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Équipes-Projets Commands

Rapport de recherche n➦ 7777 — Octobre 2011 — 25 pages

Abstract: In the framework of Galichon, Henry-Labordère and Touzi [9], we consider the
model-free no-arbitrage bound of variance option given the marginal distributions of the under-
lying asset. We first make some approximations which restrict the computation on a bounded
domain. Then we propose a gradient projection algorithm together with a finite difference
scheme to approximate the bound. The general convergence result is obtained. We also provide
a numerical example on the variance swap option.

Key-words: Variance option, model-free price bound, gradient projection algorithm.

∗ We thank Nizar Touzi (CMAP) for fruitful discussions.
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d’Énergie, France (Frederic.Bonnans@inria.fr).
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Un borne de valeur sans arbitrage, indépendante

d’un modèle, d’options sur variance

Résumé : Dans le cadre de Galichon, Henry-Labordère et Touzi [9], nous considérons la borne
sans arbitrage, indépendante d’un modèle, étant donné la distribution marginale du sous-jacent.
Nous restreignons d’abord le calcul à un domaine borné. Puis nous proposons un algorithme de
gradient avec projection, combiné à un schéma de différences finies, pour approcher la borne.
Nous obtenons un résultat général de convergence, puis traitons un exemple numérique d’option
sur swap.

Mots-clés : Option sur variance, borne de prix indépendante d’un modèle, algorithme de
gradient avec projection.
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1 Introduction

In a recent work of Galichon, Henry-Labordère and Touzi [9], the authors proposed a framework
to compute the optimal model-free no-arbitrage price bound of exotic options in a vanilla-
liquid market. Let Ωd := C([0, T ],Rd) be the canonical space with canonical process X and
canonical filtration F

d = (Fd
t )0≤t≤T , S0 be a constant. We denote by P(δS0

) the collection of
all probability measures P on (Ωd,Fd

T ) under which X is a F
d−martingale and X0 = S0 P−a.s.

As indicated in [9], there is a progressively measurable process 〈X〉t which is pathwise defined
and coincides with the P-quadratic variation of X, P-a.s. for every P ∈ P(δS0

).
The process X is a candidate of underlying stock price, we do not impose any dynamic assump-
tions on X, but only suppose that it is a martingale. Then for an option with payoff G ∈ Fd

T ,
the upper bound of model-free no-arbitrage price is given by

sup
P∈P(δS0

)

E
P
[

G
]

.

Suppose in addition that we are in a market where the vanilla options with maturity T are
liquid, so that the investor can identify the marginal distribution µ of XT . In other words, let
φ ∈ L

1(Rd, µ), the T−maturity European option with payoff φ(XT ) has a unique no-arbitrage
price

µ(φ) :=

∫

Rd

φ(x)µ(dx).

Let us use the vanilla option portfolio to hedge G. By buying a portfolio φ(XT ), we spend µ(φ)
and so the payoff at maturity T becomes G − φ(XT ). Therefore, we get a new upper bound
of model-free price: sup

P∈P(δS0
) E

P
[

G − φ(XT )
]

+ µ(φ). By minimizing on the vanilla option
portfolio φ, the optimal upper bound is then given by

inf
φ∈L1(µ)

sup
P∈P(δS0

)

{

E
P
[

G− φ(XT )
]

+ µ(φ)
}

. (1.1)

As another motivation, we observe that the upper bound (1.1) is formally the conjugate dual
formulation of problem

sup
P∈P(δS0

,µ)

E
P
[

G
]

= sup
P∈P(δS0

)

inf
φ∈L1(µ)

{

E
P
[

G− φ(XT )
]

+ µ(φ)
}

, (1.2)

where P(δS0
, µ) denotes the collection of all martingale probability measures P ∈ P(δS0

) such
that XT ∼P µ. We remark that the above equality holds since

inf
φ∈L1(µ)

{

E
P
[

G− φ(XT )
]

+ µ(φ)
}

=

{

E
P[G] if XT ∼P µ,

−∞ otherwise.

In this paper, we shall consider in particular the no-arbitrage price bound of variance option in
a similar framework. Let us restrict to the one-dimensional case d = 1 and T1 > T0 ≥ 0 be two
constants. We define the corresponding canonical space as Ω := C([0, T1],R) and denote still by
X the canonical process, F = (Ft)0≤t≤T1

the canonical filtration and by 〈X〉 the progressively
measurable process which coincides with the quadratic variation of X under every martingale
probability measure P. Suppose that the vanilla options of maturities T0, T1 are liquid such
that we can identify the marginal distribution µ0 (resp. µ1) for XT0

(resp. XT1
). We shall

consider the variance option with payoff

G := g(〈X〉T0,T1
, XT1

) at maturity T1 for some appropriate function g,

RR n➦ 7777



4 J.F. Bonnans and X. Tan

where 〈X〉T0,T1
:= 〈X〉T1

− 〈X〉T0
. Let P2(µ0) denotes the set of all the probability measures P

on (Ω,FT1
) such that XT0

∼P µ0 and E
P
[

〈X〉T0,T1

∣

∣FT0

]

<∞, P−a.s., we define the no-arbitrage
price upper bound of variance option G = g(〈X〉T0,T1

, XT1
) by

inf
φ∈Quad

sup
P∈P2(µ0)

{

E
P
[

g(〈X〉T0,T1
, XT1

) − φ(XT1
)
]

+ µ1(φ)
}

, (1.3)

where Quad denotes the set of functions satisfying a quadratic growth condition, i.e.

Quad :=
{

φ : R → R such that sup
x∈R

|φ(x)|
1 + |x|2 <∞

}

. (1.4)

Remark 1.1. The main reason to choose Quad is from the observation of Dupire [7] that
variance swap is equivalent to a European option option with payoff X2

T , see also Remark 2.3
and Corollary 3.9.

By the time-change martingale theorem (see e.g. Theorem 3.4.6 of Karatzas and Shreve [12]), we
can establish a correspondence between the set of martingale probability measures on (Ω,FT1

)
and the set of stopping times on a Brownian motion. In fact, a local martingale Y can be
represented as a time-changed Brownian motion, i.e. Yt = W〈Y 〉t with a Brownian motion W .
On the other hand, given a stopping time τ on W , the process Y defined by Yt := Wτ∧ t

T−t
is a

local martingale between 0 and T . Therefore, (1.3) can be formulated as

U := inf
φ∈Quad

ū(φ) with ū(ϕ) := sup
τ∈T

E
[

g(τ,Wτ ) − φ(Wτ )
]

+ µ1(φ), (1.5)

where W is a Brownian motion such that W0 ∼ µ0 and

T :=
{

τ stopping times such that E
[

τ
∣

∣W0

]

<∞, a.s.
}

. (1.6)

We can also derive a dual formulation for (1.5) following the same arguments as for deriving
(1.2). Let T (µ1) denote the set of all stopping times τ ∈ T such that Wτ ∼ µ1, then the dual
formulation of (1.5) becomes

sup
τ∈T

inf
φ∈Quad

E

[

g(τ,Wτ ) − φ(Wτ )
]

+ µ1(φ) = sup
τ∈T (µ1)

E
[

g(τ,Wτ )
]

. (1.7)

Given a Brownian motion W and a distribution µ1, the problem of finding stopping time τ
such that Wτ ∼ µ1, i.e. τ ∈ T (µ1), is called the Skorokhod Embedding Problem (SEP). Then
our formulation (1.5) is consistent with Hobson’s [10] observation of the connection between
the SEP and the problem of optimal no-arbitrage bounds of exotic options in a vanilla-liquid
market.
The SEP and the optimality property of its solutions as well as their applications in finance
are studied in several papers recently, we refer to Ob lój [15] and Hobson [11] for a survey. In
particular, for the optimization problem (1.7), if g(x, t) = f(t) for some function f defined on
R

+, it is proved that the maximum is achieved by Root’s embedding when f is concave and by
Röst’s embedding when f is convex (see Root [16] and Rost [17]). However, for general payoff
function g, there is no systematic method to find the optimal value of such problems. That is
also our main motivation to develop a numerical method to solve these problems.
Our main contribution is then to provide a numerical scheme to approximate the bounds for
general variance options.

The rest of the paper is organized as follows: In Section 2, we give an equivalent formulation for
the bound U in (1.5). Then in Section 3 we provide an asymptotic analysis of our approximation,

INRIA



No-arbitrage bound for variance options 5

which restrict the calculation of U to a bounded domain. In Section 4, we propose a numerical
scheme which combines the gradient projection algorithm and the finite difference method,
and we give a general convergence result. Finally, Section 5 provides a numerical example on
variance swap.

