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Sparse Poisson Noisy Image Deblurring
Mikael Carlavan and Laure Blanc-Féraud

Abstract—Deblurring noisy Poisson images has recently been
subject of an increasingly amount of works in many areas such
as astronomy or biological imaging. In this paper, we focus on
confocal microscopy which is a very popular technique for 3D
imaging of biological living specimens which gives images with
a very good resolution (several hundreds of nanometers), even
though degraded by both blur and Poisson noise. Deconvolution
methods have been proposed to reduce these degradations and we
focus in this paper on techniques which promote the introduction
of explicit prior on the solution. One difficulty of these techniques
is to set the value of the parameter which weights the trade-off
between the data term and the regularizing term. Actually, only
few works have been devoted to the research of an automatic
selection of this regularizing parameter when considering Poisson
noise so it is often set manually such that it gives the best visual
results. We present here two recent methods to estimate this
regularizing parameter and we first propose an improvement
of these estimators which takes advantage of confocal images.
Following these estimators, we secondly propose to express the
problem of Poisson noisy images deconvolution as the minimiza-
tion of a new constrained problem. The proposed constrained
formulation is well suited to this application domain since it is
directly expressed using the anti log-likelihood of the Poisson
distribution and therefore does not require any approximation.
We show how to solve the unconstrained and constrained problem
using the recent Alternating Direction technique and we present
results on synthetic and real data using well-known priors such
as Total Variation and wavelet transforms. Among these wavelet
transforms, we specially focus on the Dual-Tree Complex Wavelet
transform and on the dictionary composed of Curvelets and
undecimated wavelet transform.

Index Terms—3D confocal microscopy deconvolution, regu-
larizing parameter selection, discrepancy principle, alternating
direction method, constrained minimization, Poisson noise.

I. INTRODUCTION

DEBLURRING images corrupted by Poisson noise is a

challenging process to which much research has been

devoted as in astronomical or biological imaging. We focus

in this paper on confocal microscopy imaging, introduced

by M. Minksy in 1953 [26]. This technique is based on the

principle of fluorescence and allows to observe inside living

cells of the specimen by tagging the core, the membranes or

others elements of the cells.

Confocal microscopy imaging offers several advantages

over optical (wide-field) imaging such as a small depth-

of-field, a reduction of out-of-focus blur and the ability of

scanning 3D images. These advantages explain its quick grow

in popularity during the last years. However, it suffers from

two basic degradations: remaining blur and Poisson noise. If
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we consider a discrete version of a specimen x ∈ R
n (n

being the number of voxels of the image) observed as an

image y ∈ R
n through an optical system with a Point Spread

Function (PSF) h and corrupted by a Poisson noise process

P , then the image formation model can be written as [40]:

y = P(Hx + b), (1)

where H : R
n → R

n stands for the matrix notation

of the convolution of the PSF h (we assume moreover

Hx ≥ 0∀x ≥ 0) and b ∈ R
n is a constant background.

A good estimation of the PSF h is very important for any

non-blind deconvolution algorithm. In this paper, we will use

the model presented in [16], [39].

Using a bayesian approach, we want to retrieve the image

x which maximizes the likelihood probability of (1). This

probability can be expressed as:

p(y|x) =
n−1
∏

i=0

(
[

(Hx + b)
y
]

i
exp [− (Hx + b)]i
yi!

)

. (2)

Maximizing (2) with respect to x is equivalent to minimize

− log p(y|x) that is to minimize:

JL(x,y) = 1T (Hx + b) − yT log(Hx + b), (3)

where 1 stands for a n-size vector whose components are

all equal to 1. A popular algorithm to optimize (3), with

respect to x, in confocal microscopy is the Richardson-Lucy

(RL) algorithm [24], [34]. This algorithm takes into account

Poisson statistics of the photon counting noise, and implicitly

imposes positivity constraint on the solution. This is, however,

not sufficient to prevent from noise amplification during the

deconvolution process due to the ill-posedness of this inverse

problem and this algorithm is usually stopped after an

arbitrary number of iterations.

Many authors favour instead the introduction of an explicit

prior on the solution to regularize the ill-posed inverse

problem and thus minimize a penalized likelihood as in [16],

[17], [31]. Unfortunately, most of the refereed methods need

to manually tune the regularizing parameter to control the

weight of the prior. This approach is time consuming as it

needs several resolution of the minization problem to find a

result which is, after all, totally subjective.

The contributions of this work are as follows. We propose

two revised estimation procedures for regularizing parameter

when dealing with Poisson noise and l1-norm regularization.

We also propose a new constrained formulation of the

optimization problem leading to simple parameter setting

and we describe the Alternating Direction technique for both

minimization formulations (constrained and unconstrained).
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We evaluate image restoration using these parameter

estimation procedures for several regularizations, Total

Variation, Dual-Tree Complex Wavelet transform, dictionary

composed of Curvelets and undecimated wavelet transform,

on synthetic and real data.

The paper is organized as follows. In section II we present

common priors used in confocal microscopy such as Total

Variation and more recently priors using redundant wavelet

transforms. We focus in this paper on the latter and present,

still in section II, the Dual-Tree Complex Wavelet transform.

In section III, we present the Alternating Direction technique

and detail how to use this algorithm to solve both constrained

and unconstrained problems. The first part of section IV

is devoted to the introduction of two recent techniques to

automatically select the regularizing parameter. We show how

to compute more accurately these estimators by taking into

account the physical properties of confocal images. From

these estimation techniques, we propose a new constrained

formulation for the resolution of the Poisson noisy images

deconvolution problem. Finally, in the section V, we present

results on 2D synthetic and 3D real data using the Total

Variation, the Dual-Tree Complex Wavelet Transform and the

dictionary composed of the Curvelets and the undecimated

wavelet transform.

