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Abstract 

Improvements in reference genome generation for insects and across the tree of life are 

extending the concept and utility of model organisms beyond traditional laboratory-tractable 

supermodels. Species or groups of species with comprehensive genome resources can be 

developed into model systems for studying a large variety of biological phenomena. 

Advances in sequencing and assembly technologies are supporting these emerging genome-

enabled model systems by producing resources that are increasingly accurate and complete. 

Nevertheless, quality controls including assessing gene content completeness are required to 

ensure that these data can be included in expanding catalogues of high-quality references 

that will greatly advance understanding of insect biology and evolution. 
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Introduction 

Model organisms can be described as non-human species that are studied to advance 

the understanding of biological phenomena, with traditional model species being easily bred 

in the laboratory and amenable to experimental manipulation [1]. The common ancestry of 

living organisms means that insights from such models also inform knowledge of molecular 

and genetic mechanisms underlying common biological functions across the tree of life. 

Representing insects is the renowned model, the fruit fly Drosophila melanogaster, with 

ground-breaking work on fields from genetics and heredity to behaviour, physiology, 

development, immunity, and countless others [2]. A major contributing factor to the success 

of Drosophila as a versatile model over the last two decades was the establishment of a 

reference genome assembly and its functional genomic element annotations [3]. Developing 

new models with reference genomes and experimental tools analogous to those available for 

Drosophila can be challenging, but is important for diversifying the systems we use to learn 

about organismal biology [4,5]. Currently, substantial advances in sequencing technologies 

mean that it can be more readily feasible to generate a high-quality genome for a new species 

than it is to rear in the laboratory. This genomics revolution is opening up a whole new set of 

possibilities considering a shift from the traditional model organism to the concept of species 

or groups of species that offer the ability to develop new model systems for studying a large 

variety of biological phenomena at many different levels [6,7].  

 

 

Conserved orthologues help gauge gene content completeness of 

accumulating genome resources 

Recent surveys of the current status of available genome resources for insects focus 

on taxonomic representation, assembly quality metrics, gene content completeness, and 

sequencing technology usage [8–10]. These highlight the continued rapid accumulation 

since previous surveys e.g. [11,12], and show current biases in species sampling with several 

insect orders still lacking publicly available resources. Notably, long-read data, e.g. from 

approaches developed by Pacific Biosciences (PacBio) or Oxford Nanopore Technologies 

(ONT), are helping to improve assembly contiguity and produce more complete and accurate 

representations of new and upgraded insect genomes. For these resources to support the 

development of emerging model systems, they need to be of the highest possible quality, not 

only in terms of assembly statistics but also with respect to gene content representation.  

The need to assess quality in terms of expected gene content prompted the proposal 

of Benchmarking Universal Single-Copy Orthologues (BUSCOs) [13]. BUSCO relies on the 

expectation that single-copy orthologues present in most species within a taxonomic lineage 

should be identifiable in any new genome from a species in the same clade. The BUSCO 
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lineage datasets are built by identifying near-universal single-copy orthologues from the 

OrthoDB orthology resource [13–15]. Using these to evaluate assemblies starts with BUSCO 

sequence searches to guide gene predictions, then orthology classifications identify complete, 

duplicated, or fragmented BUSCOs. The numbers of identifiable BUSCOs provide an 

indication of gene content completeness based on expected subsets of evolutionarily 

conserved genes for a given lineage. High completeness scores thereby imply that a genome 

assembly confidently represents the complete gene repertoire.  

Development of BUSCO assessments resulted in an initial implementation [16] with 

three lineage datasets relevant for insects (Eukaryota, Metazoa, and Arthropoda) based on 

orthology data from OrthoDB v8 [14]. Subsequent updates in BUSCO v3 [17] provided four 

more lineage datasets within Arthropoda (Insecta n=1’658 BUSCOs, Endopterygota n=2’442, 

Diptera n=2’799, Hymenoptera n=4’415), using orthologues from OrthoDB v9 [15]. The 

latest BUSCO releases [18] now provide additional insect-relevant lineage datasets for 

Hemiptera (n=2’510) and Lepidoptera (n=5’286), from OrthoDB v10 [19]. The assessments 

provide measures of data quality, and protocols for applications to insect genomic data [20] 

and for the wider uses [21] help users to identify the best available genomic resources. 