Notations: Let µ be a probability measure on (R,B(R)), we define

µ(φ) :=

∫

R

φ(x)µ(dx), for every φ ∈ L
1(µ).

2 An equivalent formulation of the bound

We will fix the payoff function g : (t, x) ∈ R
+×R 7→ g(t, x) ∈ R of the variance option as well as

the marginal distributions µ0, µ1, and then reformulate the price bound problem (1.5). To make
the problem be well posed, let us first make some assumptions on the marginal distributions
µ0, µ1 and the payoff function g.

Assumption 1. The probability measures µ0, µ1 on R have finite second moment, i.e.

µ0(φ0) + µ1(φ0) < ∞, with φ0(x) := x2.

Moreover, µ0 ≤ µ1 in the convex order, i.e.

µ0(φ) ≤ µ1(φ), for every convex function φ defined on R. (2.1)

Remark 2.1. It is shown in Strassen [18] that the convex order inequality (2.1) is a sufficient
and necessary condition for the existence of a martingale with marginal distributions µ0 and µ1

at time T0 and T1 such that T0 < T1.
In particular, since the identity function I (where I(x) := x) and its opposite −I are both convex,
it follows immediately from (2.1) that µ0 and µ1 have the same first moment, i.e. µ0(I) = µ1(I).

Assumption 2. The payoff function g(t, x) is L0−Lipschitz in (t, x) with constant L0 ∈ R
+.

Example 2.2. The most popular variance option is the “variance swap”, whose payoff function
is g(t, x) = t. There exist also “volatility swap” with payoff g(t, x) =

√
t, and calls (puts)

on variance, or volatility, where the payoff function are (t − K)+ ((K − t)+), or (
√
t − K)+

((K −
√
t)+).

In addition to Assumption 2, we give another assumption on the payoff function g.

Assumption 3. The function g(t, x) increases in t, and convex in x for every fixed t ∈ R
+.

Moreover, for every fixed t ∈ R
+, g(t, 0) = minx∈R g(t, x) and g(t, x) is affine in x on [M0,∞)

and (−∞,−M0] with constant M0 ∈ R
+.

Remark 2.3. Assumption 3 may not be crucial given Assumptions 1 and 2. As we shall see
later in Corollary 3.9, let K ∈ R and ψ be defined on R, denote gK,ψ(t, x) := g(t, x)+Kt+ψ(x),
we then have

U(gK,ψ) = U(g) +KC0 + µ1(ψ),

where U(g) (resp. U(gK,ψ)) denotes the upper bound of (1.5) associated with the payoff function
g (resp. gK,ψ), and

C0 := µ1(φ0) − µ0(φ0), with φ0(x) := x2. (2.2)

Therefore, for an arbitrary payoff function g, we can consider the payoff function g(t, x) + Kt
which is increasing in t. And this does not change the nature of the upper bound problem (1.5).

RR n➦ 7777



6 J.F. Bonnans and X. Tan

Now we shall give an equivalent formulation of the problem (1.5). Let B = (Bt)t≥0 be a standard
one-dimensional Brownian motion such that B0 = 0, F = (Ft)t≥0 be its natural filtration and
T ∞ be a set of F−stopping times defined by

T ∞ :=
{

F− stopping time τ such that E(τ) <∞
}

. (2.3)

Given a strategy function φ ∈ Quad which is given by (1.4), we denote

gφ(t, x) := g(t, x) − φ(x), (2.4)

and define functions λφ : R+ × R → R and λφ0 : R → R by

λφ(t, x) := sup
τ∈T ∞

E
[

gφ(t+ τ, x+Bτ )
]

, and λφ0 (·) := λφ(0, ·). (2.5)

Then the new formulation of the model-free no-arbitrage price upper bound is given by

U := inf
φ∈Quad

u(φ), with u(φ) := µ0(λφ0 ) + µ1(φ). (2.6)

We notice that µ0(λφ0 ) is well defined under Assumptions 1 and 2, by the fact that λφ0 (x) ≥
gφ(0, x) = g(0, x) − φ(x) ≥ −C(1 + x2) for some positive constant C and that λφ(t, x) is
measurable from the following Lemma.

Lemma 2.4. Let Assumptions 1 and 2 hold, then for every φ ∈ Quad, the function λφ(t, x) is
lower-semicontinuous and hence measurable.

Proof. By Assumption 2, for a fixed φ ∈ Quad, there is a constant C ∈ R
+ such that

∣

∣ gφ(t+ τ, x+Bτ )
∣

∣ ≤ C
(

1 + t+ τ + x2 +B2
τ

)

.

Thus for a fixed τ ∈ T ∞, (t, x) 7→ E
[

gφ(t + τ, x + Bτ )
]

is continuous by the dominated con-
vergence theorem together with (3.14) proved below. It follows immediately by its definition
in (2.5) that λφ is lower-semicontinuous since it is represented as the supremum of a family of
continuous function.

Theorem 2.5. Let Assumptions 1, 2 and 3 hold. Then the problem (1.5) and (2.6) are equiv-
alent, i.e. U = U .

The proof is a simple consequence of the dynamic programming, we shall report it in Appendix.

Remark 2.6. Here we only give the upper bound formulation. By the symmetry of the set
Quad defined in (1.4), if we reverse the payoff function to −g(t, x), then with the upper bound
U(−g) associated to payoff −g, the value −U(−g) is the lower bound for the payoff g.

When g(t, x) = (t − K)+, i.e. the option is the variance call, Dupire [7], Carr and Lee [6]
proposed a systematic scheme to find a non-optimal bound as well as the associated strategy φ
in a similar context. In their implemented examples, they showed that their bounds are quite
close to the optimal bounds from Root’s embedding solution.
For general payoff functions g(t, x), when there is no systematic method to solve the problem
(2.6), we shall propose a numerical scheme to approximate the optimal φ as well as the optimal
upper bound U . In fact, we can easily observe that φ 7→ λφ is convex since it is represented
as the supremum of a family of linear mapping in (2.5). Thus φ 7→ u(φ) is a convex function
and the problem of U in (2.6) turns out to be a minimization problem of a convex function, as
expected for a dual formulation of (1.7). We propose to use the finite difference scheme to solve
u(φ) with every given φ, and then approximate the minimization problem on φ by an iterative
algorithm.

INRIA



No-arbitrage bound for variance options 7

3 Analytic approximation

In order to make the numerical resolution of U in (2.6) possible, we shall first restrict the
calculations to a bounded domain by some analytic approximations.

3.1 The analytic approximation in four steps

Let us present the analytic approximation in four steps. The first step is to introduce a subset
of Quad defined by

Quad0 :=
{

φ ∈ Quad non negative, convex, such that φ(0) = 0
}

,

and then to prove that it is equivalent to optimize on Quad0 for problem (2.6).

Proposition 3.1. Let Assumptions 1, 2 and 3 hold true, then |U | <∞, and

U = inf
φ∈Quad

0

u(φ). (3.1)

Our second approximation is on the growth coefficient of φ in Quad0. Let K be a positive
constant, we denote

UK := inf
φ∈QuadK

0

u(φ) with QuadK0 :=
{

φ ∈ Quad0 : φ(x) ≤ K(|x| ∨ x2)
}

. (3.2)

By the convexity of functions in Quad0, we see that every φ ∈ Quad0 is in fact locally Lipschitz
continuous, and hence Quad0 = ∪K>0QuadK0 . Then it follows immediately that

UK ց U as K −→ ∞. (3.3)

The third approximation is on the tail of functions in QuadK0 . Given a constant M ≥ M0,
where M0 is given in Assumption 1, we denote

QuadK,M0 :=
{

φ ∈ QuadK0 such that φ(x) = Kx2 for |x| ≥ 2M
}

, (3.4)

and

UK,M := inf
φ∈QuadK,M

0

u(φ). (3.5)

Proposition 3.2. Let Assumptions 1, 2 and 3 hold, then

0 ≤ UK,M − UK ≤ µ1(φK,M ), (3.6)

where

φK,M (x) := 4KM(|x| −M)1M≤|x|≤2M + Kx21|x|>2M . (3.7)

Clearly, φK,M ∈ QuadK,M0 and for every fixed K > 0, µ1(φK,M ) → 0 as M → ∞ when µ1

satisfies Assumption 1.

For the fourth step of the analytic approximation, we first introduce

λφ,T (t, x) := sup
τ∈T ∞, τ≤T−t

E[gφ(t+ τ, x+Bτ )], λφ,T0 (·) := λφ,T (0, ·),

RR n➦ 7777



8 J.F. Bonnans and X. Tan

λφ,τR(t, x) := sup
τ∈T ∞, τ≤τR

x

E[gφ(t+ τ, x+Bτ )], (3.8)

and

λφ,T,R(t, x) := sup
τ∈T ∞, τ≤τR

x ∧(T−t)
E[gφ(t+ τ, x+Bτ )], (3.9)

where
τRx := inf{s : x+Bs /∈ (−R,R)}.