II. PRIORS FOR CONFOCAL MICROSCOPY

A. State of art

As discussed previously, many works promote the intro-

duction of explicit priors on the solution to regularize the ill-

posed inverse problem. Maximizing the a posteriori probability

p(x|y) = p(y|x) p(x)
p(y) , where p(x) is the prior model on the

object given by p(x) = α exp[−τJR(x)] (α is a normalization

constant and JR is the regularizing term), is equivalent to

solve:

arg min J(x,y) := JL(x,y) + τJR(x)
subject to x ∈ R

n

, (4)

τ being the regularizing parameter. To the best of our

knowledge, the first regularizing term proposed in confocal

microscopy was the Tikhonov-Miller regularization given

by JR(x) = ‖∇x‖2
2 [41]. This regularization is efficient to

remove noise but its main drawback is that it smooths the

edges and the details. To avoid this effect, the authors of [16]

proposed to use instead the l1-norm of the gradient leading

to a well-known regularization in 2D image processing called

the Total Variation (TV) [35]. The TV removes the noise

while saving the discontinuities but smooths the details of the

textures and the corners of the shapes.

Wavelets priors have been successfully used in 2D image

processing to retrieve thin elements including textures ([25]

and references therein). But it is only recently that these priors

have been introduced in confocal microscopy [3], [4], [10].

These priors assume (and it is actually verified) that images

have a compact representation (sparsity) in some wavelet basis.

This, in the end, gives a good ability to remove the noise

from the image. This sparsity can be forced by using a l1-

norm term. For example, [10] used a wavelet Haar transform

as a prior and [17] proposed to use a decomposition on

a dictionary composed of an undecimated wavelet and a

Curvelet transform. However, [17] only consider 2D images.

On 3D images, using an undecimated wavelet transform leads

to implementation issues as it involves an image which is 7L
times higher than the image to restore (L being the number

of decomposition levels). Thus, it is problematic in term of

memory cost. Note that one can use transforms with limited

redundancy such as [44]. We strongly believe however that

3D data can not handle this type of redundancy as it is highly

consuming in term of computing time and memory cost.

Of course, the prior should be chosen according to the

computing resources available. The purpose of this paper is

not to do an exhaustive comparison of the different priors but

only to present an unified framework for the deconvolution of

Poissonian images in which we propose to use the DTCW

transform as it seems to be a good trade-off between the

computing resources needed and the quality of results.

Finally, let us note that [31] showed that these wavelets priors

give better results when combined to the Total Variation.

B. Dual-Tree Complex Wavelet prior

As shown for example in [17], an undecimated wavelet

transform and more generally the decomposition on dictionary

using several wavelet transforms clearly improves the quality

of the restored image. However this regularization technique

for 3D images is really difficult to use as it needs a huge

amount of memory. For this reason, we propose here to use

the Dual-Tree Complex Wavelet Transform [36] which is an

efficient wavelet transform with a reduced redundancy (8 in

3D). Unlike [17] where a prior expressed in the transform

domain (synthesis prior) is used, we express our prior in

the image domain (analysis prior), as it seems to give better

results than a synthesis prior (at least for Gaussian noise [7],

[18], [37]).

The DTCW transform uses two real trees combined to

give complex coefficients (illustrated on the figure 1). The

combination of these two trees offers several avantages

including a translation and rotation quasi-invariant transform

and a limited redudancy.

The DTCW transform has been proposed in the domain of

confocal microscopy in [30] but only for denoising. We will

show here that we can include the deconvolution process in

the algorithms. To improve the results, we also propose to use

a subband-dependent regularization parameter. The proposed

regularization writes:

JR(x) =

L
∑

j=1

αj‖Wjx‖1, (5)

where L is the number of decomposition levels, Wj is

the decomposition on the level j and αj is the subband-

dependent scale parameter. The DTCW transform, as common

non-redundant wavelet transforms, uses filters normalized to
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Fig. 1. Decomposition scheme of the DTCW transform for an 1D signal.
This transform uses the two trees a and b in parallel. g0 (respectively g1) is
the low-pass filters of the tree a (respectively tree b), h0 (respectively h1) is
the high-pass filter of the tree a (respectively tree b). At each level, the details
coefficients of each tree give the real and the imaginary part of the complex
coefficients.

√
2 and subsampling operators by factor 2 (see figure 1).

Consequently, the scale of wavelet coefficients, following each

dimension of the signal, is decreasing by a factor
√

2 at each

decomposition level. As we deal with 3D data, the scale of

the 3D coefficients is thus decreasing at each scale by a factor

2
√

2, thus we will take:

αj =
(

2
√

2
)−j

. (6)

Even if different images have a different power law decrease

of wavelet coefficients, this scaling is only meant to be quite

general for 3D data and independent of the content of the

image.

Low-pass coefficients are not included in the formulation (5).

As there is no reason for these coefficients to be sparse, we set

α0 = 0. By integrating the scaling dependance in the transform

Wj , (5) can be written as :

JR(x) = ‖Wx‖1, (7)

W standing for the whole transform which includes the

weights αj . Note that the tight-frame property of the initial

DTCW is conserved as an operation to invert these weights

is included in the computation of the adjoint operator W∗.

We present in the next section a state of art of minimization

algorithms and the proposed algorithm to solve (4).

III. ALGORITHMS FOR CONFOCAL MICROSCOPY

A. State of art

The most widely used algorithm in confocal microscopy

may be the Richardson-Lucy algorithm [24], [34]. Using the

fact that the PSF is normalized, minimizing (3) leads to the

RL algorithm (multiplicative form):

xk+1 = xk

{

H∗
[

y

Hxk + b

]}

, (8)

where H∗ denotes the adjoint operator of H. Here, multi-

plication and division must be understood as point to point

operations. This algorithm has two interesting properties. It

preserves the number of counts of the original object and

has also the property the non-negativity: if the first estimate

is positive, then the further estimates stay positive. This

algorithm improves the quality of images, however it amplifies

the noise after several iterations [42].