BUSCO completeness is also recognised as an important quality check of resources for new 

model systems and for cataloguing eukaryotic genomic biodiversity, e.g. the Earth 

BioGenome Project (EBP) standards recommendations for genome generation include 

achieving recovery of more than 90% single-copy conserved genes [22].  

Using results from the Arthropoda Assembly Assessment Catalogue (A3Cat) [10,23] 

to survey BUSCO completeness of insect genome assemblies deposited at the United States 

National Centre for Biotechnology Information (NCBI) shows that while many do meet the 

EBP’s standards recommendations, quality in terms of gene content completeness still varies 

dramatically (Figure 1). Thus while the NCBI may currently offer more than 2’500 

assemblies for insects, fewer than half of these achieve a complete and single-copy BUSCO 

score >90% and most do not yet reach the EBP’s standard of having the majority of 

sequences assigned to chromosomes. Notably however, accuracy-enhanced long-read 

technologies together with scaffolding approaches such as high-throughput chromatin 

conformation capture (Hi-C) are more consistently producing high-quality new genome 

resources, which are greatly expanding the possibilities for developing new insect model 

systems.  
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Figure 1. Benchmarking Universal Single-Copy Orthologue (BUSCO) completeness of insect genome 

assemblies deposited at the United States National Centre for Biotechnology Information (NCBI). The 

boxplots show distributions per year of the percentage of complete BUSCOs assessed using the Arthropoda 

lineage dataset for insect assemblies available from the NCBI Assembly database. The first decade is 

characterised by a slowly increasing number of genome assembly releases, usually for what are regarded as 

some of the most charismatic and well-studied model insect species, and mostly showing high BUSCO 

completeness. The subsequent years are characterised by a much faster rate of growth in the numbers of 

genome assembly releases, accompanied by large variations in quality in terms of gene content completeness. 

The large numbers of low-completeness assemblies deposited in 2017 and 2021 comprise mainly those for 

lepidopteran species. Insect silhouettes depict, from left to right: Bombyx mori silkmoth, Apis mellifera honey bee, 

Aedes aegypti mosquito, Tribolium castaneum beetle, and Acyrthosiphon pisum pea aphid, linked to the year 

their genome was first published. Boxplots show the median, first and third quartiles, and lower and upper 

extremes of the distribution (1.5 x interquartile range). Data are sourced from the Arthropoda Assembly 

Assessment Catalogue (A3Cat) [10,23], data for 2021 are shown only for assemblies available up to June 11. 
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Emerging insect model systems are supported by high-quality genome 

resources 

Advances in taxonomic sampling of insects for genome sequencing have been 

reviewed for ants and other Hymenoptera [24,25], hemipterans [26], beetles [27], flies and 

other Diptera [28,29], butterflies and other Lepidoptera [30], and many others [9,11,31]. 

Here we focus on a selection of recent examples of high-quality genomics resources (Table 1) 

that are supporting the use of new species or groups of species to develop and expand 

emerging model systems that help advance understanding of insect biology and evolution.  

Mayflies have long been the focus of many ecological studies, and together with 

dragonflies and damselflies they form the sister group to all other winged insect lineages. 

Recent establishment of a continuous culture system of the Cloeon dipterum mayfly [32] 

allows for comprehensive life-stage and tissue sampling for detailed transcriptional profiling. 

Combining short reads with ONT sequencing data enabled the assembly of its relatively 

compact genome of 180 Megabasepairs (Mbp) in 1’395 scaffolds with 96%-97% complete 

BUSCOs (Table 1), and annotated with 16’357 protein-coding genes. These resources lay the 

foundations for investigating genomic adaptations to aquatic and aerial life and the origin of 

insect wings in this emerging model system [32].  