Lemma 3.3. Let Assumptions 2 and 3 holds true, and L0, M0 are given in the Assumptions.

Suppose that K > L0, M ≥M0 and R ≥
(

1 +
√

K
K−L0

)

M . Then for every φ ∈ QuadK,M0 ,

λφ(t, x) = λφ,τR(t, x), and λφ,T (t, x) = λφ,T,R(t, x), ∀(t, x) ∈ [0, T ] × R.

Given φ ∈ QuadK,M0 , we define

UK,M,T := inf
φ∈QuadK,M

0

uT (φ), with uT (φ) := µ0(λφ,T0 ) + µ1(φ). (3.10)

Proposition 3.4. Let Assumptions 1, 2 and 3 hold, M0 and L0 be constants given in Assump-

tion 2, K > L0, M ≥M0, R =
(

1 +
√

K
K−L0

)

M and L = 2(K + 2L0)(R2 ∨ 1), we denote

δ := − log(q(R)) > 0, where q(R) :=
1√
2π

∫ 2R

−2R

e−x
2/2 dx.

Then

0 ≤ UK,M − UK,M,T ≤ Le−δ(T−1). (3.11)

Finally, we just remark that UK,M,T in (3.10) is defined via λφ,T which is equivalent to λφ,T,R

from Lemma 3.3. Then by Theorem 6.7 of Touzi [19], we can characterized λφ,T,R as the
viscosity solution of a variational inequality.

Proposition 3.5. The function λφ,T,R defined in (3.9) is the unique viscosity solution of vari-
ational inequality

min
(

λ− gφ, − 1

2

∂2λ

∂x2
− ∂λ

∂t

)

(t, x) = 0, on [0, T ) × (−R,R), (3.12)

with boundary condition

λ(t, x) = gφ(t, x), on
(

[0, T ] × {±R}
)

∪
(

{T} × [−R,R]
)

.

3.2 A first analysis

Before proving the convergence results given in Propositions 3.1, 3.2 and 3.4, we first give two
well-known properties of the stopping times on a Brownian motion and report their proofs for
completeness. We then provide also a first analysis on u(φ) and U in (2.6).

INRIA



No-arbitrage bound for variance options 9

Lemma 3.6. Let ψ : (t, x) ∈ R
+ × R 7→ ψ(t, x) ∈ R be a function Lipschitz in t and satisfying

sup(t,x)∈R+×R

|ψ(t,x)|
1+x2 <∞. Then for every τ ∈ T ∞,

E
[

ψ(τ,Bτ )
]

= lim
t→∞

E
[

ψ(τ ∧ t, Bτ∧t)
]

. (3.13)

In particular,

E[B2
τ ] = lim

t→∞
E[B2

τ∧t] = lim
t→∞

E[τ ∧ t] = E[τ ] and E[Bτ ] = 0. (3.14)

Proof. Given a stopping time τ ∈ T ∞, let Yt := Bτ∧t. Then by assumptions on ψ, there is a
constant C > 0 such that

ψ(Bτ∧t, τ ∧ t) ≤ C
(

1 + Y 2
t + τ

)

≤ C
(

1 + sup
s≥0

Y 2
s + τ

)

, ∀t ≥ 0.

We notice that (Yt)t≥0 is a continuous uniformly integrable martingale by its definition, and
E
[

sups≥0 Y
2
s

]

≤ 4E[τ ] < ∞ by Doob’s inequality. And hence it follows by the dominated
convergence theorem that (3.13) holds true.

Given T > 0, we denote by T T the collection of all F−stopping times taking value in [0, T ], i.e.

T T :=
{

τ ∧ T : τ ∈ T ∞}

. (3.15)

Lemma 3.7. Let ψ ∈ Quad and denote by ψconv its convex envelope, then

inf
τ∈T T

E ψ(Bτ ) → inf
τ∈T ∞

E ψ(Bτ ) = ψconv(0), as T → ∞.

Proof. Let a ≤ 0 ≤ b be two constants and τa,b := inf
{

t : Bt /∈ (a, b)
}

. We first notice that
τa,b ∈ T ∞ since E[τa,b] = limt→∞ E[τa,b ∧ t] = limt→∞ E[B2

τa,b∧t] ≤ (a2 + b2) < ∞. Hence by

(3.14), E[Bτa,b
] = 0, which implies that P(Bτa,b

= a) = b
b−a and P(Bτa,b

= b) = −a
b−a . Therefore,

inf
τ∈T ∞

Eψ(Bτ ) ≤ inf
a<0<b

Eψ(Bτa,b
) = inf

a<0<b

( b

b− a
ψ(a) +

−a
b− a

ψ(b)
)

= ψconv(0).

On the other side, for every τ ∈ T ∞, by Jensen’s inequality together with the fact that E[Bτ ] = 0
from (3.14), it follows that ψconv(x) ≤ E[ψconv(x+Bτ )] ≤ E[ψ(x+Bτ )], and therefore,

inf
τ∈T ∞

Eψ(Bτ ) = ψconv(0).

Finally, the convergence of infτ∈T T Eψ(Bτ ) to infτ∈T ∞ Eψ(Bτ ) as T → ∞ is a direct conse-
quence of (3.13) in Lemma 3.6.

With the above two lemmas, we can now give a first analysis on u(φ) as well as U defined in
(2.6).

Corollary 3.8. Let φ ∈ Quad and (a, b) ∈ R
2, then u(φ) = u(φa,b), where φa,b is given by

φa,b(x) := φ(x) + ax+ b.

Proof. By the definition of λφ0 in (2.5) together with Lemma 3.6, it follows that λ
φa,b

0 (x) =

λφ0 (x) + ax + b. Moreover, as discussed in Remark 2.1, µ0(I) = µ1(I) for the identity function
I. Then we get u(φ) = u(φa,b) by their definitions in (2.6).

The next result can be viewed as a consequence of Dupire’s [7] observation that variance swap
is equivalent to a European option with payoff function g(x) = x2. We give it in our context.
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10 J.F. Bonnans and X. Tan

Corollary 3.9. Let Assumptions 1, 2 hold true, ψ ∈ Quad, K ∈ R and g(t, x) be the payoff
function, we define another payoff function gK,ψ by gK,ψ(t, x) := g(t, x) + Kt + ψ(x). Denote
by U(g) (resp. U(gK,ψ)) the no-arbitrage price upper bound defined in (2.6) associated with the
payoff function g (resp. gK,ψ). Then

U(gK,ψ) = U(g) + KC0 + µ1(ψ), (3.16)

where C0 is given by (2.2). In particular, the upper bound of “variance swap” option is C0, and
the bound of a European option with payoff function ψ(x) is given by µ1(ψ).

Proof. Given φ ∈ Quad, we denote φK,ψ(x) := φ(x)+ψ(x)+Kx2 which also belongs to Quad,
then by (3.14)

E
[

gK,ψ(t+ τ, x+Bτ ) − φK,ψ(x+Bτ )
]

= E
[

gφ(t+ τ, x+Bτ )
]

−Kx2, ∀τ ∈ T ∞.

It follows by the definition of U in (2.6) that U(gK,ψ) ≥ U(g) + KC0 + µ1(ψ). And moreover,
by the arbitrariness of K ∈ R, ψ ∈ Quad and symmetric relationship between g and gK,ψ, we
proved (3.16).

For the last statement, it follows by (3.16) that we only need to prove that U(g0) = 0 with
g0 ≡ 0. Indeed, with the payoff function g0 ≡ 0, we get immediately from (2.5) and (2.6) as
well as Lemma 3.7 that

u(φ) = − µ0(φconv) + µ1(φ) ≥ µ1(φconv) − µ0(φconv) ≥ 0,

where the last inequality comes from Assumption 1. Finally, we conclude with U(g0) = 0 by
the fact that u(g0) = 0.

Remark 3.10. Let us consider the formulation of U in (1.5). From the definition of T in
(1.6), we see that every stopping time τ ∈ T conditioned on W0 belongs to T ∞ defined in (2.3).
Then by the same arguments, we have under the same conditions as in Corollary 3.9 that

U(gK,ψ) = U(g) + KC0 + µ1(ψ),

where U(g) (resp. U(gK,ψ)) denotes the price bound associated with payoff function g (resp.
gK,ψ) given in (1.5).

3.3 Proofs of the convergence

Now we are ready to give the proof of the convergence results in Propositions 3.1, 3.2 and 3.4.

