient (4.16) coincides with Vup 1(¢) defined in (4.15). O

4.2.2 Projection
To compute the projection PQuadK,IW from B(Ng) to Quadé(;lM, we still need to specify the
0,h )

norm equipped on B(NRg). In order to make the projection algorithm simple, we shall introduce
an invertible linear map from B(ANr) to R?"*1, then equip on B(Ng) the norm induced by the
classical L?—norm on R?"+1,

Let L : B(Ng) — R?"™! be defined by

p(zi) — @(zim1), for 0 <i < 2m,
& = ¢(x0), for i =0, (4.17)
p(xi) — p(zi-1), for —2m <i<0.

We define the norm |- |r on B(NR) (easily be verified) by
|90|R = |LR(90)|L2(R2T+1)» V(,O € B(NR)
Denote

Eé(’M = {ﬁch : weQuadé(’M}
= {eerR"™ 0=g g < < Euam S4KMAS,

2m —2m

Cri= K@, —a?), V2m<i<rand > &= &=4KM’ }

i=1 i=—1
Then the projection PQua g from B (NR) to Quad? ;LM under norm | - | is equivalent to the
0,h ?

projection from R?*+1 to Eé( ’M, which consists in solving a quadratic minimization problem :

T

& = argfenEliI?M Z (2 — &)?, for a given z € R*" 1, (4.18)
0

1=—r

Clearly, for every z € R+ ¢z = 0 and the above optimization problem (4.18) can be decom-
posed into two optimization problems:

2m —2m
min (2 — &)?  and min (2 — &)2, (4.19)
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where
2m
B = {e= (€icicom : 0S4 <+ <& SAKMAZ, > & = 4K M2},
i=1
—2m
BEM = {fz(mflzizfzm P0<E < <o SAKMAT, Y @=4KM2}.
i1=—1

Here in place of optimization problem (4.19)), we shall consider a similar but more general
optimization problem and give an algorithm for it. Let a = (a;)1<i<m € N™ and A € R such
that 0 < A <> a;, we define

Ky = { §=(Ci)i<icm €ER™ 1 & < <& }7
KA = {g: (E)1<icm € [0,1]™ : iaifi:A } and Ko4 = Ko 0 KA.
=1

The projection Pya.a(2) of z € R™ to K%4 is to solve the optimization problem

m

€u4% = arg min Z ai(z — &)2. (4.20)
EGIC%;A i=1

Similarly, the projection Pyca ( resp. Py ) is defined by the optimization problem (4.20)), where

K%4 in the formula is replaced by K% (resp. KA ), and the projected element %4 is replaced

by &% (vesp. &%)
In the following, we shall show that

Peaa = PeaaoPra = PgaoPxg,
and give the algorithms for both Pga and Pga. With these algorithms, we can deduce easily
an algorithm for the projection PE; E We just remark that similar algorithm to compute the

convex envelope of a function is discussed in Page 143-145 of Edelsbrunner [§]. '
Given a € N™ and z € R™, we define S4* € RXiZ1% by S{* := 2; for 25;11 <k<>J_ | and
a function F** defined on the grid NN [0,1+ >, a;] by

F*(0) = 0 and F*(k) := Y SM*. (4.21)

Lemma 4.7. Let z € R™ such that z, > zpi1, then (E57)r = (€%%)ky1 and (£42%), =
(€52 g1 for €47 = Pre (2) and €447 = Pia.a(2). And therefore, in this case, the projections

P (2) and Pya,a(2) are equivalent to Pga  (Z) and P,Ca,Al(Z) with

a;, 1<i<k-1, zi, 1<i<k—-1,
a; = {ap+agpgr, 1=k, and  Z; = “"ZZ:fi‘;Zifk“’ i=k, (4.22)
a1, k+1<i<m—1, sit, k+1<i<m—1,

a,z - a2 0, A,z S ,a,A,Z . B = 4 =
in sense that S@€%" = S8t and S@€" = §4T where €07 | = Pra (%) and gnAf =
Peos (2).

m—1
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Proof. Given £ € R™ such that {11 > &, there is € > 0 satisfying that {1 = &+ (1+ QZL) .
ék+€a Z:kak+17
&is otherwise,

we will show that

Let é be defined by éz = {

m

Z ai(éi —zl < Z a;( -—zl . (4.23)

i=1 =1

Thus such a ¢ is not optimal since £ € K2 (resp. K%4) implies that & € K2, ( resp. K%4) also.
And therefore, (£%%);, = (€%%),41 and (€447, = (€527 i1
Indeed, - holds since with the above given £ and 5 ,

m m
> oai G-z)? = D ai (§—z)
i=1 i=1
ag 2
= ar (& —2) + anpr (& +( )e = zkt1)
ak+1
— ak Ete—z)® — anp1 (& t+e—z)’
a
= k (ar +agps1) €2 + 2ap e (2 — 2p41) > O.