Adding the Tikhonov-Miller regularization in the model leads

to the following multiplicative algorithm:

xk+1 =
xk

1 − 2τdiv (∇xk)

{

H∗
[

y

Hxk + b

]}

, (9)

where ∇ is the gradient operator and div is the divergence

operator (we will use the discretization proposed in [9] for the

implementation of these operators). As discussed previously,

using the l2-norm on the gradient smooths the edges. The

authors of [16] used instead a l1-norm and obtained the

following algorithm:

xk+1 =
xk

1 − τdiv
(

∇xk

|∇xk|

)

{

H∗
[

y

Hxk + b

]}

. (10)

This algorithm, and more generally algorithms built under the

multiplicative form of the Richardson-Lucy algorithm, may

suffer from unstability. Even a small value of τ may result

in a negative denominator in (9) or (10) breaking therefore

the positivity property of the RL algorithm. [16] proposed to

use the additive form of the RL algorithm to have a stable

behaviour regarding to τ , that is to minimize (4) using a

gradient descent. On this problem, both the l1-norm and

the logarithm (if b = 0) have to be smoothed by adding a

small constant ǫ, making the resulting algorithm very slow

with a step descent of order O(ǫ2). It can be accelerated

using one of the framework of [5], [28], but even with these

techniques, an accelerated algorithm on this problem can not

give competitive computing time as the step descent is too

small.

Several authors proposed to extend “well-known” 2D

deconvolution algorithms to 3D confocal microscopy. For

example, the authors of [10] proposed to use the “forward-

backward” algorithm [11]. However, this algorithm can not

be directly used here as the Poisson model leads to solve a

problem which does not belong to the class of problems of

this algorithm (the obtained criterion to minimize is convex

but does not have the Lipschitz gradient property required

by [11]). In consequence, the authors of [10] proposed to

use a variance stabilizing transform (VST) on the data, the

Anscombes [1] transform in that case, such that the Poisson

noise is approximated as a Gaussian noise (thereby giving

a minimizing criterion which has a Lipschitz gradient). [17]

also proposed to use the Anscombes transform but refined

the model such that the VST is taken into account in the data

term and then solved the problem using an extension of the

algorithm [10]. These VST may however not be efficient for

images with a weak intensity as in confocal microscopy so

[13] proposed a quadratic extension of the Poisson criterion

such that “forward-backward” algorithm can be directly used

on a Poisson model.

Non-iterative methods can also be used as in [33], where

the algorithm used is the Tikhonov-regularized algorithm

which leads to an explicit solution if the noise model is

considered mainly to be Gaussian. This is actually verified
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for biological images with high intensity as, in that case,

the Poisson distribution is well approximated by a Gaussian

distribution. This model may not be very efficient when

dealing with biological images with weak intensity.

Recently, [14] introduced an algorithm which is able to

minimize the sum of an arbitrary number of convex functions.

[31] showed that this algorithm can be used on the Poisson

deconvolution problem. [38] proposed also an efficient algo-

rithm based on split Bregman techniques which really takes

into account the Poisson noise statistics. These techniques

consist in augmenting the size of the problem by adding

several variables and then to solve the problem following each

variable. This is actually closely related to the algorithm used

in this paper, which is based on the Alternating Direction

Method (ADM), and has also been recenlty proposed for the

Poisson deconvolution problem in [20].

B. Alternating Direction Method

We propose to use an algorithm based on the alternating

direction method (ADM) [19], [29]. A similar algorithm has

been proposed recently in [20]. We recall the main ideas of

the ADM in the following.

The ADM was initially proposed to solve the following

problem:

arg min f1(u) + f2(v)
subject to Au + Bv = a

u ∈ R
n,v ∈ R

m

, (11)

where:

• f1 : R
n → R and f2 : R

m → R are two closed convex

functions.

• A ∈ R
l×n and B ∈ R

l×m are two linear transforms.

• a ∈ R
l is a given vector.

This algorithm is based on the minimization of the augmented

Lagrangian. Using a Lagrange multiplier λ ∈ R
l for the linear

constraint (11), the augmented Lagrangian writes:

L(u,v, λ) = f1(u) + f2(v) + λT (Au + Bv − a)

+
β

2
‖Au + Bv − a‖2

2, (12)

where β is a parameter which controls the linear constraint

[21]. This algorithm consists in finding a saddle point of the

augmented Lagrangian (thereby solving (11)), by minimizing

it in an alternating way, subject to u, v, then to λ. The

algorithm is given in algorithm 1.

This algorithm introduces a relaxation parameter ξ which

has to belongs to ]0,
√

5+1
2 [ to ensure the convergence of the

algorithm [21]. We will set this parameter to be equal to 1
in our experiments. β is the parameter which controls the

constraint. The algorithm converges for ∀β > 0, however the

speed of convergence strongly depends on this parameter.

If β is small, the convergence of the algortihm will be fast

but the linear constraint will take many more iterations to be

respected. On the contrary if β is high, then the algorithm will

Algorithm 1: ADM to solve (11)

Data: Number of iterations N ;

A starting point u0 ∈ R
n;

A starting point v0 ∈ R
m;

A starting point λ0 ∈ R
l;

Value of the parameters ξ > 0 and β > 0;

Result: (uN ,vN ), an estimated solution of (11).

begin

for k from 0 to N − 1 do

Step 1. uk+1 = arg min L(u,vk, λk)
subject to u ∈ R

m

.

Step 2. vk+1 = arg min L(uk+1,v, λk)
subject to v ∈ R

n

.

Step 3.

λk+1 = λk + βξ(Auk+1 + Bvk+1 − a).
end

end

be slow but the linear constraint will be quickly respected.

Setting this parameter is actually an open problem and, for

our expriments, we will set this parameter equal to 1.

We show in the next lines how the ADM algorithm can be

used to solve the Poissonian deconvolution problem expressed

in the unconstrained form. We will see in section IV-D how to

apply this algorithm to the constrained optimization problem.