Proof of Proposition 3.1. First, with the positive constant L0 given in Assumption 1, we
have

g(0, x) ≤ g(t, x) ≤ g(0, x) + L0t.

Moreover, it is clear that U is monotone w.r.t. the payoff function g by its definition in (2.6).
Then it follows by Corollary 3.9 that

µ1(g(0, ·)) ≤ U ≤ µ1(g(0, ·)) + L0C0, with C0 defined in (2.2).

Next, let us prove the equality (3.1) for U . Let T ∈ R
+, τ0 ∈ T T and φ ∈ Quad. By the

dominated convergence theorem, it is easy to see that x 7→ infτ∈T T Eφ(x + Bτ ) is continuous.
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This, together with the weak dynamic programming in Theorem 4.1 of Bouchard and Touzi [4],
implies the dynamic programming principle:

inf
τ0≤τ≤T

Eφ(x+Bτ ) = E

[

inf
τ0≤τ≤T

E
[

φ(x+Bτ )
∣

∣Fτ0
]

]

.

Then for constants T̂ > T ,

λφ0 (x) = sup
τ∈T ∞

E
[

gφ(τ, x+Bτ )
]

≥ sup
τ0≤τ≤T̂

E
[

g(τ, x+Bτ ) − φ(x+Bτ )
]

.

By the increase of g in t and its convexity in x from Assumption 3, we have

E
[

g(τ, x+Bτ )
∣

∣Fτ0
]

≥ E
[

g(τ0, x+Bτ )
∣

∣Fτ0
]

≥ g(τ0, x+Bτ0),

and hence

λφ0 (x) ≥ E
[

g(τ0, x+Bτ0)
]

− E

[

inf
τ0≤τ≤T̂

E
[

φ(x+Bτ )
∣

∣Fτ0
]

]

.

Sending T̂ to +∞, by Lemma 3.7, it follows that

λφ0 (x) ≥ E
[

g(τ0, x+Bτ0) − φconv(x+Bτ0)
]

.

Thus, by arbitrariness of τ0 in T T as well as that of T ∈ R
+, we get

λφ0 (x) ≥ lim
T→∞

sup
τ0∈T T

E
[

g(τ0, x+Bτ0) − φconv(x+Bτ0)
]

,

= sup
τ0∈T ∞

E
[

g(τ0, x+Bτ0) − φconv(x+Bτ0)
]

,

where the last equality is a direct consequence of Lemma 3.6 since φconv is either of quadratic
growth or equals to −∞.
Finally, since φ ≥ φconv, by the definition of u and U in (2.6), it is clear that the infimum in
(2.6) can be taken on the collection of all convex functions in Quad. Moreover, by the property
of u(φ) in Corollary 3.8, the infimum can be then taken on the collection of all positive convex
functions φ in Quad such that φ(0) = 0, i.e. U = inf

φ∈Quad
0

u(φ). We then proved (3.1).

Proof of Proposition 3.2. Let us first recall that every function φ ∈ QuadK0 is nonnegative,
convex such that φ(0) = 0 and φ(x) ≤ K(|x|∨x2). Given φ ∈ QuadK0 , we denote φM := φ∨φK,M .
Clearly, φM lies in QuadK,M0 and λφM ≤ λφ since φM ≥ φ. It follows from the definition of u(φ)
in (2.6) and positivity of φ that

u(φM ) − u(φ) ≤ µ1(φM ) − µ1(φ) ≤ µ1(φK,M ).

This, together with the arbitrariness of φ ∈ QuadK0 and the fact that φM ∈ QuadK,M0 , concludes
the proof for (3.6).

In preparation of the proof for Lemma 3.3 and Proposition 3.4, we first give a property for
functions in QuadK,M0 .

Lemma 3.11. Let Assumptions 2 and 3 hold true, L0, M0 be the constants given in Assumption

2, K > L0, M ≥ M0 and R =
(

1 +
√

K
K−L0

)

M . Given fixed t ∈ R
+ and φ ∈ QuadK,M0 , we

denote

ψ(x) := − gφ(t, x) − L0x
2 = φ(x) − g(t, x) − L0x

2.

Then ψconv(x) = ψ(x) when x /∈ [−R,R].
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Proof. By Assumption 2, we know that there are constants C1, C2 such that x 7→ g(t, x) is
affine with derivative C1 when x ≥ M , and affine with derivative C2 when x ≤ −M . For fixed
t ∈ R

+, let χ be a continuous function defined on R by the following: χ is affine on intervals
[−2M,−M ], [−M, 0], [0,M ], [M, 2M ] and































χ(0) := − g(t, 0),

χ(±M) := − L0M
2 − g(t,±M),

χ(±2M) := 4(K − L0)M2 − g(t,±2M),

χ(x) := (K − L0)x2 − g(t, 2M) − C1(x− 2M), x ≥ 2M,

χ(x) := (K − L0)x2 − g(t,−2M) − C2(x+ 2M), x ≤ −2M.

Figure 1: An example of function χ when M = 1.

By Assumptions 2 and 3, we can verify that for every φ ∈ QuadK,M0 and the corresponding ψ
defined in the statement of the lemma,

ψ(x)

{

≥ χ(x), when x ∈ [−2M, 2M ],

= χ(x), when x /∈ [−2M, 2M ].

Then given x /∈ [−R,R], it follows by a simple calculation that χ(y) ≥ χ(x) + χ′(x)(y − x) for
every y ∈ R, which implies that χconv(x) = χ(x). And hence ψ(x) ≥ ψconv(x) ≥ χconv(x) =
χ(x) = ψ(x) for x /∈ [−R,R].

Proof of Lemma 3.3. We shall just show that λφ = λφ,τR , since λφ,T = λφ,T,R holds with the
same arguments. Moreover, to prove λφ = λφ,τR , it is enough to show that λφ ≤ λφ,τR since its
inverse inequality is obvious from the definition of λφ,τR in (3.8).
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First, let us fix t ∈ R
+ and x /∈ (−R,R), we denote ψx(y) := −gφ(t, y)−L0y

2 +L0x
2. Then by

Lemma 3.11, we have ψconvx (x) = ψx(x) = −gφ(t, x). And it follows that for every τ ∈ T ∞,

E
[

gφ(t+ τ, x+Bτ )
]

≤ E
[

gφ(t, x+Bτ ) + L0τ
]

= E
[

gφ(t, x+Bτ ) + L0(x+Bτ )2 − L0x
2
]

= − E ψx(x+Bτ ) ≤ − ψconvx (x) = gφ(t, x), (3.17)

which implies that λφ(t, x) ≤ λφ,τR(t, x) for every x /∈ (−R,R) since in this case τRx = 0.
Next, for every τ ∈ T ∞ and x ∈ [−R,R], we have according to (3.17) that

E
[

gφ(t+ τ, x+Bτ )
]

= E

[

gφ(t+ τ, x+Bτ )1τ≤τR
x

]

+ E

[

E
[

gφ(t+ τ, x+Bτ )1τ>τR
x

∣

∣ Fτ∧τR
x

]

]

≤ E
[

gφ(t+ τ ∧ τRx , x+Bτ∧τR
x

)
]

,

which implies that λφ(t, x) ≤ λφ,τR(t, x) for all x ∈ [−R,R].

Proof of Proposition 3.4. We first derive an estimate on stopping times inferior to τRx ,
borrowed from Carlier and Galichon’s [5] Lemma 5.2. Let x ∈ [−R,R], then for every stopping
time τ ≤ τRx , we have

P(τ ≥ T ) ≤ P
(

τRx ≥ T
)

≤ Π1≤n≤TP
(

|Bn −Bn−1| ≤ 2R
)

≤ e−δ(T−1). (3.18)

Recall that E
[

(x + Bτ )2
]

= x2 + E[τ ], ∀τ ≤ τRx from (3.14). Then by the definitions of λφ,τR

and λφ,T,R in (3.9), for every φ ∈ QuadK,M0 ,

λφ,τR(0, x) − λφ,T,R(0, x) ≤ sup
τ≤τR

x

E
[

gφ(τ, x+Bτ ) − gφ(τ ∧ T, x+Bτ∧T )
]

= sup
τ≤τR

x

E
[

ψ(τ ∧ T, x+Bτ∧T ) − ψ(x+Bτ , τ)
]

,

where ψ(t, x) := −gφ(t, x) − L0x
2 + L0t. Clearly, ψ increases in t and |ψ(t, x1) − ψ(t, x2)| ≤

2(K + 2L0)(R2 ∨ 1), ∀x1, x2 ∈ [−R,R] by Assumptions 2 and 3, therefore,

λφ,τR(0, x) − λφ,T,R(0, x) ≤ sup
τ≤τR

x

E
[ ∣

∣ψ(τ ∧ T, x+Bτ∧T ) − ψ(τ ∧ T, x+Bτ )
∣

∣

]

= sup
τ≤τR

x

E
[ ∣

∣ψ(T, x+BT ) − ψ(T, x+Bτ )
∣

∣1τ≥T
]

≤ sup
τ≤τR

x

2 (K + 2L0) (R2 ∨ 1) P(τ ≥ T )

≤ Le−δ(T−1),

where the last inequality is from (3.18). Finally, by arbitrariness of φ ∈ QuadK,M0 together with
Lemma 3.3, we prove (3.11).