Ak+1
Finally, the equivalence between Picq (2) (resp. Pyaa(2)) and Pa  (2) (resp. Pya.a (Z)) is
m m m— m—1
from the fact that for every £ such that &, = &1,

-1

Zaz z—&)° = (% — &) + ez} +akzi — (ak + akp)
1

3

(2 + 2r41)?
4 9

7

£i7 ng_17
where & =< &, i=kk+1, O
67;_1, k+2§z§m—l

Lemma gives an algorithm for projection Pa which finishes with less than m steps. And
it simplifies the projection P’C%A.

Algorithm 2. For projection Pxa (2):
e 1, Given system parameters (m,a, z), stop if m = 1.
e 2, Find k such that zi, > 241, stop if it does not exist.

e 3, With the found k in step 2, reduce parameters (m,a,z) to (m — 1,a,2) as in equation
(14.22).

e 4, Go to 1.

Proposition 4.8. Pcaa = Pia.a o Pxa , and for every z € R™, Fo8 (with € = Pyca (2)) is the
convex envelope of F%*, where the functions F»¢ and F** are define in (.21

Proof. Suppose that the entrance data of Algorithmis (m1, a1, 21) and exit data is (ma, az, 22),
then clearly Pya (22) = 2z2. And by Lemma we have S91¢1 = §92:%2 (with & := Picer, (21)

) and Gaiél — gaz.&3 ( with &1 := Pieay.a(21) and &= Pieasa(22) ), from which we deduce
my mo
that, Peo s = Poa 0 Pra .
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To see that F¢ (with £ := Pxa (2) ) is the convex envelope of F*7, it is enough to verify that
at every step in Algorithm F%# ig greater than the convex envelope of F*#. And at the exit,
F%¢ is a convex function. O

Now, we shall prove that P a.a 0 Pica = Pga o Pa , in this order, we just need to show that
for every z € K7, Paa(2) = P,CA (z ) In fact, we shall give an algorithm of projection Pya (2)

for z € K2, and then verify that Pia (2) € KA,

Given v € R, let us denote by z — v the sequence (z; — V)1<i<m, and by z” the sequence
(27 )1<i<m) = (0V (2 =¥) A)i<i<m.

Lemma 4.9. Givenv € R, z € R™, then Pra.a(2) = Pya, A(Z v) and Pica (2) = Pia (z—v). I

addition, if z € K%, then there is v € R such ‘that >oicyaizf = A and Pga (2) = Piaa(2) = zﬁ.
And it follows that P jcaa = Pyeaa 0 Pa = Pa o P .

Proof. To prove that Piaa(z) = Piaa(2 —v) or Pea(2) = Pca(z —v), it is enough to see
that for every £ € R™ such that Y./, a;&; = A,

Zai(zi—y—&)Q = ai(zi — €)% + Z/QZCLZ - 2y<2:czzzZ )
i=1

For the existence of 7, we remark that v+ > a;z! is continuous, and that 0 < A < " | a;
is supposed at the beginning of the section. Clearly, by its definition, z¥ is the projected element
of 2 — v to [0,1]™ in sense that { = 2” minimizes Y -, a;(2; — v — &;)? among all £ € [0, 1]™
Then for z € K2, it is easy to verify that 2 € K%4 C K4 C [0,1]™ with the found ©. Therefore

PIC;A,L(Z):PIC,“,;A(Z):PK:;‘,‘L(Z_ZA/):P)C%,A(Z—ZA/):ZD. 0

'MS

=1

Algorithm 3. To find U such that Y ;- a;z! = A:
e 1, Set zyp = —00 and zpy, 41 = .

e 2, Find the mazimum k such that Y ;- a;z;*" > A and Y"1 a;zf* < A, then 2,1 <

e 3, Find the minimum j such that > .-, aizf”ﬁl < Aand 3, czi,>sl7-”71 > A, then
Zj-lSﬁSZj.;,_l—l.

Z;”:j+l ai+ZZ:k aizi—A

o J, Setv = ST when k < j, and U = zp_1 when k =75+ 1.
By the way how to find k and j, we can easily have k < j + 1, then step 4 of Algorithm
0, ifi<k-—1,
gives the right 7 since 2/ = ¢ 1, ifi>j+1, for k, j found in step 2 and 3, and hence for
z; — U, otherwise.
k § j’

j N M e+ aiz— A
Zai(zi_ﬁ) + Z =4 = b = 2izj+1 Dizk .