Combining long-reads with Hi-C data is proving to be an effective approach for 

generating chromosome-level assemblies. This was recently demonstrated by Sun et al. [33] 

for five of 17 new high-quality bumblebee genomes (Table 1), where comparisons revealed 

how the 25-chromosome karyotype of social parasite species derived from the ancestral 

karyotype of 18 chromosomes. These resources are helping to set up the Bombus genus as a 

new model for quantifying genetic and genomic variation underlying important ecological 

and behavioural traits of key pollinators. Along with other new bumblebee reference 

genomes [34,35], they also offer opportunities to explore genetic factors influencing the 

plastic and adaptive responses impacting insect resilience to climate change [36].  

Rearrangements like those observed for the social parasite bumblebees appear to be 

infrequent in some well-studied groups such as Diptera and Lepidoptera where global 

genome architectures are generally conserved. Therefore, models from other diverse insect 

groups are needed to investigate different modes of genome structure evolution. Indeed, 

analyses of high-quality chromosome-level assemblies of aphids (Table 1) show that their 

autosomes have undergone dramatic reorganisations in contrast to their sex chromosomes 

where gene content of the X chromosome has remained highly stable [37,38]. As a model 

system to investigate the evolution of resistance to insecticides, reference-quality aphid 

genomes are also enabling comprehensive assessments of within-species variation to 

understand genomic responses to strong selective forces [39]. 
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The pea aphid was one of the first insects to be sequenced and has served as a 

valuable model for understanding genomic consequences of host-symbiont interactions. 

However, genomic resources for new systems are needed to explore the many types of 

endosymbioses found across different insects. The genome of the rice weevil, Sitophilus 

oryzae, is not yet assembled to chromosome level but shows high BUSCO completeness 

(Table 1) thereby providing a confident basis from which to investigate how key metabolic 

processes might be partitioned between host and endosymbiont [40]. Quality and 

completeness are also particularly critical when tracing cases of horizontal gene transfer, e.g. 

duplicated bacterial-origin mannosidases in the 1150 Mbp genome assembly of the stink bug 

Halyomorpha halys [41], and bacterial cell wall hydrolase genes acquired by Coccinellinae 

ladybird beetles identified in the high-quality genome of Cryptolaemus montrouzieri [42]. 

Amongst the most well-known of the Coccinellinae, the harlequin ladybird Harmonia 

axyridis is widely considered to be one of the world’s most invasive insects. Many insects 

are, or have the potential to become, invasives that can cause great damage to natural 

ecosystems or agricultural crops. Accumulating genomics resources from a variety of insect 

groups are helping to diversify the models used to study invasion biology and potentially 

develop new genetic control measures. Hi-C data helped to build a chromosome-level 

assembly for the two-spot harlequin morph, but with lower BUSCO completeness than prior 

to Hi-C scaffolding [43] (Table 1). These data, along with assemblies for other morphs e.g. 

[44], also offer new opportunities to develop the use of these ladybirds, which display more 

than 200 described colour forms, as an important model system for investigating the 

genetics of colour pattern polymorphisms [45,46]. 

Being laboratory-tractable is a key feature of the most versatile model species. For 

example, the painted lady butterfly, Vanessa cardui, can be easily reared in the laboratory 

and is amenable to CRISPR/Cas9 genome editing, making this widespread, generalist 

species with complex wing patterns an excellent model. The genome assembly, recently 

upgraded to chromosome level [47], with transcriptomics data from multiple tissues and 

developmental stages provides the framework to employ genetic manipulations and 

functional genomics data for studying migration, host-plant coevolution, and colour 

patterning [48]. CRISPR/Cas9 has also been established for the tea geometrid moth, 

Ectropis grisescens, which, along with its relevance as an agricultural pest, presents an 

interesting system for studying insect interactions with plant allelochemicals as well as shape 

and colour adaptations for effective camouflage. Hi-C scaffolding of PacBio data placed 

97.8% of the assembly on 31 chromosomes with an assembly span of 785 Mbp (Table 1) and 

18,746 annotated protein-coding genes. The genome maintains the ancestral lepidopteran 

karyotype (n=31), and separate resequencing of male (ZZ) and female (ZW) individuals 

allowed for the identification of the Z chromosome and several W candidate scaffolds [49]. 
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While still often challenging, long reads are proving particularly useful for assembling 

such repeat-rich insect sex chromosomes. For example, the Pieris macdunnoughii assembly 

(Table 1) was built using ONT long reads, where polishing with additional short-read data 

increased complete lepidopteran BUSCOs by almost 3%. Comparing the resolved sex 

chromosomes in Pieris butterflies of European and North American lineages shows that the 

fusion event that created the neo-Z chromosome occurred prior to their divergence [50]. 