We recall that we want to minimize:

J(x,y) := JL(x,y) + τJR(x)

= 1T (Hx + b) − yT log(Hx + b) + τ‖Wx‖1.
(13)

This function is a closed convex function and strictly convex

if yi > 0 and if the intersection of the null spaces of

JL and JR is zero [20]. As often mentioned, this type of

problem is not straightforward to solve due to the l1-norm

non-differentiability and due to the presence of operators H

and W. Our problem is then to find:

arg min 1T (Hx + b) − yT log(Hx + b) + τ‖Wx‖1

subject to x ∈ R
n,x ≥ 0

.

(14)

First, we can see that this problem is actually equivalent to:

arg min 1T w − yT log(w) + τ‖z‖1

subject to x ∈ R
n,x ≥ 0

w ∈ R
n,w = Hx + b

z ∈ R
m, z = Wx

. (15)

We set:

u =





x

w

z



 ∈ R
n×R

n×R
m, a =





0
−b

0



 ∈ R
n×R

n×R
m,

(16)

A = −I, B =





I

H

W



 , (17)
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f1(u) = 1T w − yT log(w) + τ‖z‖1 + χC(x), f2(v) = 0,
(18)

with χC being the indicator function on the non-empty convex

set C:

χC(x) =

{

0 if x ∈ R
n,xi ≥ 0

∞ otherwise
. (19)

Then the problem (14) can be written as:

arg min f1(u)
subject to −u + Bv = a

u ∈ R
n,v ∈ R

m

. (20)

We see that this formulation completely fits into the framework

of the ADM method (11). The first step of the algorithm is to

find:

uk+1 = arg min L(u,vk, λk)
subject to u ∈ R

n

. (21)

From (20) we can write the augmented Lagrangian as:

L(u,v, λ) = f1(u)+λT (Bv−u−a)+
β

2
‖Bv−u−a‖2

2. (22)

Then (21) becomes:

uk+1 = arg min f1(u) + λkT
(Bvk − u − a)

+β
2 ‖Bvk − u − a‖2

2

subject to u ∈ R
n

= arg min 1
β
f1(u) + 1

2‖Bvk − u − a + λk

β
‖2
2

subject to u ∈ R
n

= prox 1

β
f1

(

Bvk − a +
λk

β

)

, (23)

where prox is the proximal operator defined by [15]:

proxγf (x0) = arg min γf(x) + 1
2‖x0 − x‖2

2

subject to x ∈ R
n

. (24)

This proximal operator can be computed in closed-form for

some functions f . We give here some examples [15]:

• If f(x) = ‖x‖1 then proxγf (x0) is the soft-thresholding

operator shrinkγ (x0) of threshold γ given by:

shrinkγ (x0) = sign(x0) max(|x0| − γ, 0). (25)

• If f(x) = 1T x − yT log(x) then:

proxγf (x0) =
1

2

(

x0 − γ +

√

(x0 − γ)
2

+ 4γy

)

.

(26)

• If f(x) = χC(x) is the indicator function on a convex

set C, then:

proxγf (x0) = ΠC(x0), (27)

is the orthogonal projection on this set.

As the proximal operator is componentwise, from (23) we get

that for any u =





x

w

z



 ∈ R
n × R

n × R
m:

prox 1

β
f1

(u) =











max(x, 0)

1
2

[

w − 1
β

+

√

(

w − 1
β

)2

+ 4y
β

]

sign(z) max(|z| − τ
β
, 0)











. (28)

The second step of the algorithm is to find:

vk+1 = arg min L(uk+1,v, λk)
subject to v ∈ R

n

= arg min λkT
(Bv − uk+1 − a)

+β
2 ‖Bv − uk+1 − a‖2

2

subject to v ∈ R
n

= arg min ‖Bv − uk+1 − a + λk

β
‖2
2

subject to v ∈ R
n

. (29)

Then the solution of (29) can be written as the solution of the

following linear system:

B∗Bvk+1 = B∗
(

uk+1 − λk

β
+ a

)

, (30)

which can always be solved with a conjugate gradient method

since (B∗B)∗ = B∗B. However, using this technique, for

each iteration of this inner loop, we have to compute B∗B.

Even if the conjugate gradient loop only need 6 to 7 iterations

to give a solution of precision 10−5, this is really costly for

a 3D image and leads to high computing time. But (30) can

be exactly solved depending on the structure of the matrices

H and W. First, the convolution matrix H can, most of the

time, be well implemented using the Fast Fourier Transform

(FFT). Second, the matrix W has often a structure which

also favour in the same way the computation of W∗W. For

example, if W is the Total Variation, then W∗W can also

be computed using the FFT. But let us point out the great

interest in using a (normalized) tight-frame (i.e. a transform

W such that W∗W = I) like the DTCW transform, Curvelets

[6], undecimated wavelet transform, or both as in [17]. In that

particular case, (30) simply writes:

vk+1 = (H∗H + 2I)−1B∗
(

uk+1 − λk

β
+ a

)

, (31)

which can be easily computed using the FFT. The resulting

algorithm is given in the algorithm 2.

Algorithm 2: ADM to solve (14)

Data: Number of iterations N ;

A starting point u0 ∈ R
n;

A starting point v0 ∈ R
m, t0 = Bv0 − a ∈ R

l;

A starting point λ0 ∈ R
l;

Value of the parameters ξ > 0 and β > 0;

Result: vN an estimated solution of (14).

begin

for k from 0 to N − 1 do

Step 1. uk+1 = prox 1

β
f1

(

tk +
λk

β

)

Step 2. vk+1 =

(H∗H + W∗W + I)−1B∗
(

uk+1 + a − λk

β

)

Step 3. tk+1 = Bvk+1 − a

Step 4. λk+1 = λk + βξ(tk+1 − uk+1)
end

end
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The interesting point is that this algorithm converges even if

(30) is not solved exactly (to be more specific, this algorithm

converges if the errors are summable [19]). In pratice, this

algorithm converges to a solution of (14) in 200 iterations.