4 The numerical approximation

We shall propose a numerical method to approximate UK,M,T . The idea is to compute λφ,T,R

with a finite differences numerical scheme, and then solve the minimization problem (3.10)
with an iterative algorithm. Concretely, we shall first propose a discrete system characterized
by h = (∆t,∆x), on which there is a discrete optimization problem with value UK,M,T

h close
to UK,M,T . Then we use the gradient projection algorithm to solve the discrete optimization
problem of UK,M,T

h .
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4.1 A finite difference approximation

Let T , R > 2M be constants in R
+ and (l, r,m) ∈ N

3, h = (∆x,∆t) ∈ (R+)2 such that l∆t = T ,
r∆x = R and m∆x = M . Denote xi = i∆x and tk = k∆t and define the discrete grid:

N := {xi : i ∈ Z} , NR := N ∩ [−R,R],

MT,R :=
{

(tk, xi) : (k, i) ∈ Z
+ × Z

}

∩
(

[0, T ] × [−R,R]
)

,

The terminal set, boundary set as well as interior set of MT,R are denoted by

∂TMT,R :=
{

(T, xi) : −r ≤ i ≤ r
}

, ∂RMT,R :=
{

(tk,±R) : 0 ≤ k ≤ l
}

,

M̊T,R := MT,R \
(

∂RMT,R ∪ ∂TMT,R

)

.

Given a function w(t, x) defined on MT,R, we introduce the discrete derivative of w:

D2w(tk, xi) :=
w(tk, xi+1) − 2w(tk, xi) + w(tk, xi−1)

∆x2
.

Then with function ϕ defined on NR and the notation

gϕ(tk, xi) := g(tk, xi) − ϕ(xi) (4.1)

as well as θ ∈ [0, 1], we define λϕ,T,Rh as the solution of the finite difference scheme of variational
inequality (3.12) on MT,R:























λT,Rh (tk+1, xi) − λ̃T,Rh (tk, xi)

+ 1
2∆t

(

θ D2λ̃T,Rh (tk, xi) + (1 − θ) D2λT,Rh (tk+1, xi)
)

= 0,

λT,Rh (tk, xi) = max
(

gϕ(tk, xi) , λ̃
T,R
h (tk, xi)

)

, (tk, xi) ∈ M̊T,R,

λT,Rh (tk, xi) = gϕ(tk, xi), (tk, xi) ∈ ∂TMT,R ∪ ∂RMT,R.

(4.2)

We notice that the above θ−scheme has clearly a unique solution. And it is a consistant scheme
for (3.12) in sense of Barles and Souganidis [2]. To see this, it is enough to rewrite the second
equation of (4.2) as

min
(

λT,Rh − gϕ,
λT,Rh − λ̃T,Rh

∆t

)

(tk, xi) = 0

We shall assume in addition that the discretization parameters h = (∆t,∆x) satisfy the CFL
condition

(1 − θ)
∆t

∆x2
≤ 1. (4.3)

Then the finite difference scheme (4.2) is monotone in sense of [2], and the numerical solution

λϕ,T,Rh converges to λφ,T,R given ϕ := φ|N by the results of [2].

Remark 4.1. The discrete system (4.2) is the θ-scheme for variational inequality (3.12) with
Dirichlet boundary condition g(x, t) − ϕ(x) on ∂TMT,R ∪ ∂RMT,R. It is well-known that when
the finite difference scheme is explicit (i.e. θ = 0) and the CFL condition ∆t

∆x2 ≤ 1 holds, it can
be interpreted as the dynamic programming principle for a system on a Markov chain Λ (see
e.g. Kushner [14]). This interpretation holds also true for general θ-scheme, as we shall see
later in the proof of Proposition 4.4.
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We next introduce a natural approximation of uT (φ) in (3.10):

uh,T (ϕ) := µ0

(

linR[λϕ,T,Rh,0 ]
)

+ µ1

(

linR[ϕ]
)

, (4.4)

where λϕ,T,Rh,0 (·) := λϕ,T,Rh (0, ·), and for every function ϕ defined on NR, we denote by linR[ϕ]
its linear interpolation extended by zero outside [−R,R].

Assumption 4. There are constants (ρ1, ρ2, LK,M,T ) ∈ (R+)3 which are independent of h =
(∆t,∆x) such that

µ0

( ∣

∣

∣
λφ,T,R0 1[−R,R] − linR[λϕ,T,Rh,0 ]

∣

∣

∣

)

≤ LK,M,T

(

∆xρ1 + ∆tρ2
)

, (4.5)

for every φ ∈ QuadK,M0 and ϕ = φ|NR
.

Remark 4.2. When θ = 1, (4.2) is the implicit scheme for (3.12), then Assumption 4 holds
true with ρ1 = 1

2 and ρ2 = 1
4 in sprirt of the analysis of Krylov [13].

When θ = 0 and the CFL condition (4.3) is true, (4.2) is a monotone explicit scheme, then in
spirit of Barles and Jakobsen [1], Assumption 4 holds with ρ1 = 1

10 and ρ2 = 1
5 .

Let QuadK,M0,h be the collection of all functions on the grid NR defined as restrictions of functions

in QuadK,M0 :

QuadK,M0,h :=
{

ϕ := φ|NR
for some φ ∈ QuadK,M0

}

. (4.6)

We can then provide a discrete approximation for UK,M,T in (3.10):

UK,M,T
h := inf

ϕ∈QuadK,M

0,h

uh,T (ϕ). (4.7)

Let B(NR) be the set of all bounded functions defined on the grid NR, then clearly

QuadK,M0,h =
{

ϕ ∈ B(NR) nonnegative, convex satisfying ϕ(0) = 0, ϕ(xi) = Kx2i ,

for all 2m ≤ |i| ≤ r, and |ϕ(xi+1) − ϕ(xi)| ≤ 4KM∆x, ∀ − 2m < i ≤ 2m
}

. (4.8)

Proposition 4.3. Let Assumptions 2, 4 hold, then with the same constants LK,M,T , ρ1, ρ2
introduced in Assumption 4,

∣

∣

∣UK,M,T − UK,M,T
h

∣

∣

∣ ≤ LK,M,T

(

∆xρ1 + ∆tρ2
)

+ 4KR∆x+ (µ0 + µ1)(φRK), (4.9)

where φRK(x) := Kx21|x|>R.

Proof. First, given φ ∈ QuadK,M0 which is 4KR−Lipschitz, we introduce ϕ := φ|NR
∈

QuadK,M0,h so that
∣

∣linR[ϕ] − φ
∣

∣

L∞([−R,R])
≤ 4KR∆x. Then it follows by Assumption 4 that

|uT (φ) − uh,T (ϕ)| ≤ LK,M,T (∆xρ1 + ∆tρ2) + 4KR∆x+ (µ0 + µ1)(φRK), and hence

UK,M,T − UK,M,T
h ≤ LK,M,T

(

∆xρ1 + ∆tρ2
)

+ 4KR∆x+ (µ0 + µ1)(φRK).

Next, given ϕ ∈ QuadK,M0,h , we take φ := linR[ϕ] + φRK ∈ QuadK,M0 . It follows by Assumption

4 that |uT (φ) − uh,T (ϕ)| ≤ LK,M,T (∆xρ1 + ∆tρ2) + (µ0 + µ1)(φRK), and therefore,

UK,M,T
h − UK,M,T ≤ LK,M,T

(

∆xρ1 + ∆tρ2
)

+ (µ0 + µ1)(φRK).
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4.2 Gradient projection algorithm

As we can easily observe from its definition in (2.6) that φ 7→ u(φ) is convex since it is represented
as the supremum of a family of linear map, we shall show that ϕ 7→ uh,T (ϕ) is also convex,

then a natural candidate for the resolution of UK,M,T
h = inf

ϕ∈QuadK,M

0,h

uh,T (ϕ) in (4.7) is the

gradient projection algorithm. Recall that B(NR) denotes the collection of all bounded function
on NR.