These genome resources support this emerging model system for studying maladaptation in 

plant-insect interactions, where the North American butterflies lay their eggs on invasive 

Eurasian mustard plants that are lethal to the larvae. 

These examples of emerging models with reference genome assemblies show how 

technological advances are supporting new models by delivering high-quality data. The 

reference genomes themselves provide a framework onto which new knowledge can be 

mapped, from comparative genomics analyses, molecular biology experiments, as well as 

functional and population genomics datasets (transcriptomics, proteomics, metabolomics, 

resequencing, etc.). Using the number of NCBI BioProjects as a proxy to gauge the extent of 

genome-enabled research activities shows how the classical model insect species, Drosophila 

melanogaster, is associated with an order of magnitude more registered projects than the 

other most represented species (Figure 2). Amongst the others are well-known species that 

are economically important, vectors of human diseases, or agricultural pests, all of which 

have had publicly available draft assemblies for more than five years and almost all of which 

now have published high-quality assembly upgrades, including most recently for the fall 

armyworm [51], the tiger mosquito [52], the brown planthopper [53], and the red flour 

beetle [54]. Species representing emerging model systems such as the examples outlined 

above are expected to similarly build genome-anchored knowledgebases that support and 

enrich the exploration of the diversity of insect biology and evolution. 
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Table 1. Selected examples of emerging models supported by high-quality genome resources. 

Completeness assessments with BUSCO v4.1.4 and assembly statistics sourced from the A3Cat: Arthropoda 

Assembly Assessment Catalogue [10], or (*) directly from [38]. C=Complete , [S=Complete Single, D=Complete 

Duplicated], F=Fragmented, M=Missing. Ph=Principal Haplotype, Ah=Alternative Haplotype. 

Taxon Assembly 
Size (Mbp) 

Scaffold 
N50 (Mbp) 

Insecta BUSCO 
% C,[S,D],F,M 

Arthropoda BUSCO 
% C,[S,D],F,M 

Mayfly: Cloeon dipterum 180 0.46 96.1,[94.1,2.0],0.9,3.0 97.2,[95.0,2.2],1.2,1.6 

Bumblebees: Bombus haemorrhoidalis 241 15.09 99.7,[99.4,0.3],0.2,0.1 99.4,[99.3,0.1],0.3,0.3 

Bumblebees: Bombus ignitus 243 15.19 98.3,[98.1,0.2],0.7.1.0 97.6,[97.5,0.1],1.3,1.1 

Bumblebees: Bombus turneri 243 9.70 99.6,[99.3,0.3],0.2,0.2 99.2,[99.2,0.0],0.5,0.3 

Bumblebees: Bombus breviceps 248 14.71 99.6,[99.4,0.2],0.1,0.3 99.1,[99.1,0.0],0.4,0.5 

Bumblebees: Bombus pyrosoma 255 15.22 99.7,[99.5,0.2],0.1,0.2 99.6,[99.6,0.0],0.1,0.3 

Bumblebees: Bombus hortorum 296 17.02 99.6,[99.2,0.4],0.1,0.3 99.5,[99.2,0.3],0.3,0.2 

Aphids: Myzus persicae * 395 69.48 NA 97.1,[94.2,2.9],0.5,2.4 

Aphids: Acyrthosiphon pisum * 526 126.60 NA 97.6,[94.7,2.9],0.4,2.1 

Aphids: Rhopalosiphum maidis 326 93.30 97.0,[94.8,2.2],0.7,2.3 98.3,[95.4,2.9],0.5,1.2 