However, the computing time strongly depends on the regu-

larizing term. For example, using the TV regularization, this

algorithm converges in 25 minutes (for an image with a size

of 256×256×64 voxels). With the DTCW regularization, the

computed time is much longer and about 1h15 for the same

number of iterations.

The main drawback of this algorithm, and more generally

algorithms which use an augmentation of the size of the

problem, is that it needs some memory. This allows, however,

to get a reasonable computing time.

IV. REGULARIZATION PARAMETER SELECTION METHODS

A. State of art

In most of the deconvolution methods proposed in the

literature, the regularizing parameter τ has to be chosen

such that it gives the best qualitative results. However, the

interpretation of an image may be difficult in biology for

example, specially in the presence of artifacts. To overcome

this problem, several authors proposed to handle the Poisson

noise as a Gaussian noise in the restoration algorithm and/or

to use regularization parameter selection methods originally

designed for Gaussian noise. For example, [17] proposed

to use the generalized cross validation (GCV) [22] on the

Anscombe transform of the Poisson noise to estimate the

regularizing parameter. [33] extended the work of [32] to

an unbiaised estimator of the Mean Squared Error (MSE)

for Poisson noise, leading to a pixel-dependent estimator.

Consequently, they proposed to use a Tikhonov-regularized

algorithm coupled with a least-square criterion for the data

term (and thereby consider the noise to be Gaussian). The

solution of the proposed cost function can be expressed

in closed-form and thus allows the estimator to be easily

implemented. Recently, [2] proposed to restore the image

using an algorithm designed for Poisson noise and present

a method to select the regularized parameter based on a

Gaussian approximation of the noise. We detail this technique

in this section as the Gaussian approximation is often made

in the domain of Poisson deconvolution.

To the best of our knowledge, only [43] have proposed both

a method to select the regularizing parameter especially

designed to take into account the Poisson statistics of the

noise and an algorithm which also deals with Poisson noise.

We also recall their method.

The idea of Bardsley et al. [2] is to use a Taylor approxima-

tion to obtain a quadratic approximation of the term JL(x,y)
in (3) and to use a discrepancy principle on the approximation.

First, they showed that if we consider JL as a function of x

and y, then the Taylor approximation around the exact objects

x̄ and ȳ = Hx̄ + b writes:

JL(x,y) ≃ JL(x̄, ȳ) + Ψy(x), (32)

with:

Ψy(x) =
1

2
‖ (Hx − (y − b)) /

√
y‖2

2. (33)

Using the expected value function E (with respect to the

distribution law of y), it can be written that around x̄:

JL(x̄,y) ≃ JL(x̄, ȳ) + E(Ψy(x)). (34)

Denoting xτ an estimated solution of (4) and using (32), it is

reasonable to write:

JL(xτ ,y) ≃ JL(x̄, ȳ) + Ψy(xτ ). (35)

By combining (34) and (35) we can say that a good value of

τ is the one which verifies:

Ψy(xτ ) = E(Ψy(x̄)). (36)

[2] showed that E(Ψy(x̄)) can be well estimated using a

common approximation [23]:

y − b = Hx̄ + e, (37)

where e is a Gaussian random variable with mean 0 and

multidimensional variance y. If we set:

r(x) = (Hx − (y − b)) /
√

y. (38)

Then r(x̄) is a Gaussian random variable with mean 0 and

variance I. In this case, a standard result gives:

‖r(x̄)‖2
2 ∼ χ2(n), (39)

where χ2(n) is the chi-square distribution with n degree of

freedom which has a mean equal to n. Using this result and

(33)-(36) we get that a good value of τ verifies:

Ψy(xτ ) ≃ n

2
. (40)

Finally, the discrepancy principle proposed by [2] to find the

regularizing parameter τ is the following:

τopt = arg min
(

Ψy(xτ ) − n
2

)2

subject to τ ∈ R
+

. (41)

In practice, the division by y in (33) is replaced by Hx + b

for better experimental results [2], so Ψy becomes:

Ψy(x) =
1

2
‖ (Hx − (y − b)) /

√
Hx + b‖2

2. (42)

Finally, we would like to mention also the recent work of

Bertero et al. [43] in which is introduced a discrepancy

principle for Poisson noise. First, let us consider the following

function:

F (yλ) = 2
(

yλ log
(yλ

λ

)

+ λ − yλ

)

, (43)

where yλ is a Poisson random variable with mean λ. Then,

[43] showed that, for large λ:

E(F (yλ)) = 1 + O

(

1

λ

)

. (44)
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In the case of deconvolution, we have y = P(Hx + b) and

thus y is a Poisson random variable with mean Hx + b. So,

from this statement and (43), [43] defined:

Υy(x) =

[

yT log

(

y

Hx + b

)

+ 1T (Hx + b) − 1T y

]

,

(45)

and showed that by taking the expected value (following the

distribution law of y), one get that a good value of τ should

verify:

Υy(xτ ) = E(Υy(x̄)) (46)

From (43)-(45), one get that:

E(Υy(x̄)) ≃ n

2
. (47)

Thus, [43] proposed to select τ as the one which verifies:

τopt = arg min
(

Υy(xτ ) − n
2

)2

subject to τ ∈ R
+

. (48)

B. Comparisons

We compare the estimator (48) proposed by [43] and the

estimator (41) proposed by [2] introduced in the beginning

of this paragraph, on the blur and noisy synthetic images

presented in figure 2. The algorithm used for this test is

the algorithm 2, presented in the previous section, with the

TV regularization. Values given by these two estimators are

compared to the optimal value given by the minimum of Mean

Square Error (MSE) which is most of the time the reference

measure. It is defined as:

MSE(xτ ) = ‖x̄ − xτ‖2
2, (49)

where x̄ is the true image.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Synthetic images. The first row is the original images and the second
row is the degraded versions (Poisson noise and blur).

Results are shown in table I and figures 3, 4 and 5. We

first see that both methods give similar values for all images.