Proposition 4.4. Under the CFL condition (4.3), the function ϕ 7→ uh,T (ϕ) is convex.

Proof. Let us first rewrite the finite differences scheme (4.2) into a vector system. Denote α :=
∆t

2∆x2 , λk :=
(

λϕ,T,Rh (tk, xi)
)

−r≤i≤r, λ̃k :=
(

λ̃ϕ,T,Rh (tk, xi)
)

−r≤i≤r and qk :=
(

gϕ(tk, xi)
)

−r≤i≤r ∈
R

2r+1. Let I2r+1 denote the (2r+ 1)× (2r+ 1) identity matrix, Π and bk ∈ R
2r+1 be defined by

Π :=























0 0 0 0 0
1 −2 1 0
0 1 −2 1

. . .
. . .

. . .

1 −2 1 0
0 1 −2 1

0 0 0 0 0























, bk :=















qk(−r) − λk+1(−r)
0
...
0

qk(r) − λk+1(r)















,

and Θ :=
[

I2r+1 − θαΠ
]−1[

I2r+1 + (1 − θ)αΠ
]

, then scheme (4.2) can be rewritten as

λ̃k = Θλk+1 + bk, and λk = λ̃k ∨ qk. (4.10)

Under CFL condition (4.3), we can verify that the above scheme is monotone, i.e. every element
of Θ is positive, and moreover, Θ1 = 1, where 1 := (1, · · · , 1)T ∈ R

2r+1. It follows that Θ can
be the probability transition matrix of some Markov chain Λ, whose state space is the grid NR

with absorbing boundary. Let T R
h denote the collection of all stopping times τ on Λ such that

Λt ∈ NR for t ≤ τ , then λϕ,T,Rh can be represented as solutions of an optimal stopping problem
on Λ:

λϕ,T,Rh (tk, xi) = sup
τ∈T R

h
, τ≥tk

E
[

gϕ(Λτ , τ)
∣

∣ Λtk = xi
]

.

Now given a family of stopping times τh = (τ ih)−r≤i≤r in T R
h , we introduce the function λϕ,T,R,τhh,0

defined on NR:

λϕ,T,R,τhh,0 (xi) := E
[

gϕ(Λτ , τ)
∣

∣ Λ0 = xi
]

.

Then uh,T has an equivalent representation:

uh,T (ϕ) = sup
τh∈(T R

h
)2r+1

ūτhh,T (ϕ) := sup
τh∈(T R

h
)2r+1

µ0

(

linR[λϕ,T,R,τhh,0 ]
)

+ µ1

(

linR[ϕ]
)

. (4.11)

Clearly, for every τh, ϕ 7→ ūτhh,T (ϕ) is linear, and finally it follows by (4.11) that ϕ 7→ uh,T (ϕ) is
convex.

Remark 4.5. In the above Markov chain system (4.11), given ϕ ∈ B(NR), let us define an
optimal stopping time τh(ϕ) by

τh(ϕ) := inf
{

tk : λϕ,T,R,τhh (tk,Λtk) = gϕ(tk,Λtk)
}

, (4.12)
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then clearly,

uh,T (ϕ) = sup
τh∈(T h

R
)2r+1

ūτhh,T (ϕ) = ū
τh(ϕ)
h,T (ϕ). (4.13)

Now we are ready to give the gradient projection algorithm for UK,M,T
h in (4.7). Given ϕ ∈

B(NR), we denote by PQuadK,M

0,h

[

ϕ
]

its projection on QuadK,M0,h . Of course, such a projection

depends on the norm equipped on B(NR), which is an important issue to be discussed later.
Let γ = (γn)n≥0 be a sequence of positive real numbers, we propose the following algorithm:

Algorithm 1. For optimization problem (4.7):

❼ 1, Let ϕ0 := φK,M |NR
, where φK,M is defined in (3.7).

❼ 2, Given ϕn, compute uh,T (ϕn) and a sub-gradient ∇uh,T (ϕn).

❼ 3, Let ϕn+1 := PQuadK,M

0,h

[

ϕn − γn∇uh,T (ϕn)
]

.

❼ 4, Go back to step 2.

In the following, we shall discuss essentially three issues: the computation of sub-gradient
∇uh,T (ϕ), the projection from B(NR) to QuadK,M0,h and the convergence of the above gradient
projection algorithm.

4.2.1 Computation of sub-gradient

Let us fix ϕ ∈ B(NR), we then denote by (pj , p̃j) the unique solution of the following linear
system on MT,R:



















pj(tk, xi) = − δi,j , (tk, xi) ∈ ∂TMT,R ∪ ∂RMT,R,

pj(tk+1, xi) − p̃j(tk, xi) + 1
2∆t

(

θD2p̃j(tk, xi) + (1 − θ)D2pj(tk+1, xi)
)

= 0,

pj(tk, xi) =

{

p̃j(tk, xi), if λϕ,T,Rh (tk, xi) > gϕ(tk, xi),

− ej(xi), otherwise.
(tk, xi) ∈ M̊T,R.

(4.14)

where ej ∈ B(NR) is defined by ej(xi) := δi,j =

{

1, if i = j,

0, otherwise.
Let pj0 := pj(0, ·).

Proposition 4.6. Let CFL condition (4.3) hold true, then the vector

∇uh,T (ϕ) :=
(

µ0(linR[pj0]) + µ1(linR[ej ])
)

−2m≤j≤2m
(4.15)

is a sub-gradient of map ϕ 7→ uh,T (ϕ).

Proof. Let us first consider the Markov chain Λ introduced in the proof of Proposition 4.4. By
(4.13), we have for every perturbation ∆ϕ ∈ B(NR),

uh,T (ϕ+ ∆ϕ) = ū
τh(ϕ+∆ϕ)
h,T (ϕ+ ∆ϕ) ≥ ū

τh(ϕ)
h,T (ϕ+ ∆ϕ).

It follows still by (4.13) that

uh,T (ϕ+ ∆ϕ) − uh,T (ϕ) ≥ ū
τh(ϕ)
h,T (ϕ+ ∆ϕ) − ū

τh(ϕ)
h,T (ϕ),
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which implies that

(

ū
τh(ϕ)
h,T (ϕ+ ej) − ū

τh(ϕ)
h,T (ϕ)

)

−r≤j≤r
(4.16)

is a sub-gradient of uh,T at ϕ since ψ 7→ ū
τ(ϕ)
h,T (ψ) is linear by its definition in (4.11).

Finally, by the definition of τh(ϕ) in (4.12) as well as (4.2) and (4.14), it follows that

pj(tk, xi) = − E
[

ej
(

Λτh(ϕ)
) ∣

∣ Λtk = xi
]

.

And hence the sub-gradient (4.16) coincides with ∇uh,T (ϕ) defined in (4.15).

4.2.2 Projection

To compute the projection PQuadK,M

0,h

from B(NR) to QuadK,M0,h , we still need to specify the

norm equipped on B(NR). In order to make the projection algorithm simple, we shall introduce
an invertible linear map from B(NR) to R

2r+1, then equip on B(NR) the norm induced by the
classical L2−norm on R

2r+1.
Let LR : B(NR) → R

2r+1 be defined by

ξi =











ϕ(xi) − ϕ(xi−1), for 0 < i ≤ 2m,

ϕ(x0), for i = 0,

ϕ(xi) − ϕ(xi−1), for − 2m ≤ i < 0.

(4.17)

We define the norm | · |R on B(NR) (easily be verified) by

|ϕ|R :=
∣

∣LR(ϕ)
∣

∣

L2(R2r+1)
, ∀ϕ ∈ B(NR).

Denote

EK,M0 :=
{

LRϕ : ϕ ∈ QuadK,M0

}

=
{

ξ ∈ R
2r+1 : 0 = ξ0 ≤ ξ±1 ≤ · · · ≤ ξ±2m ≤ 4KM∆x,

ξ±i = K(x2i+1 − x2i ), ∀2m < i ≤ r and

2m
∑

i=1

ξi =

−2m
∑

i=−1

ξi = 4KM2
}

.

Then the projection PQuadK,M

0,h

from B(NR) to QuadK,M0,h under norm | · |R is equivalent to the

projection from R
2r+1 to EK,M0 , which consists in solving a quadratic minimization problem :

ξz = arg min
ξ∈EK,M

0

r
∑

i=−r
(zi − ξi)

2, for a given z ∈ R
2r+1. (4.18)

Clearly, for every z ∈ R
2r+1, ξz0 = 0 and the above optimization problem (4.18) can be decom-

posed into two optimization problems:

min
ξ∈EK,M

0,+

2m
∑

i=1

(zi − ξi)
2 and min

ξ∈EK,M
0,−

−2m
∑

i=−1

(zi − ξi)
2, (4.19)
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where

EK,M0,+ :=
{

ξ = (ξi)1≤i≤2m : 0 ≤ ξ1 ≤ · · · ≤ ξ2m ≤ 4KM∆x,

2m
∑

i=1

ξi = 4KM2
}

,

EK,M0,− :=
{

ξ = (ξi)−1≥i≥−2m : 0 ≤ ξ−1 ≤ · · · ≤ ξ−2m ≤ 4KM∆x,

−2m
∑

i=−1

ξi = 4KM2
}

.