Weevil: Sitophilus oryzae 770 2.86 97.8,[95.8,2.0],0.7,1.5 98.5,[97.1,1.4],0.3,1.2 

Stink bug: Halyomorpha halys 1150 0.80 97.4,[96.0,1.4],1.0,1.6 96.7,[95.2,1.5],1.4,1.9 

Ladybird: Cryptolaemus montrouzieri 988 10.38 97.1,[96.0,1.1],0.6,2.3 97.0,[96.4,0.6],1.1,1.9 

Ladybird: Harmonia axyridis 417 2.05 92.4,[90.0,2.4],1.2,6.4 91.7,[89.3,2.4],1.4,6.9 

Butterfly: Vanessa cardui (Ph) 425 14.62 98.9,[98.8,0.1],0.4,0.7 98.9,[98.6,0.3],0.4,0.7 

Butterfly: Vanessa cardui (Ah) 401 2.75 96.1,[96.0,0.1],0.4,3.5 95.6,[95.4,0.2],0.5,3.9 

Moth: Ectropis grisescens 785 26.91 96.4,[95.7,0.7],1.2,2.4 95.6,[95.2,0.4],1.9,2.5 

Butterfly: Pieris macdunnoughii 317 5.20 97.2,[96.3,0.9],0.4,2.4 97.2,[96.5,0.7],0.9,1.9 
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Figure 2. Number of BioProject entries for the fifteen most represented insect species. Counts of 

BioProjects sourced from the United States National Centre for Biotechnology Information (NCBI, January 2022) 

show that the classical model species, Drosophila melanogaster, is associated with an order of magnitude more 

registered projects than the other most represented species. Bar colours represent a simplified ‘principal 

research interest/relevance’ category for each species. ‘Word Clouds’ for selected species are built from the 

collated titles of all their available BioProjects. Drosophila melanogaster (Diptera): fruit fly; Apis mellifera 

(Hymenoptera): western honey bee; Aedes aegypti (Diptera): yellow fever mosquito; Bombyx mori (Lepidoptera): 

domestic silk moth; Anopheles gambiae (Diptera): African malaria mosquito; Drosophila simulans (Diptera): fruit 

fly; Bemisia tabaci (Hemiptera): silverleaf whitefly; Spodoptera frugiperda (Lepidoptera): fall armyworm; Aedes 

albopictus (Diptera): tiger mosquito; Bactrocera dorsalis (Diptera): oriental fruit fly; Nilaparvata lugens 

(Hemiptera): brown planthopper; Locusta migratoria (Orthoptera): migratory locust; Acyrthosiphon pisum 

(Hemiptera): pea aphid; Tribolium castaneum (Coleoptera): red flour beetle; Helicoverpa armigera (Lepidoptera): 

cotton bollworm.  
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Conclusions 

New technologies are helping to greatly expand the diversity of insect species for which 

genome resources are being generated across Insecta [9,10], presenting opportunities to 

develop new model systems for studying a large variety of biological phenomena. Within-

genus sampling is also reaching new levels of resolution, exemplified by the genome 

assemblies for 101 lines of 93 drosophilid species spanning 14 species groups and 35 sub-

groups [55]. Nevertheless, challenges such as working with large repeat-rich genomes or very 

small specimens from which to extract high-molecular-weight DNA mean that achieving 

reference-quality standards can still be arduous [12]. The active participation of the 

arthropod genomics community in the development of standards and provision of guidelines 

and protocols through initiatives coordinating the scaling up of reference genome generation 

are helping to overcome many of these challenges [22,56,57]. Gene content completeness 

and other quality assessments during production and of the resulting chromosome-level 

assemblies will therefore continue to play a key role in establishing genome resources that 

best support the development of new model systems and advance understanding of insect 

biology and evolution.  
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Highlights 

● New genome resources are expanding possibilities for developing insect model systems 

● The quality of genome assemblies varies in contiguity and gene content completeness 
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● Technological advances are supporting new models by delivering high-quality data 

● Emerging model systems advance understanding of insect biology and evolution 
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