Fig. 3. Comparaison of the two methods for the estimation of τ on the
synthetic image (a) from the figure 2.

Fig. 4. Comparaison of the two methods for the estimation of τ on the
synthetic image (b) from the figure 2.

But we also check that on some images we may have a

huge difference with the value given by the minimization

of the MSE. On the images (a) and (c), both methods

(48) and (41) give values which are quite close to the value

given by the minimization of the MSE. But for all images,

these estimators give an estimated value of the regularizing

parameter which is greater than the optimal value (in the

MSE sense) and tend to overregularize the image.

We also check that these methods may drastically fail on

some images, for example on the image (b) where we get

an estimated regularizing parameter which is 20 times higher

than the optimal value. Actually, our experimentations showed

❵
❵

❵
❵

❵
❵

❵
❵

❵
Criterion

Image
(a) (b) (c)

Bardsley method (41) 0.119 0.626 0.142

Bertero method (45) 0.100 0.703 0.142

MSE (reference measure) 0.034 0.029 0.083

TABLE I
ESTIMATION OF THE REGULARIZING PARAMETER FOR THE TWO

ESTIMATORS (41), (48) AND COMPARAISON TO THE REFERENCE

MEASURE (49). IMAGES (A), (B) AND (C) ARE PRESENTED IN FIGURE 2.



8

Fig. 5. Comparaison of the two methods for the estimation of τ on the
synthetic image (c) from the figure 2.

that these estimators are generally more efficient on images

having a background (that is with b > 0) such as images

(a) (b = 15) and (c) (b = 1) rather than on images with no

brackground (b = 0) such as image (b). For this reason, we

propose a slight modification on both estimators.

C. Proposed modified estimators

We consider now that we do not have any background in

the model (1) that is:

y = P(Hx) (50)

This assumption is actually verified in many applications

such as biology or astonomy imaging where background is

often zero. The proposed modification mainly rely on the

fact that the Poisson distribution is not defined for a zero

mean, that is P(0) = 0. It seems clear that for every voxel

xi inside a centered window (of the size of the kernel of

the PSF) containing only 0 valued voxels, we can write that

yi = 0. These pixels should then not be considered in the

computation of the estimators (41) and (48) as they are not

noisy (more precisely, there is not any pertubations on these

pixels which change their values). This observation brings us

to consider separately positive and null observed pixels yi

and to refine the computation of the estimators for each case.

Note that this domain splitting actually constains a small

approximation as we include in the null observed pixels the

ones for which the real image is strictly positive (but small).

Dealing with these pixels is however difficult without any

knowledge on the real data.

If we consider the Gaussian estimator (41), we immediately

see that, from (38), [r(x̄)]i is a Gaussian random variable with

mean 0 but variance 0 when yi = 0. It seems thus more

accurate to write that r(x̄) is a Gaussian random variable with

mean 0 but variance Σ with:

Σ =

{

1 if yi > 0,

0 otherwise
. (51)

Then:

‖r(x̄)‖2
2 ∼ χ2(m), (52)

where m = #{yi,yi > 0}. So the modified estimator writes:

τopt = arg min
(

Ψy(xτ ) − m
2

)2

subject to τ ∈ R
+

. (53)

where Ψy is defined in (42).

The same kind of modification can be applied to (48). If we

consider that 0 log(0) = 0, then F (yλ) = 0 in (43) for λ = 0.

In consequence, we propose to change the estimator (48) to:

τopt = arg min
(

Υy(xτ ) − m
2

)2

subject to τ ∈ R
+

. (54)

where Υy is defined in (45). We have tested these estimators

and the original estimators (41) and (48) on the image (b).

Results are shown on figure 6 and table II. These modifications

clearly improve the accuracy of the estimation (see table II)

and therefore provide better results for images having a dark

background as biological images for example. With these new

estimators, we are actually very close to the value given by

the minimization of the MSE. This modification has actually

given very good results for biological images, for example.

Fig. 6. Comparaison of the estimators (41) and (48) and their respective
modification (53) and (54) for the estimation of τ on the synthetic image (b)
from the figure 2.

Bardsley method (41) 0.626

Bardsley modified method (53) 0.053

Bertero method (48) 0.703

Bertero modified method (54) 0.047

MSE (reference measure) 0.024

TABLE II
ESTIMATION OF THE REGULARIZING PARAMETER FOR THE ESTIMATORS

(41), (48), THEIR RESPECTIVE MODIFICATIONS (53), (54) AND

COMPARAISON TO THE REFERENCE MEASURE (49) FOR THE IMAGE (B).

We have also observed that the accuracy of the estimators

depends on how well the prior is modeled. Clearly images (a)

and (c) are well adapted to a Total Variation prior while this

prior may not suit to image (b). For this image, we changed the

TV prior for the Dual-Tree Complex Wavelet prior, presented
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in the section II-B, which is more efficient to represent the

textures at the surface of the object. Results are shown on the

figure 7 and table III. We can see that using a suitable prior

for the image decreases the relative error of the regularizing

parameter estimation from 42.5% to 19.4%. Thus, using an

appropriate prior is also crucial to find a correct value of the

regularizing parameter. For our experiments, we will use the

modified estimator (54) to select the value of the regularizing

parameter τ .

Fig. 7. Comparaison of the total variation prior and the complex wavelet
prior for the estimation of τ on the synthetic image (b) from the figure 2.

❳
❳

❳
❳

❳
❳

❳❳
Criterion

Prior
TV DTCW

Bardsley modified method (53) 0.034 0.070

Bertero modified method (54) 0.034 0.058

MSE (reference measure) 0.024 0.049

TABLE III
ESTIMATION OF THE REGULARIZING PARAMETER REGARDING TWO

DIFFERENT PRIORS (TV AND DTCW) FOR THE IMAGE (B).