Here in place of optimization problem (4.19), we shall consider a similar but more general
optimization problem and give an algorithm for it. Let a = (ai)1≤i≤m ∈ N

m and A ∈ R
+ such

that 0 < A <
∑m
i=1 ai, we define

Kam :=
{

ξ = (ξi)1≤i≤m ∈ R
m : ξ1 ≤ · · · ≤ ξm

}

,

KAm :=
{

ξ = (ξi)1≤i≤m ∈ [0, 1]m :

m
∑

i=1

aiξi = A
}

, and Ka,Am := Kam ∩ KAm.

The projection PKa,A
m

(z) of z ∈ R
m to Ka,Am is to solve the optimization problem

ξa,A,zm := arg min
ξ∈Ka,A

m

m
∑

i=1

ai(zi − ξi)
2. (4.20)

Similarly, the projection PKa
m

( resp. PKA
m

) is defined by the optimization problem (4.20), where

Ka,Am in the formula is replaced by Kam (resp. KAm), and the projected element ξa,A,zm is replaced
by ξa,zm (resp. ξA,zm ).

In the following, we shall show that

PKa,A
m

= PKa,A
m

◦ PKa
m

= PKA
m
◦ PKa

m
,

and give the algorithms for both PKa
m

and PKA
m

. With these algorithms, we can deduce easily
an algorithm for the projection PE+

K,M
. We just remark that similar algorithm to compute the

convex envelope of a function is discussed in Page 143-145 of Edelsbrunner [8].

Given a ∈ N
m and z ∈ R

m, we define Sa,z ∈ R

∑m
i=1

ai by Sa,zk := zj for
∑j−1
i=1 < k ≤ ∑j

i=1, and
a function F a,z defined on the grid N ∩ [0, 1 +

∑m
i=1 ai] by

F a,z(0) := 0 and F a,z(k) :=
k

∑

i=1

Sa,zi . (4.21)

Lemma 4.7. Let z ∈ R
m such that zk ≥ zk+1, then (ξa,zm )k = (ξa,zm )k+1 and (ξa,A,zm )k =

(ξa,A,zm )k+1 for ξa,zm = PKa
m

(z) and ξa,A,zm = PKa,A
m

(z). And therefore, in this case, the projections
PKa

m
(z) and PKa,A

m
(z) are equivalent to PKã

m−1
(z̃) and PKã,A

m−1

(z̃) with

ãi =











ai, 1 ≤ i ≤ k − 1,

ak + ak+1, i = k,

ai+1, k + 1 ≤ i ≤ m− 1,

and z̃i =











zi, 1 ≤ i ≤ k − 1,
akzk+ak+1zk+1

ak+ak+1
, i = k,

zi+1, k + 1 ≤ i ≤ m− 1,

(4.22)

in sense that Sa,ξ
a,z
m = Sã,ξ

ã,z̃
m−1 and Sa,ξ

a,A,z
m = Sã,ξ

ã,A,z̃
m−1 , where ξã,z̃m−1 = PKã

m−1
(z̃) and ξã,A,z̃m−1 =

PKã,A
m−1

(z̃).
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Proof. Given ξ ∈ R
m such that ξk+1 > ξk, there is ε > 0 satisfying that ξk+1 = ξk+(1+ ak

ak+1
)ε.

Let ξ̂ be defined by ξ̂i =

{

ξ̂k + ε, i = k, k + 1,

ξi, otherwise,
we will show that

m
∑

i=1

ai(ξ̂i − zi)
2 <

m
∑

i=1

ai(ξi − zi)
2. (4.23)

Thus such a ξ is not optimal since ξ ∈ Kam( resp. Ka,Am ) implies that ξ̂ ∈ Kam ( resp. Ka,Am ) also.
And therefore, (ξa,zm )k = (ξa,zm )k+1 and (ξa,A,zm )k = (ξa,A,zm )k+1.

Indeed, (4.23) holds since with the above given ξ and ξ̂,

m
∑

i=1

ai (ξi − zi)
2 −

m
∑

i=1

ai (ξ̂i − zi)
2

= ak (ξk − zk)2 + ak+1

(

ξk + (1 +
ak
ak+1

)ε− zk+1

)2

− ak (ξk + ε− zk)2 − ak+1 (ξk + ε− zk+1)2

=
ak
ak+1

(ak + ak+1) ε2 + 2 ak ε (zk − zk+1) > 0.

Finally, the equivalence between PKa
m

(z) (resp. PKa,A
m

(z)) and PKã
m−1

(z̃) (resp. PKã,A
m−1

(z̃)) is

from the fact that for every ξ such that ξk = ξk+1,

m
∑

i=1

ai(zi − ξi)
2 =

m−1
∑

i=1

ãi(z̃i − ξ̃i)
2 + akz

2
k + ak+1z

2
k+1 − (ak + ak+1)

(zk + zk+1)2

4
,

where ξ̃i =











ξi, i ≤ k − 1,

ξk, i = k, k + 1,

ξi−1, k + 2 ≤ i ≤ m− 1.

Lemma 4.7 gives an algorithm for projection PKa
m

which finishes with less than m steps. And
it simplifies the projection PKa,A

m
.

Algorithm 2. For projection PKa
m

(z):

❼ 1, Given system parameters (m, a, z), stop if m = 1.

❼ 2, Find k such that zk ≥ zk+1, stop if it does not exist.

❼ 3, With the found k in step 2, reduce parameters (m, a, z) to (m − 1, ã, z̃) as in equation
(4.22).

❼ 4, Go to 1.

Proposition 4.8. PKa,A
m

= PKa,A
m

◦PKa
m
, and for every z ∈ R

m, F a,ξ (with ξ := PKa
m

(z)) is the

convex envelope of F a,z, where the functions F a,ξ and F a,z are define in (4.21)

Proof. Suppose that the entrance data of Algorithm 2 is (m1, a1, z1) and exit data is (m2, a2, z2),
then clearly PKa2

m2
(z2) = z2. And by Lemma 4.7, we have Sa1,ξ1 = Sa2,z2 (with ξ1 := PKa1

m1
(z1)

) and Sa1,ξ
A
1 = Sa2,ξ

A
2 ( with ξA1 := PKa1,A

m1

(z1) and ξA2 := PKa2,A
m2

(z2) ), from which we deduce

that, PKa,A
m

= PKa,A
m

◦ PKa
m
.
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To see that F a,ξ (with ξ := PKa
m

(z) ) is the convex envelope of F a,z, it is enough to verify that
at every step in Algorithm 2, F ã,z̃ is greater than the convex envelope of F a,z. And at the exit,
F a,ξ is a convex function.

Now, we shall prove that PKa,A
m

◦ PKa
m

= PKA
m
◦ PKa

m
, in this order, we just need to show that

for every z ∈ Kam, PKa,A
m

(z) = PKA
m

(z). In fact, we shall give an algorithm of projection PKA
m

(z)

for z ∈ Kam, and then verify that PKA
m

(z) ∈ Ka,Am .

Given ν ∈ R, let us denote by z − ν the sequence (zi − ν)1≤i≤m, and by zν the sequence
(zνi )1≤i≤m) = (0 ∨ (zi − ν) ∧ 1)1≤i≤m.

Lemma 4.9. Given ν ∈ R, z ∈ R
m, then PKa,A

m
(z) = PKa,A

m
(z−ν) and PKA

m
(z) = PKA

m
(z−ν). In

addition, if z ∈ Kam, then there is ν̂ ∈ R such that
∑m
i=1 aiz

ν̂
i = A and PKA

m
(z) = PKa,A

m
(z) = zν̂ .

And it follows that PKa,A
m

= PKa,A
m

◦ PKa
m

= PKA
m
◦ PKa

m
.

Proof. To prove that PKa,A
m

(z) = PKa,A
m

(z − ν) or PKA
m

(z) = PKA
m

(z − ν), it is enough to see

that for every ξ ∈ R
m such that

∑m
i=1 aiξi = A,

m
∑

i=1

ai(zi − ν − ξi)
2 =

m
∑

i=1

ai(zi − ξi)
2 + ν2

m
∑

i=1

ai − 2ν
(

m
∑

i=1

aizi −A
)

.