V= J
i=k i=j+1 i=k i

Finally, we propose the following algorithm for projection P, uadM:
0,h

Algorithm 4. For projection P, uad M in (4.18):
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Figure 2: An illustration of Algorithm

e 1, Compute the convex envelope ¢ of ¢ on [0,2M] and on [—2M,0].
o 2, Set z = LR(P|ny), use Algorithm@ to compute Pyrc.m (w).

o 3 Let PQuadK‘M(QO) = ,C;;PE:;(,M (z)
0,h

4.2.3 Convergence rate

We shall give a convergence rate for the gradient projection algorithm. In preparation, let us
first give a bound for the sub-gradients Vuy, 7.

Proposition 4.10. Let @1, 2 € B(NR), then under the CFL condition (4.3),

| unr(p1) = unz(p2) | < 2101 = p2loos (4.24)
and it follows that

[oM
Vunr()], < 2v2m+1 = 2 R Vo € B(NR). (4.25)

Proof. Under the CFL condition (4.3), the §—scheme is monotone, which implies that |/\f’T’R’“’1 -

)\f’T’R”“D2 oo < |‘<p1 — 200, and hence by the definition of uy 7 in (4.4)), (4.24) holds true.
Next, denote &' := Lr (i), i = 1,2, then by Cauchy-Schwarz inequality,

—2m

2m
1 = galoe < max (|6l =2, D Jel 2] ) < VIm - ||¢! — €,
i=0 =0

INRIA
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which implies immediately (4.25)). O

Finally, let us finish this section by providing a convergence rate of the proposed gradient
projection algorithm. Denote

o = max lo1 —@o|% < 4m (AKMAz)? < 64K M3Ax,
o1.p2€Quady’

then from Section 5.3.1 of Ben-Tal and Nemirovski[3], we have the convergence rate:

N 2
. K,M,T & + 3., | Vunr(on)|,
min upr(pn) — U, <
h,T(¥n h — N
nsN 2 Zn:1 Tn

32K2M3*Ax + (44 +2) N yg.
25:1 Tn

(4.26)

For the sequence v = (7yp)n>1, there are several choices:

e Divergent Series : vy, > 0, Zzo:l Yn = 400 and 270:3:1 72 < 4o00. We get convergence as
N — oo.

e Optimal stepsizes : 7y, = ﬁ, we have by [3] that
Uh,T(Pn R n

16K My/2M? + MAx
VN '

. K,M,T
g}\}uh,T(sﬂn) - U, < 0(1)

5 Numerical example

As shown in Corollary the model-free price upper bound of variance swap is Cy defined
in (2.2). Let (Si);>0 follow the Black-Scholes dynamics dS; = ¢0S;dW;, where (W;)i>0 is a
standard Brownian motion, and po ~ S% and p1 ~ S1. Then

1
2

1
Co = E(Sffsé) = IE/ o?SZdt = %(;253.

We set o = 0.2, Sy = 1, it follows that Cy = 0.02. In our implemented example, with a 2.40GHz
CPU computer, it takes 57.24 seconds to finish 4 x 10* iterations, and we get the numerical
upper bound 0.2019, i.e. the relative error is less than 1 %, see also Figure

6 Appendix

We give a proof for Theorem [2.5] where we use the weak dyanmic progrmming technique
proposed in Bouchard and Touzi [4].

Proof of Theorem [2.51 We first introduce

T = inf  a(¢) and (TR inf (o),
pcQuad’ pcQuad ™
and we claim that
a(¢) = u(¢), Vo€ Quadi ", (6.1)
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Figure 3: Numerical result for variance swap with approximation parameters: T'= 0.1, K =1,
M =1, R=2, At =0.002, Az = 0.1 and v,, = /n.

which implies that UK’M = UKM_ (learly, by the same arguments as in (3.3)) and Proposition
we have U — U and T = T as (K, M) — oo. It follows that U = U.

Therefore, it is enough to prove to conclude, which is in fact a dynamic programming
principle for @ defined in . Moreover, by the dominated convergence theorem, A? "% defined
in is a continuous function for every ¢ € Quad. Hence A? is continuous for every ¢ €
QuadO’M by Lemma Therefore, it is enough to derive a weak dynamic programming
principle following Bouchard and Touzi [4].

Let ¢ € Quadé( M+ e T which is defined in , since the stopping time 7 conditioned on
Wy belongs to 7°°, then by a simple conditioning argument, E[g¢(7’, WT)] > uo()\g’), which
implies that u(¢) < @(¢). On the other hand, as in the proof of Theorem 4.1 in [4], for every
€ > 0, there is a countable subdivision A = (A,),>1 of R, a sequence of stopping times (75),>1
in 7°° such that E[(¢%(75,2 + Bye)] < Ao (x) + ¢, Vo € A,. We then construct 7¢ € T by
TE(W) 1= 3005 75 (W —Wo)lwyea, , o that E[g? (75, Wre)] < po(A§) +e. By the arbitrariness
of € > 0, we then get u(¢) < ,ug()\g) + p1(¢) = u(¢), and hence establish which concludes
the proof of Proposition. O

n?
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