D. A new contrained algorithm

The estimators (41) and (48) are highly time consuming

as one need to solve several instances of (14) to find a good

value of the regularizing parameter τ . We show in this part

that we can reformulate the optimization problem (14) to a

constrained problem giving, in one minimization instance, the

same solution as the one obtained with a value of τ chosen

by (54).

First it is easy to show that there exists σ ∈ ]0,+∞[ such

that a solution of (14) for a given τ is the same as:

x∗ = arg min ‖Wx‖1

subject to x ∈ R
n

JL(x,y) ≤ σ
x ≥ 0

, (55)

The cost function (55) to minimize is a lower semi continuous

function over a closed convex set. We assume this convex set

to be non empty, so a solution x∗ of (55) exists. We assume

moreover that this solution is not trivial, that is to say this

solution is not in the null space of W.

We show in the next line that the optimality conditions of the

constrained problem (55) are, for σ = m
2 , the same optimality

conditions of the optimization problem (14) with a τ chosen

by (54).

The Karush-Kuhn-Tucker optimality conditions of the prob-

lem (55) write (conditions on the positivity constraint have

been omitted for the sake of simplicity):

∂JR(x∗) + τ∗∂JL(x∗,y) ∋ 0

JL(x∗,y) − σ ≤ 0

τ∗ (JL(x∗,y) − σ) = 0

τ∗ ≥ 0 (56)

The condition τ∗ = 0 could actually be remove as we assume

the solution x∗ not to be trivial. Therefore, the Karush-Kuhn-

Tucker optimality conditions rewrite:

∂JR(x∗) + τ∗∂JL(x∗,y) ∋ 0

JL(x∗,y) = σ

τ∗ > 0. (57)

On the other side, the optimality conditions of the problem

(14) with a τopt (noted τ∗ in the following) chosen by (54)

can be written (remark that JL(x,y) = Υy(x)):

∂JR(xτ∗) + τ∗∂JL(xτ∗ ,y) ∋ 0

JL(xτ∗ ,y) =
m

2
(58)

Therefore, if one set σ = m
2 in (55), then one get that the

conditions (55) are the same optimality conditions of the

unconstrained problem (14) where the optimal regularizing

parameter τ∗ has been chosen by (54). Hence, we propose

to formulate the equivalent constrained problem as:

x∗ = arg min JR(x)
subject to x ∈ R

n

JL(x,y) ≤ m
2

x ≥ 0

. (59)

The criterion is convex so this problem can also be solved

using the ADM method presented in the section III-B. We

first formulate problem (59) as:

arg min ‖z‖1

subject to x ∈ R
n

x ≥ 0
Υ(w) ≤ m

2
w ∈ R

n,w = Hx + b

z ∈ R
m, z = Wx

. (60)

with:

Υ(x) = 1T (x) − yT log(x) + yT log(y) − 1T y. (61)

We set χC to be the indicator function on the non-empty

convex set C:

χC(x) =

{

0 if x ∈ R
n,xi ≥ 0

∞ otherwise
, (62)



10

χK to be the indicator function on the non-empty convex set

K defined by:

χK(w) =

{

0 if w ∈ R
n, wi > 0, Υ(w) ≤ m

2

∞ otherwise
,

(63)

and:

u =





x

w

z



 ∈ R
n×R

n×R
m, a =





0
−b

0



 ∈ R
n×R

n×R
m,

(64)

A = −I, B =





I

H

W



 , (65)

f1(u) = ‖z‖1 + χK(w) + χC(x), f2(v) = 0, (66)

such that we still fit into the framework (11) of the ADM

method:

arg min f1(u) + f2(v)
subject to Au + Bv = a

u ∈ R
n,v ∈ R

m

. (67)

This formulation is very similar to the one presented in section

III-B. Actually, only the proximal operator in (23) need to

be changed. Indeed, for this problem, we have that for any

u =





x

w

z



 ∈ R
n × R

n × R
m:

prox 1

β
f1

(u) =





max(x, 0)
ΠK(w)

sign(z) max(|z| − 1
β
, 0)



 , (68)

where ΠK is the orthogonal projection on the convex set

K. Even if we can not give a closed-form solution of this

projection, we propose an iterative scheme to solve it. We

recall that the orthogonal projection problem is to find:

w∗ = ΠK(w0) = arg min 1
2‖w − w0‖2

2

subject to w ∈ R
n

Υ(w) ≤ m
2

. (69)

First notice that if Υ(w0) ≤ m
2 then w∗ = w0. Otherwise,

there exists α ∈ ]0,+∞[ such that:

w∗ = arg min 1
2‖w − w0‖2

2 + αΥ(w)
subject to w ∈ R

n

= proxαΥ (w0)

=
1

2

[

w0 − α +

√

(w0 − α)
2

+ 4αy

]

= Φ(α). (70)

The problem is thus to find α such that Υ(Φ(α)) ≤ m
2 . Let

us define:

f(α) := Υ(Φ(α)) − m

2
. (71)

It can be shown that f is a convex and decreasing function

with respect to α. In order to find the root of the function f ,

we propose to use a Newton method and we only need to find

f
′

(α). Simply remark that from the composition of functions,

we have:

f
′

(α) =
1T

2

{[

α − x0 + 2y
√

(x0 − α)2 + 4αy
− 1

]

[

1 − 2y

x0 − α +
√

(x0 − α)2 + 4αy

]}

. (72)

The resulting algorithm is then given in the algorithm 3.

Algorithm 3: Newton method to solve (69)

Data: Number of iterations N ;

Set α0 = 0;

Result: w∗ an estimated of the solution of (69).

begin

for k from 0 to N − 1 do

Step 1. αk+1 = αk − f(αk)

f ′(αk)
end

w∗ = 1
2

[

w0 − αN +

√

(w0 − αN )
2

+ 4αNy

]

end

In all our simulations, we checked that 20 iterations are

sufficient to get a machine precision.

Our simulations on this contrained problem show that we

get the same result as the unconstrained problem (14) , as

we have shown in the beginning of section IV-D. This is a

very important result as, in this case, we do not have to run

algorithm 2 several times as it is needed when searching for

the good value of the regularizing parameter τopt in (54).