For the existence of ν̂, we remark that ν 7→ ∑m
i=1 aiz

ν
i is continuous, and that 0 < A <

∑m
i=1 ai

is supposed at the beginning of the section. Clearly, by its definition, zν is the projected element
of z − ν to [0, 1]m in sense that ξ0 = zν minimizes

∑m
i=1 ai(zi − ν − ξi)

2 among all ξ ∈ [0, 1]m.
Then for z ∈ Kam, it is easy to verify that zν̂ ∈ Ka,Am ⊂ KAm ⊂ [0, 1]m with the found ν̂. Therefore
PKA

m
(z) = PKa,A

m
(z) = PKA

m
(z − ν̂) = PKa,A

m
(z − ν̂) = zν̂ .

Algorithm 3. To find ν̂ such that
∑m
i=1 aiz

ν̂
i = A:

❼ 1, Set z0 = −∞ and zm+1 = ∞.

❼ 2, Find the maximum k such that
∑m
i=1 aiz

zk−1

i ≥ A and
∑m
i=1 aiz

zk
i ≤ A, then zk−1 ≤

ν̂ ≤ zk.

❼ 3, Find the minimum j such that
∑m
i=1 aiz

zj+1−1
i ≤ A and

∑m
i=1 aiz

uj−1
i ≥ A, then

zj − 1 ≤ ν̂ ≤ zj+1 − 1.

❼ 4, Set ν̂ =
∑m

i=j+1
ai+

∑j

i=k
aizi−A

∑j

i=k
ai

when k ≤ j, and ν̂ = zk−1 when k = j + 1.

By the way how to find k and j, we can easily have k ≤ j + 1, then step 4 of Algorithm 3

gives the right ν̂ since zν̂i =











0, if i ≤ k − 1,

1, if i ≥ j + 1,

zi − ν̂, otherwise.

for k, j found in step 2 and 3, and hence for

k ≤ j,

j
∑

i=k

ai(zi − ν̂) +
m
∑

i=j+1

ai = A =⇒ ν̂ =

∑m
i=j+1 ai +

∑j
i=k aizi −A

∑j
i=k ai

.

Finally, we propose the following algorithm for projection PQuadK,M

0,h

:

Algorithm 4. For projection PQuadK,M

0,h

in (4.18):
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Figure 2: An illustration of Algorithm 3.

❼ 1, Compute the convex envelope ϕ̂ of ϕ on [0, 2M ] and on [−2M, 0].

❼ 2, Set z = LR(ϕ̂|NR
), use Algorithm 3 to compute PEK,M

0

(u).

❼ 3, Let PQuadK,M

0,h

(ϕ) = L−1
R PEK,M

0

(z).

4.2.3 Convergence rate

We shall give a convergence rate for the gradient projection algorithm. In preparation, let us
first give a bound for the sub-gradients ∇uh,T .

Proposition 4.10. Let ϕ1, ϕ2 ∈ B(NR), then under the CFL condition (4.3),
∣

∣ uh,T (ϕ1) − uh,T (ϕ2)
∣

∣ ≤ 2 |ϕ1 − ϕ2|∞, (4.24)

and it follows that

∣

∣∇uh,T (ϕ)
∣

∣

R
≤ 2

√
2m+ 1 = 2

√

2M

∆x
+ 1, ∀ϕ ∈ B(NR). (4.25)

Proof. Under the CFL condition (4.3), the θ−scheme is monotone, which implies that |λϕ,T,R,ϕ1

h −
λϕ,T,R,ϕ2

h |∞ ≤ |ϕ1 − ϕ2|∞, and hence by the definition of uh,T in (4.4), (4.24) holds true.
Next, denote ξi := LR(ϕi), i = 1, 2, then by Cauchy-Schwarz inequality,

|ϕ1 − ϕ2|∞ ≤ max
(

2m
∑

i=0

∣

∣ξ1i − ξ2i
∣

∣ ,
−2m
∑

i=0

∣

∣ξ1i − ξ2i
∣

∣

)

≤
√

2m+ 1 ·
∥

∥ξ1 − ξ2
∥

∥

L2 ,
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which implies immediately (4.25).

Finally, let us finish this section by providing a convergence rate of the proposed gradient
projection algorithm. Denote

Φ := max
ϕ1,ϕ2∈QuadK,M

0,h

|ϕ1 − ϕ2|2R ≤ 4m (4KM∆x)2 ≤ 64K2M3∆x,

then from Section 5.3.1 of Ben-Tal and Nemirovski[3], we have the convergence rate:

min
n≤N

uh,T (ϕn) − UK,M,T
h ≤

Φ +
∑N
i=n γ

2
n

∣

∣∇uh,T (ϕn)
∣

∣

2

R

2
∑N
n=1 γn

=
32K2M3∆x +

(

4 M
∆x + 2

)
∑N
i=n γ

2
n

∑N
n=1 γn

. (4.26)

For the sequence γ = (γn)n≥1, there are several choices:

❼ Divergent Series : γn ≥ 0,
∑∞
n=1 γn = +∞ and

∑∞
n=1 γ

2
n < +∞. We get convergence as

N → ∞.

❼ Optimal stepsizes : γn =
√
Φ

∣

∣∇uh,T (ϕn)
∣

∣

R

√
n

, we have by [3] that

min
n≤N

uh,T (ϕn) − UK,M,T
h ≤ O(1) · 16KM

√
2M2 +M∆x√
N

.

5 Numerical example

As shown in Corollary 3.9, the model-free price upper bound of variance swap is C0 defined
in (2.2). Let (St)t≥0 follow the Black-Scholes dynamics dSt = σStdWt, where (Wt)t≥0 is a
standard Brownian motion, and µ0 ∼ S 1

2
and µ1 ∼ S1. Then

C0 = E
(

S2
1 − S2

1
2

)

= E

∫ 1

1
2

σ2S2
t dt =

1

2
σ2S2

0 .

We set σ = 0.2, S0 = 1, it follows that C0 = 0.02. In our implemented example, with a 2.40GHz
CPU computer, it takes 57.24 seconds to finish 4 × 104 iterations, and we get the numerical
upper bound 0.2019, i.e. the relative error is less than 1 %, see also Figure 3.

6 Appendix

We give a proof for Theorem 2.5, where we use the weak dyanmic progrmming technique
proposed in Bouchard and Touzi [4].

Proof of Theorem 2.5. We first introduce

U
K

:= inf
φ∈QuadK

0

ū(φ) and U
K,M

:= inf
φ∈QuadK,M

0

ū(φ),

and we claim that

ū(φ) = u(φ), ∀φ ∈ QuadK,M0 , (6.1)
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Figure 3: Numerical result for variance swap with approximation parameters: T = 0.1, K = 1,
M = 1, R = 2, ∆t = 0.002, ∆x = 0.1 and γn =

√
n.

which implies that U
K,M

= UK,M . Clearly, by the same arguments as in (3.3) and Proposition

3.2, we have U
K → U and U

K,M → U
K

as (K,M) → ∞. It follows that U = U .

Therefore, it is enough to prove (6.1) to conclude, which is in fact a dynamic programming
principle for ū defined in (1.5). Moreover, by the dominated convergence theorem, λφ,τR defined
in (3.8) is a continuous function for every φ ∈ Quad. Hence λφ is continuous for every φ ∈
QuadK,M0 by Lemma 3.3. Therefore, it is enough to derive a weak dynamic programming
principle following Bouchard and Touzi [4].

Let φ ∈ QuadK,M0 , τ ∈ T which is defined in (1.6), since the stopping time τ conditioned on

W0 belongs to T ∞, then by a simple conditioning argument, E
[

gφ(τ,Wτ )
]

≥ µ0(λφ0 ), which
implies that u(φ) ≤ ū(φ). On the other hand, as in the proof of Theorem 4.1 in [4], for every
ε > 0, there is a countable subdivision ∆ = (∆n)n≥1 of R, a sequence of stopping times (τ εn)n≥1

in T ∞ such that E
[

(gφ(τ εn, x + Bτε
n
)
]

≤ λφ0 (x) + ε, ∀x ∈ ∆n. We then construct τ ε ∈ T by

τ ε(W ) :=
∑∞
n=1 τ

ε
n(W −W0)1W0∈∆n

, so that E
[

gφ(τ ε,Wτε)
]

≤ µ0(λφ0 )+ε. By the arbitrariness

of ε > 0, we then get ū(φ) ≤ µ0(λφ0 ) + µ1(φ) = u(φ), and hence establish (6.1) which concludes
the proof of Proposition.
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