Moreover, the constrained problem (59) appears to be slightly

faster to converge than the unconstrained problem (14) (see

figure 8).

Finally, let us remark that we can also formulate a constrained

problem from the results of the estimator (53):

arg min ‖Wx‖1

subject to x ∈ R
n

∥

∥(Hx − (y − b)) /
√

y
∥

∥

2

2
≤ m

x ≥ 0

. (73)

This formulation consider, however, the Poisson noise to be a

weight Gaussian noise. A comparison of these two constrained

problems is given in the last part of the next section.

V. RESULTS

A. Results on synthetic 2D data

We first compare the improvement of using wavelets as

regularizing operator compared to the TV regularization

on the synthetic images (a) and (b) of figure 2. Here,

the regularization parameter τ has be chosen such that it

minimizes the MSE, in order to evaluate the perfomances of

each regularizing term. The results obtained on these images
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Fig. 8. Comparaison of the convergence of the constrained problem (59)
and the unconstrained problem (14) (with a regularizing parameter given by
(48)) on the synthetic image (a) from the figure 2.

(a) (b)

(c) (d) (e)

Fig. 9. Restoration of a blur and noisy synthetic image. (a) is the original
image, (b) is the degraded version (PSNR = 28.51 dB), (c) is the result
obtained with the Total Variation prior (PSNR = 32.95 dB), (d) is the
result obtained with the proposed prior (PSNR = 32.02 dB), (e) is the
result obtained with the prior proposed in [17] (PSNR = 31.20 dB).

are presented on figures 9 and 10.

On these images, wavelets priors allow to retrieve more

details than the TV prior. Visually, we can see that the thin

elements are better retrieved, in particular we can distinguish

the details of the surface of the object. However, as wavelets

regularizations, we may have some artifacts and contours may

be slightly smoothed.

B. Results on real 3D data

We propose to test the algorithm on the restoration of the

real images presented on figures 11 and 13. On each test,

the regularizing parameter has be chosen using the method

proposed in section IV-C. The microscope is a confocal/multi-

photon Zeiss Axiovert 200M, with an internal magnification

(a) (b)

(c) (d) (e)

Fig. 10. Restoration of a blur and noisy synthetic image. (a) is the original
image, (b) is the degraded version (PSNR = 29.43 dB), (c) is the result
obtained with the Total Variation prior (PSNR = 33.83 dB), (d) is the
result obtained with the proposed prior (PSNR = 34.53 dB), (e) is the
result obtained with the prior proposed in [17] (PSNR = 33.48 dB).

(given by the manufacturer) of 3.3x. The objective is an

immersion oil Apochromat1 40x for the first image, 63x

for the second, with numerical aperture NA = 1.4. The oil

refractive index is 1.518 (23o C). The acquisition software is

Zeiss LSM 510 Meta.

(a) (b) (c)

Fig. 11. Restoration of a sample of mouse intestin. (a) is the observed image,
(b) is the result obtained with the TV prior and (c) is the result obtained with
the DTCW prior.

Figures 11, 12 and 13 show the results obtained with the

estimator (54) and the ADM algorithm regularized with the

TV and DTCW priors on a sample of mouse intestine and on

a bead. As discussed previously, it is difficult on 3D data to

use a prior composed of several wavelet transforms. For this

reason, we can not present, on these images, the result using

the prior composed of the Curvelets and the undecimated

wavelet transform as in [17].

First, we see on both figures 11 and 13 that the estimator

(54) using the DTCW prior tends to oversmooth the image.

1that is an objective composed by a lens designed to bring light of three
colours to the same focal point, thus reducing its chromatic aberration.
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(a) (b) (c)

Fig. 12. Zoom on the restoration of the sample of mouse intestin. (a) is the
observed image, (b) is the result obtained with the TV prior and (c) is the
result obtained with the DTCW prior.

(a) (b) (c)

Fig. 13. Restoration of a bead. (a) is the original image, (b) is the result
obtained with the TV prior and (c) is the result obtained with the DTCW
prior.

This is quite common for this type of estimator, indeed most

of the recent proposed estimator for Poisson deconvolution

tends to oversmooth the image [2], [17], [43].

On figures 11 and 12 we see that the TV regularization

smooths the textures of the cells, sticking it together forming

a large pattern (right of the image). The DTCW prior allows

to retrieve some details of the cells and preserves the space

between it, even if the image retrieved is slightly smoothed.

The DTCW prior is quite efficient and gives details of the

inside of the cells (zoom on the figure 12).

The image presented in figure 11 is interesting as it contains

many details that can be retrieved using the proposed prior.

However, on a smooth object which does not contain many

details (as the one presented in figure 13), the proposed prior

does not bring much more information.

Finally, we compare the constrained problems (59) and (73)

on the sample of mouse intestin (image (a) in figure 11) using

the TV regularization. Results are shown in figure 14. We

clearly see that the image retrieved with the formulation (59)

is less smoothed than the one retrieved with the Gaussian

approximation (73). We can distinguish more easily the details

of the cells of the object.

VI. CONCLUSION

We have proposed a method for the deconvolution of images

corrupted by blur and Poisson noise and applied it on confocal

microscopy images. This method includes a wavelet prior

which is well adapted to represent the thin structures of

(a) (b)

(c) (d)

Fig. 14. Results of constrained formulations (59) and (73) on the sample of
mouse intestin. (a) is the observed image, (b) is a zoom on the observation,
(c) is the result with the constrained formulation (59) and (d) is the result
with the constrained formulation (73)

specimens in 3D and a method to estimate the value of the

regularizing parameter based on a discrepancy principle. A

new constrained minimization problem is introduced, allowing

easy and fast parameter setting and gives efficient algorithm

which is important regarding to the big volume of data coming

from 3D confocal images. This method will be analyzed and

tested on large data basis in order to estimate its range of

validity.
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